Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = type IV collagen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1162 KiB  
Review
The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease
by Marta Wolosowicz, Slawomir Prokopiuk and Tomasz W. Kaminski
Int. J. Mol. Sci. 2024, 25(24), 13691; https://doi.org/10.3390/ijms252413691 - 21 Dec 2024
Viewed by 1332
Abstract
Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound [...] Read more.
Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM. MMP-2 is secreted as an inactive pro-enzyme (proMMP-2) and activated through proteolytic cleavage, with its activity being precisely regulated by tissue inhibitors of metalloproteinases (TIMPs). Dysregulation of MMP-2 has been linked to a variety of pathological conditions, including cardiovascular diseases, diabetic complications, kidney diseases, and cancer. In cardiovascular diseases, it contributes to vascular remodeling, atherosclerosis, and aneurysms, while in fibrotic diseases, it mediates excessive ECM degradation leading to tissue scarring. In diabetes, elevated MMP-2 activity exacerbates complications such as nephropathy, retinopathy, and cardiovascular disease. In cancer, MMP-2 facilitates tumor invasion and metastasis by degrading ECM components and promoting angiogenesis. Despite its essential roles in both physiological and pathological processes, targeting MMP-2 for therapeutic purposes presents challenges due to its dual functions in tissue remodeling and repair, raising concerns about unplanned consequences such as impaired tissue healing or excessive tissue damage. These challenges underscore the need for future research to focus on developing selective modulators that can precisely balance their activity under specific disease environments. Clinical trials targeting MMP-2 modulation highlight the potential of gelatinase inhibitors, including those targeting MMP-2, to reduce tumor progression in fibrosarcoma, breast, and lung cancers. This paper reviews the structure, function, and regulation of MMP-2, its involvement in disease pathogenesis, and the potential challenges in the therapeutic implications of modulating its activity. Full article
(This article belongs to the Topic Metalloproteins and Metalloenzymes)
Show Figures

Figure 1

12 pages, 1560 KiB  
Article
DPP-IV Inhibition by Solubilized Elastin Peptides from Yellowtail Bulbus Arteriosus Suppresses Ultraviolet-B-Induced Photoaging in Hairless Mice
by Kumiko Takemori, Ei Yamamoto, Takaaki Chikugo, Eri Shiratsuchi and Takashi Kometani
Nutraceuticals 2024, 4(4), 683-694; https://doi.org/10.3390/nutraceuticals4040038 - 5 Dec 2024
Viewed by 649
Abstract
Skin aging is intrinsic and extrinsic. Intrinsic, or chronological, skin aging is an inevitable process of chronological and physiological alterations. The factors contributing to extrinsic skin aging involve sunlight, nutrients, and stress. Thus, extrinsic aging is thought to be superimposed over intrinsic aging [...] Read more.
Skin aging is intrinsic and extrinsic. Intrinsic, or chronological, skin aging is an inevitable process of chronological and physiological alterations. The factors contributing to extrinsic skin aging involve sunlight, nutrients, and stress. Thus, extrinsic aging is thought to be superimposed over intrinsic aging and depends on the intensity and duration of environmental exposure and skin type (e.g., dry skin, oily skin, or eczema). The most significant extrinsic aging factor is UV radiation, which causes cellular senescence in a process known as photoaging. This study aimed to illuminate the mechanism whereby solubilized elastin peptide lotion (EL) from the bulbus arteriosus of yellowtail (Seriola quinqueradiata) prevents skin photoaging in hairless mice. EL reduced wrinkle formation, epidermal skin thickness, and Ki67 (cell growth marker) mRNA expression in skin tissues from ultraviolet B (UVB)-irradiated mice. EL treatment also reduced glyoxalase-1 (key enzyme of glucose metabolism) levels in skin tissue. Although no significant differences in collagen and elastin contents were found in dermal areas, matrix metalloproteinase-12 (wrinkle-related marker) expression was reduced following EL application. Furthermore, skin DPP-IV/CD26 (new senescence marker) levels decreased following EL treatment in photoaging model mice. These results suggest that EL moderates skin damage caused by UVB irradiation by regulating senescence-related molecule expression. Full article
Show Figures

Figure 1

17 pages, 13274 KiB  
Article
IDH1 R132H and TP53 R248Q Mutations Modulate Glioma Cell Migration and Adhesion on Different ECM Components
by Mikhail E. Shmelev, Andrei A. Pilnik, Nikita A. Shved, Alina O. Penkova, Valeriia S. Gulaia and Vadim V. Kumeiko
Int. J. Mol. Sci. 2024, 25(22), 12178; https://doi.org/10.3390/ijms252212178 - 13 Nov 2024
Viewed by 947
Abstract
Mutations in IDH1 and TP53 have a significant impact on glioma prognosis and progression; however, their roles in tumor cell invasion in terms of interactions with particular components of the extracellular matrix (ECM) are still unclear. Using gene editing protocol based on CRISPR-Cas [...] Read more.
Mutations in IDH1 and TP53 have a significant impact on glioma prognosis and progression; however, their roles in tumor cell invasion in terms of interactions with particular components of the extracellular matrix (ECM) are still unclear. Using gene editing protocol based on CRISPR-Cas 9 with cytidine deaminase, we introduced point mutations into U87MG glioblastoma cells to establish modified cell lines with heterozygous IDH1 R132H, homozygous TP53 R248Q and heterozygous IDH1 R132H, homozygous TP53 R248Q genotypes. A comparative study of cell migration on major ECM components was carried out by high-content microscopy. IDH1 R132H mutation introduced to U87MG glioblastoma cells was shown to decrease the migration speed on Matrigel and collagen IV substrates compared to the wild-type. This data were supported by cell adhesion quantification via the lateral shift assay performed by atomic force microscopy (AFM). TP53 R248Q mutation increased cell adhesion to various substrates and significantly promoted cell migration on hyaluronic acid and chondroitin sulfate but did not change the migration rates on laminin and collagens IV and I. A double-mutant genotype produced by consequently introducing IDH1 R132H and TP53 R248Q to parental glioblastoma cells was characterized by the highest migration among all the cell lines, with particularly faster motility on chondroitin sulfate. These findings underscore the complex interactions between glioma cells, with the most important driver mutations and specific ECM components regulating cancer cell migration, offering valuable insights for potential therapeutic targets in glioma treatment. Full article
(This article belongs to the Special Issue Biophysics and Mechanical Properties of Cells 2.0)
Show Figures

Figure 1

17 pages, 4150 KiB  
Article
Application of Surface Plasmon Resonance Imaging Biosensors for Determination of Fibronectin, Laminin-5, and Type IV Collagen in Plasma, Urine, and Tissue of Renal Cell Carcinoma
by Tomasz Guszcz, Anna Sankiewicz, Lech Gałek, Ewelina Chilinska-Kopko, Adam Hermanowicz and Ewa Gorodkiewicz
Sensors 2024, 24(19), 6371; https://doi.org/10.3390/s24196371 - 30 Sep 2024
Viewed by 1259
Abstract
Laminin, fibronectin, and collagen IV are pivotal extracellular matrix (ECM) components. The ECM environment governs the fundamental properties of tumors, including proliferation, vascularization, and invasion. Given the critical role of cell-matrix adhesion in malignant tumor progression, we hypothesize that the concentrations of these [...] Read more.
Laminin, fibronectin, and collagen IV are pivotal extracellular matrix (ECM) components. The ECM environment governs the fundamental properties of tumors, including proliferation, vascularization, and invasion. Given the critical role of cell-matrix adhesion in malignant tumor progression, we hypothesize that the concentrations of these proteins may be altered in the plasma of patients with clear cell renal cell carcinoma (ccRCC). This study aimed to evaluate the serum, urine, and tissue levels of laminin-5, collagen IV, and fibronectin among a control group and ccRCC patients, with the latter divided into stages T1–T2 and T3–T4 according to the TNM classification. We included 60 patients with histopathologically confirmed ccRCC and 26 patients diagnosed with chronic cystitis or benign prostatic hyperplasia (BPH). Collagen IV, laminin-5, and fibronectin were detected using Surface Plasmon Resonance Imaging biosensors. Significant differences were observed between the control group and ccRCC patients, as well as between the T1–T2 and T3–T4 subgroups. Levels were generally higher in plasma and tissue for fibronectin and collagen IV in ccRCC patients and lower for laminin. The ROC (Receiver operating characteristic) analysis yielded satisfactory results for differentiating between ccRCC patients and controls (AUC 0.84–0.93), with statistical significance for both fibronectin and laminin in plasma and urine. Analysis between the T1–T2 and T3–T4 groups revealed interesting findings for all examined substances in plasma (AUC 0.8–0.95). The results suggest a positive correlation between fibronectin and collagen levels and ccRCC staging, while laminin shows a negative correlation, implying a potential protective role. The relationship between plasma and urine concentrations of these biomarkers may be instrumental for tumor detection and staging, thereby streamlining therapeutic decision-making. Full article
(This article belongs to the Special Issue Recent Advances in Plasmon Resonance Sensors)
Show Figures

Figure 1

11 pages, 1388 KiB  
Article
Clinical, Radiographic, and Biomechanical Evaluation of the Upper Extremity in Patients with Osteogenesis Imperfecta
by Katharina Oder, Fabian Unglaube, Sebastian Farr, Andreas Kranzl, Alexandra Stauffer, Rudolf Ganger, Adalbert Raimann and Gabriel T. Mindler
J. Clin. Med. 2024, 13(17), 5174; https://doi.org/10.3390/jcm13175174 - 31 Aug 2024
Viewed by 1008
Abstract
Introduction: Osteogenesis imperfecta (OI) is a hereditary disorder primarily caused by mutations in type I collagen genes, resulting in bone fragility, deformities, and functional limitations. Studies on upper extremity deformities and associated functional impairments in OI are limited. This cross-sectional study aimed to [...] Read more.
Introduction: Osteogenesis imperfecta (OI) is a hereditary disorder primarily caused by mutations in type I collagen genes, resulting in bone fragility, deformities, and functional limitations. Studies on upper extremity deformities and associated functional impairments in OI are limited. This cross-sectional study aimed to evaluate upper extremity deformities and functional outcomes in OI. Methods: We included patients regardless of their OI subtypes with a minimum age of 7 years. Radiographic analysis of radial head dislocation, ossification of the interosseous membrane, and/or radioulnar synostosis of the forearm were performed, and deformity was categorized as mild, moderate, or severe. Clinical evaluation was performed using the Quick Disabilities of Arm, Shoulder, and Hand (qDASH) questionnaire and shoulder-elbow-wrist range of motion (ROM). Three-dimensional motion analysis of the upper limb was conducted using the Southampton Hand Assessment Procedure (SHAP). The SHAP quantifies execution time through the Linear Index of Function (LIF) and assesses the underlying joint kinematics using the Arm Profile Score (APS). Additionally, the maximum active Range of Motion (aRoM) was measured. Results: Fourteen patients aged 8 to 73 were included. Radiographic findings revealed diverse deformities, including radial head dislocation, interosseous membrane ossification, and radioulnar synostosis. Six patients had mild, six moderate, and two severe deformities of the upper extremity. Severe deformities and radial head dislocation correlated with compromised ROM and worse qDASH scores. The qDASH score ranged from 0 to 37.5 (mean 11.7). APS was increased, and LIF was reduced in OI-affected persons compared with non-affected peers. APS and LIF also varied depending on the severity of bony deformities. aRoM was remarkably reduced for pro-supination. Conclusion: Patients with OI showed variable functional impairment from almost none to severe during daily life activities, mainly depending on the magnitude of deformity in the upper extremity. Larger multicenter studies are needed to confirm the results of this heterogeneous cohort. Level of evidence: Retrospective clinical study; Level IV. Full article
(This article belongs to the Special Issue Challenges in Hand and Upper Limb Surgery)
Show Figures

Figure 1

16 pages, 3979 KiB  
Article
The Combination of Decellularized Cartilage and Amniotic Membrane Matrix Enhances the Production of Extracellular Matrix Elements in Human Chondrocytes
by Antonio Rojas-Murillo, Jorge Lara-Arias, Héctor Leija-Gutiérrez, Rodolfo Franco-Márquez, Nidia Karina Moncada-Saucedo, Abel Guzmán-López, Félix Vilchez-Cavazos, Elsa Nancy Garza-Treviño and Mario Simental-Mendía
Coatings 2024, 14(9), 1083; https://doi.org/10.3390/coatings14091083 - 23 Aug 2024
Viewed by 1191
Abstract
Articular cartilage lesions are challenging to regenerate, prompting the investigation of novel biomaterial-based therapeutic approaches. Extracellular matrix (ECM)-derived biomaterials are a promising option for this purpose; however, to date, the combination of amniotic membrane (AMM) and articular cartilage (ACM) has not been tested. [...] Read more.
Articular cartilage lesions are challenging to regenerate, prompting the investigation of novel biomaterial-based therapeutic approaches. Extracellular matrix (ECM)-derived biomaterials are a promising option for this purpose; however, to date, the combination of amniotic membrane (AMM) and articular cartilage (ACM) has not been tested. This study evaluated different concentrations of soluble extracts from the decellularized ECM of amniotic membrane (dAMM) and articular cartilage (dACM), both individually and in combination, to determine their ability to maintain the chondrogenic phenotype in human chondrocytes. After the decellularization process 90–99% of the cellular components were removed, it retains nearly 100% of type 2 collagen and 70% of aggrecan (ACAN) for dACM, and approximately 90% of type IV collagen and 75% of ACAN for dAMM. The biological activity of soluble extracts from dACM and dAMM were evaluated on human chondrocytes. After 72 h, 1.5 mg/mL of dACM and 6 mg/mL of dAMM significantly increased (p < 0.05) the proliferation and expression of SOX9 and ACAN. Also, the combination of both (1.5 mg/mL dACM and 6 mg/mL dAMM) showed synergistic effects, enhancing chondrocyte proliferation, maintaining chondrogenic lineage, and increasing the production of cartilage ECM components, such as COLII (1.5-fold), SOX9 (2-fold), and ACAN (2-fold). These results suggest that the combined use of dACM and dAMM has potential for cartilage regeneration. Full article
Show Figures

Figure 1

16 pages, 3014 KiB  
Article
Purification and Identification of Novel Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Bighead Carp (Hypophthalmichthys nobilis)
by Hanzhi Zheng, Leyan Zhao, Yushuo Xie and Yuqing Tan
Foods 2024, 13(17), 2644; https://doi.org/10.3390/foods13172644 - 23 Aug 2024
Cited by 2 | Viewed by 1029
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors are widely used in treating type 2 diabetes due to their ability to lower blood glucose levels. However, synthetic versions often lead to gastrointestinal side effects. This study explores DPP-IV inhibitory properties in peptides from bighead carp skin. [...] Read more.
Dipeptidyl peptidase IV (DPP-IV) inhibitors are widely used in treating type 2 diabetes due to their ability to lower blood glucose levels. However, synthetic versions often lead to gastrointestinal side effects. This study explores DPP-IV inhibitory properties in peptides from bighead carp skin. Collagen was prepared, hydrolyzed into collagen peptides, and then fractionated for DPP-IV inhibitory activity examination. The most effective fractions were identified, and their peptide sequences were determined. Molecular docking analysis identified nine peptides with potential inhibitory activity, four of which (VYP, FVA, PPGF, PGLVG) were synthesized and tested in vitro. PPGF exhibited the highest potency with an IC50 of 4.63 nM, competitively binding to key DPP-IV sites, including ARG125, VAL711, TYR666, and TYR662. Other peptides showed varying effectiveness, with IC50 values of 398.87 nM (VYP), 402.02 nM (FVA), and 110.20 nM (PGLVG). These findings highlight bighead carp skin peptides as potent DPP-IV inhibitors with hypoglycemic potential, suggesting a novel avenue for diabetes management using natural peptides. Moreover, this research underscores the utilization of bighead carp by-products, contributing to environmental sustainability. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

16 pages, 3625 KiB  
Article
In Vitro Investigation of the Anti-Fibrotic Effects of 1-Phenyl-2-Pentanol, Identified from Moringa oleifera Lam., on Hepatic Stellate Cells
by Watunyoo Buakaew, Sucheewin Krobthong, Yodying Yingchutrakul, Nopawit Khamto, Pornsuda Sutana, Pachuen Potup, Yordhathai Thongsri, Krai Daowtak, Antonio Ferrante, Catherine Léon and Kanchana Usuwanthim
Int. J. Mol. Sci. 2024, 25(16), 8995; https://doi.org/10.3390/ijms25168995 - 19 Aug 2024
Viewed by 1621
Abstract
Liver fibrosis, characterized by excessive extracellular matrix deposition, is driven by activated hepatic stellate cells (HSCs). Due to the limited availability of anti-fibrotic drugs, the research on therapeutic agents continues. Here we have investigated Moringa oleifera Lam. (MO), known for its various bioactive [...] Read more.
Liver fibrosis, characterized by excessive extracellular matrix deposition, is driven by activated hepatic stellate cells (HSCs). Due to the limited availability of anti-fibrotic drugs, the research on therapeutic agents continues. Here we have investigated Moringa oleifera Lam. (MO), known for its various bioactive properties, for anti-fibrotic effects. This study has focused on 1-phenyl-2-pentanol (1-PHE), a compound derived from MO leaves, and its effects on LX-2 human hepatic stellate cell activation. TGF-β1-stimulated LX-2 cells were treated with MO extract or 1-PHE, and the changes in liver fibrosis markers were assessed at both gene and protein levels. Proteomic analysis and molecular docking were employed to identify potential protein targets and signaling pathways affected by 1-PHE. Treatment with 1-PHE downregulated fibrosis markers, including collagen type I alpha 1 chain (COL1A1), collagen type IV alpha 1 chain (COL4A1), mothers against decapentaplegic homologs 2 and 3 (SMAD2/3), and matrix metalloproteinase-2 (MMP2), and reduced the secretion of matrix metalloproteinase-9 (MMP-9). Proteomic analysis data showed that 1-PHE modulates the Wnt/β-catenin pathway, providing a possible mechanism for its effects. Our results suggest that 1-PHE inhibits the TGF-β1 and Wnt/β-catenin signaling pathways and HSC activation, indicating its potential as an anti-liver-fibrosis agent. Full article
Show Figures

Figure 1

16 pages, 5882 KiB  
Article
Perlecan: An Islet Basement Membrane Protein with Protective Anti-Inflammatory Characteristics
by Daniel Brandhorst, Heide Brandhorst, Samuel Acreman and Paul R. V. Johnson
Bioengineering 2024, 11(8), 828; https://doi.org/10.3390/bioengineering11080828 - 13 Aug 2024
Cited by 1 | Viewed by 1028
Abstract
Throughout the isolation process, human islets are subjected to destruction of the islet basement membrane (BM) and reduced oxygen supply. Reconstruction of the BM represents an option to improve islet function and survival post-transplant and may particularly be relevant for islet encapsulation devices [...] Read more.
Throughout the isolation process, human islets are subjected to destruction of the islet basement membrane (BM) and reduced oxygen supply. Reconstruction of the BM represents an option to improve islet function and survival post-transplant and may particularly be relevant for islet encapsulation devices and scaffolds. In the present study, we assessed whether Perlecan, used alone or combined with the BM proteins (BMPs) Collagen-IV and Laminin-521, has the ability to protect isolated human islets from hypoxia-induced damage. Islets isolated from the pancreas of seven different organ donors were cultured for 4–5 days at 2% oxygen in plain CMRL (sham-treated controls) or in CMRL supplemented with BMPs used either alone or in combination. Postculture, islets were characterized regarding survival, in vitro function and production of chemokines and reactive oxygen species (ROS). Individually added BMPs significantly doubled islet survival and increased in vitro function. Combining BMPs did not provide a synergistic effect. Among the tested BMPs, Perlecan demonstrated the significantly strongest inhibitory effect on chemokine and ROS production when compared with sham-treatment (p < 0.001). Perlecan may be useful to improve islet survival prior to and after transplantation. Its anti-inflammatory potency should be considered to optimise encapsulation and scaffolds to protect isolated human islets post-transplant. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

17 pages, 6314 KiB  
Article
Is Exon Skipping a Viable Therapeutic Approach for Vascular Ehlers–Danlos Syndrome with Mutations in COL3A1 Exon 10 or 15?
by Sasiwimon Utama, Jessica M. Cale, Chalermchai Mitrpant, Sue Fletcher, Steve D. Wilton and May T. Aung-Htut
Int. J. Mol. Sci. 2024, 25(16), 8816; https://doi.org/10.3390/ijms25168816 - 13 Aug 2024
Viewed by 1130
Abstract
Vascular Ehlers–Danlos syndrome or Ehlers–Danlos syndrome type IV (vEDS) is a connective tissue disorder characterised by skin hyperextensibility, joint hypermobility and fatal vascular rupture caused by COL3A1 mutations that affect collagen III expression, homo-trimer assembly and secretion. Along with collagens I, II, V [...] Read more.
Vascular Ehlers–Danlos syndrome or Ehlers–Danlos syndrome type IV (vEDS) is a connective tissue disorder characterised by skin hyperextensibility, joint hypermobility and fatal vascular rupture caused by COL3A1 mutations that affect collagen III expression, homo-trimer assembly and secretion. Along with collagens I, II, V and XI, collagen III plays an important role in the extracellular matrix, particularly in the inner organs. To date, only symptomatic treatment for vEDS patients is available. Fibroblasts derived from vEDS patients carrying dominant negative and/or haploinsufficiency mutations in COL3A1 deposit reduced collagen III in the extracellular matrix. This study explored the potential of an antisense oligonucleotide (ASO)-mediated splice modulating strategy to bypass disease-causing COL3A1 mutations reported in the in-frame exons 10 and 15. Antisense oligonucleotides designed to redirect COL3A1 pre-mRNA processing and excise exons 10 or 15 were transfected into dermal fibroblasts derived from vEDS patients and a healthy control subject. Efficient exon 10 or 15 excision from the mature COL3A1 mRNA was achieved and intracellular collagen III expression was increased after treatment with ASOs; however, collagen III deposition into the extracellular matrix was reduced in patient cells. The region encoded by exon 10 includes a glycosylation site, and exon 15 encodes hydroxyproline and hydroxylysine-containing triplet repeats, predicted to be crucial for collagen III assembly. These results emphasize the importance of post-translational modification for collagen III homo-trimer assembly. In conclusion, while efficient skipping of target COL3A1 exons was achieved, the induced collagen III isoforms generated showed defects in extracellular matrix formation. While therapeutic ASO-mediated exon skipping is not indicated for the patients in this study, the observations are restricted to exons 10 and 15 and may not be applicable to other collagen III in-frame exons. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2441 KiB  
Article
Potential Wound Healing and Anti-Melanogenic Activities in Skin Cells of Aralia elata (Miq.) Seem. Flower Essential Oil and Its Chemical Composition
by Do Yoon Kim, Kyung Jong Won, Yoon Yi Kim, Da Yeon Yoo and Hwan Myung Lee
Pharmaceutics 2024, 16(8), 1008; https://doi.org/10.3390/pharmaceutics16081008 - 30 Jul 2024
Viewed by 896
Abstract
Aralia elata (Miq.) Seem. (AES; family Araliaceae) is a medicinal plant and has been reported to have various bioactivities, including anticancer and hepatotoxicity protective activities. However, no studies have investigated the biological activities of AES or its extracts on skin. To address this, [...] Read more.
Aralia elata (Miq.) Seem. (AES; family Araliaceae) is a medicinal plant and has been reported to have various bioactivities, including anticancer and hepatotoxicity protective activities. However, no studies have investigated the biological activities of AES or its extracts on skin. To address this, we aimed to explore the effect of AES-flower-derived absolute-type essential oil (AESFEO) on skin-related biological activities, especially skin wound healing and whitening-related responses in skin cells (human-derived keratinocytes [HaCaT cells] and melanocytes [B16BL6 cells]) and to identify the components of AESFEO. Cell biological activities were analyzed using WST and BrdU incorporation assays, ELISA, or by immunoblotting. In HaCaT cells, AESFEO promoted proliferation, type IV collagen production, and enhanced the phosphorylations of Erk1/2, p38 MAPK, JNK, and Akt. In B16BL6 cells, AESFEO reduced serum-induced proliferation, α-MSH-stimulated increases in melanin synthesis and tyrosinase activity, and α-MSH-induced increases in MITF, tyrosinase, TRP-1, and TRP-2 expressions. In addition, AESFEO inhibited the phosphorylation of Erk1/2, p38 MAPK, and JNK in α-MSH-stimulated B16BL6 cells. Eighteen compounds were identified in AESFEO by GC/MS. These results suggest that AESFEO has beneficial effects on keratinocyte activities related to skin wound healing and melanocyte activities related to inhibition of skin pigmentation. AESFEO may serve as a useful natural substance for developing agents that facilitate skin wound healing and inhibit melanogenesis. Full article
(This article belongs to the Special Issue Essential Oils for Pharmaceutical Applications)
Show Figures

Figure 1

20 pages, 6068 KiB  
Article
COL6A3 Exosomes Promote Tumor Dissemination and Metastasis in Epithelial Ovarian Cancer
by Chih-Ming Ho, Ting-Lin Yen, Tzu-Hao Chang and Shih-Hung Huang
Int. J. Mol. Sci. 2024, 25(15), 8121; https://doi.org/10.3390/ijms25158121 - 25 Jul 2024
Viewed by 1236
Abstract
Our study explores the role of cancer-derived extracellular exosomes (EXs), particularly focusing on collagen alpha-3 (VI; COL6A3), in facilitating tumor dissemination and metastasis in epithelial ovarian cancer (EOC). We found that COL6A3 is expressed in aggressive ES2 derivatives, SKOV3 overexpressing COL6A3 (SKOV3/COL6A3), and [...] Read more.
Our study explores the role of cancer-derived extracellular exosomes (EXs), particularly focusing on collagen alpha-3 (VI; COL6A3), in facilitating tumor dissemination and metastasis in epithelial ovarian cancer (EOC). We found that COL6A3 is expressed in aggressive ES2 derivatives, SKOV3 overexpressing COL6A3 (SKOV3/COL6A3), and mesenchymal-type ovarian carcinoma stromal progenitor cells (MSC-OCSPCs), as well as their EXs, but not in less aggressive SKOV3 cells or ES2 cells with COL6A3 knockdown (ES2/shCOL6A3). High COL6A3 expression correlates with worse overall survival among EOC patients, as evidenced by TCGA and GEO data analysis. In vitro experiments showed that EXs from MSC-OCSPCs or SKOV3/COL6A3 cells significantly enhance invasion ability in ES2 or SKOV3/COL6A3 cells, respectively (both, p <0.001). In contrast, ES2 cells with ES2/shCOL6A3 EXs exhibited reduced invasion ability (p < 0.001). In vivo, the average disseminated tumor numbers in the peritoneal cavity were significantly greater in mice receiving intraperitoneally injected SKOV3/COL6A3 cells than in SKOV3 cells (p < 0.001). Furthermore, mice intravenously (IV) injected with SKOV3/COL6A3 cells and SKOV3/COL6A3-EXs showed increased lung colonization compared to mice injected with SKOV3 cells and PBS (p = 0.007) or SKOV3/COL6A3 cells and PBS (p = 0.039). Knockdown of COL6A3 or treatment with EX inhibitor GW4869 or rapamycin-abolished COL6A3-EXs may suppress the aggressiveness of EOC. Full article
(This article belongs to the Special Issue The Molecular Basis of Extracellular Vesicles in Health and Diseases)
Show Figures

Figure 1

20 pages, 9010 KiB  
Article
Decellularized Umbilical Cord as a Scaffold to Support Healing of Full-Thickness Wounds
by Albina A. Kondratenko, Dmitry V. Tovpeko, Daniil A. Volov, Lidia I. Kalyuzhnaya, Vladimir E. Chernov, Ruslan I. Glushakov, Maria Y. Sirotkina, Dmitry A. Zemlyanoy, Natalya B. Bildyug, Sergey V. Chebotarev, Elga I. Alexander-Sinclair, Alexey V. Nashchekin, Aleksandra D. Belova, Alexey M. Grigoriev, Ludmila A. Kirsanova, Yulia B. Basok and Victor I. Sevastianov
Viewed by 1548
Abstract
The umbilical cord is a material that enhances regeneration and is devoid of age-related changes in the extracellular matrix (ECM). The aim of this work was to develop a biodegradable scaffold from a decellularized human umbilical cord (UC-scaffold) to heal full-thickness wounds. Decellularization [...] Read more.
The umbilical cord is a material that enhances regeneration and is devoid of age-related changes in the extracellular matrix (ECM). The aim of this work was to develop a biodegradable scaffold from a decellularized human umbilical cord (UC-scaffold) to heal full-thickness wounds. Decellularization was performed with 0.05% sodium dodecyl sulfate solution. The UC-scaffold was studied using morphological analysis methods. The composition of the UC-scaffold was studied using immunoblotting and Fourier transform infrared spectroscopy. The adhesion and proliferation of mesenchymal stromal cells were investigated using the LIVE/DEAD assay. The local reaction was determined by subcutaneous implantation in mice (n = 60). A model of a full-thickness skin wound in mice (n = 64) was used to assess the biological activity of the UC-scaffold. The proposed decellularization method showed its effectiveness in the umbilical cord, as it removed cells and retained a porous structure, type I and type IV collagen, TGF-β3, VEGF, and fibronectin in the ECM. The biodegradation of the UC-scaffold in the presence of collagenase, its stability during incubation in hyaluronidase solution, and its ability to swell by 1617 ± 120% were demonstrated. Subcutaneous scaffold implantation in mice showed gradual resorption of the product in vivo without the formation of a dense connective tissue capsule. Epithelialization of the wound occurred completely in contrast to the controls. All of these data suggest a potential for the use of the UC-scaffold. Full article
Show Figures

Graphical abstract

13 pages, 1673 KiB  
Article
Mass Spectrometry of Collagen-Containing Allogeneic Human Bone Tissue Material
by Nikolay A. Ryabov, Larisa T. Volova, Denis G. Alekseev, Svetlana A. Kovaleva, Tatyana N. Medvedeva and Mikhail Yu. Vlasov
Polymers 2024, 16(13), 1895; https://doi.org/10.3390/polym16131895 - 2 Jul 2024
Viewed by 1383
Abstract
The current paper highlights the active development of tissue engineering in the field of the biofabrication of living tissue analogues through 3D-bioprinting technology. The implementation of the latter is impossible without important products such as bioinks and their basic components, namely, hydrogels. In [...] Read more.
The current paper highlights the active development of tissue engineering in the field of the biofabrication of living tissue analogues through 3D-bioprinting technology. The implementation of the latter is impossible without important products such as bioinks and their basic components, namely, hydrogels. In this regard, tissue engineers are searching for biomaterials to produce hydrogels with specified properties both in terms of their physical, mechanical and chemical properties and in terms of local biological effects following implantation into an organism. One of such effects is the provision of the optimal conditions for physiological reparative regeneration by the structural components that form the basis of the biomaterial. Therefore, qualitative assessment of the composition of the protein component of a biomaterial is a significant task in tissue engineering and bioprinting. It is important for predicting the behaviour of printed constructs in terms of their gradual resorption followed by tissue regeneration due to the formation of a new extracellular matrix. One of the most promising natural biomaterials with significant potential in the production of hydrogels and the bioinks based on them is the polymer collagen of allogeneic origin, which plays an important role in maintaining the structural and biological integrity of the extracellular matrix, as well as in the morphogenesis and cellular metabolism of tissues, giving them the required mechanical and biochemical properties. In tissue engineering, collagen is widely used as a basic biomaterial because of its availability, biocompatibility and facile combination with other materials. This manuscript presents the main results of a mass spectrometry analysis (proteomic assay) of the lyophilized hydrogel produced from the registered Lyoplast® bioimplant (allogeneic human bone tissue), which is promising in the field of biotechnology. Proteomic assays of the investigated lyophilized hydrogel sample showed the presence of structural proteins (six major collagen fibers of types I, II, IV, IX, XXVII, XXVIII were identified), extracellular matrix proteins, and mRNA-stabilizing proteins, which participate in the regulation of transcription, as well as inducer proteins that mediate the activation of regeneration, including the level of circadian rhythm. The research results offer a new perspective and indicate the significant potential of the lyophilized hydrogels as an effective alternative to synthetic and xenogeneic materials in regenerative medicine, particularly in the field of biotechnology, acting as a matrix and cell-containing component of bioinks for 3D bioprinting. Full article
(This article belongs to the Special Issue Biopolymers for Regenerative Medicine Applications)
Show Figures

Figure 1

14 pages, 1236 KiB  
Article
Contribution of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 to Upper Tract Urothelial Cancer Risk in Taiwan
by Bo-Ren Wang, Hung-Huan Ma, Chao-Hsiang Chang, Cheng-Hsi Liao, Wen-Shin Chang, Mei-Chin Mong, Ya-Chen Yang, Jian Gu, Da-Tian Bau and Chia-Wen Tsai
Viewed by 1464
Abstract
Matrix metalloproteinase (MMP)-2 and -9, which degrade type IV collagen, are linked to cancer invasion and metastasis. Gene polymorphisms in MMP-2 and MMP-9 can influence their function, impacting cancer development and progression. This study analyzed the association between polymorphisms MMP-2 rs243865 (C-1306T), rs2285053 [...] Read more.
Matrix metalloproteinase (MMP)-2 and -9, which degrade type IV collagen, are linked to cancer invasion and metastasis. Gene polymorphisms in MMP-2 and MMP-9 can influence their function, impacting cancer development and progression. This study analyzed the association between polymorphisms MMP-2 rs243865 (C-1306T), rs2285053 (C-735T), and MMP-9 rs3918242 (C-1562T) with serum concentrations of these enzymes in upper tract urothelial cancer (UTUC) patients. We conducted a case–control study with 218 UTUC patients and 580 healthy individuals in Taiwan. Genotyping was performed using PCR/RFLP on DNA from blood samples, and MMP-2 and MMP-9 serum levels and mRNA expressions in 30 UTUC patients were measured using ELISA and real-time PCR. Statistical analysis showed that MMP-2 rs2285053 and MMP-9 rs3918242 genotypes were differently distributed between UTUC patients and controls (p = 0.0199 and 0.0020). The MMP-2 rs2285053 TT genotype was associated with higher UTUC risk compared to the CC genotype (OR = 2.20, p = 0.0190). Similarly, MMP-9 rs3918242 CT and TT genotypes were linked to increased UTUC risk (OR = 1.51 and 2.92, p = 0.0272 and 0.0054). In UTUC patients, TT carriers of MMP-2 rs2285053 and MMP-9 rs3918242 showed higher mRNA and protein levels (p < 0.01). These findings suggest that MMP-2 rs2285053 and MMP-9 rs3918242 genotypes are significant markers for UTUC risk and metastasis in Taiwan. Full article
(This article belongs to the Special Issue Novel Finding in Cancer Genomics)
Show Figures

Figure 1

Back to TopTop