Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,830)

Search Parameters:
Keywords = tumor microenvironment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7803 KiB  
Article
Impact of Hyaluronic Acid on the Cutaneous T-Cell Lymphoma Microenvironment: A Novel Anti-Tumor Mechanism of Bexarotene
by Tetsuya Ikawa, Emi Yamazaki, Ryo Amagai, Yumi Kambayashi, Mana Sekine, Takuya Takahashi, Yoshihide Asano and Taku Fujimura
Cancers 2025, 17(2), 324; https://doi.org/10.3390/cancers17020324 (registering DOI) - 20 Jan 2025
Viewed by 33
Abstract
Background: Cutaneous T-cell lymphoma (CTCL) is a type of non-Hodgkin’s lymphoma that primarily affects the skin, rich in hyaluronic acid (HA). HA is a component of the extracellular matrix in the dermis and likely affects the development of CTCL, but the mechanism is [...] Read more.
Background: Cutaneous T-cell lymphoma (CTCL) is a type of non-Hodgkin’s lymphoma that primarily affects the skin, rich in hyaluronic acid (HA). HA is a component of the extracellular matrix in the dermis and likely affects the development of CTCL, but the mechanism is poorly understood. Here we show that low-molecular-weight HA (LMWHA) possibly exacerbates CTCL, and bexarotene, already used in CTCL treatment, decreases HA production. Methods: We conducted immunohistochemistry, qRT-PCR, immunoblotting, and HA quantification using both mouse and human specimens to evaluate the impact of HA on CTCL. Additionally, we assessed the effect of bexarotene, which is already used for CTCL treatment, on HA metabolism. Results: HA expression was higher in patients’ serum and skin sections than in healthy controls. HA extracted from the skin of mice inoculated with tumors showed an increase in LMWHA. LMWHA increased lymphoma cell proliferation in vitro and accelerated tumor formation in mice in vivo. LMWHA also created a favorable environment for tumor cells by affecting fibroblasts, vascular endothelial cells, and tumor-associated macrophages. Thus, increased levels of HA, mainly LMWHA, exacerbate CTCL progression by affecting tumor cells and their microenvironment. Bexarotene treatment reduced the amount of total HA in murine tumor-inoculated skin, as well as the supernatant of cultured normal human dermal fibroblasts (NHDFs) and HuT78 cells. Detailed in vitro analyses showed that bexarotene treatment decreased HA synthase (HAS)1 and HAS2 expression in NHDFs and HAS1 and HAS3, and CEMIP expression in HuT78 cells. Chromatin immunoprecipitation assays revealed that bexarotene reduced retinoid X receptor-α binding to the HAS1 and HAS2 promoters in NHDFs. Conclusions: Bexarotene potentially exerts its anti-tumor effect by reducing HA levels through decreased expression of HAS. These findings provide new insights into the process of CTCL development and additional insights regarding bexarotene treatment. Full article
(This article belongs to the Special Issue Immunomodulation in Cancer Treatment)
Show Figures

Figure 1

17 pages, 887 KiB  
Review
The Role of the Tumor Microenvironment in T-Cell Redirecting Therapies of Large B-Cell Lymphoma: Lessons Learned from CAR-T to Bispecific Antibodies
by Kirill V. Lepik and Vladislav V. Markelov
Cancers 2025, 17(2), 317; https://doi.org/10.3390/cancers17020317 (registering DOI) - 20 Jan 2025
Viewed by 211
Abstract
T-cell redirecting therapies, which include chimeric antigen receptor T-cells (CAR-Ts) and bispecific antibodies (BSAs), have revolutionized the treatment of relapsed\refractory large B-cell lymphoma (LBCL). Expanding clinical experience with these advanced therapies shows the potential for the optimization of their use with combination or [...] Read more.
T-cell redirecting therapies, which include chimeric antigen receptor T-cells (CAR-Ts) and bispecific antibodies (BSAs), have revolutionized the treatment of relapsed\refractory large B-cell lymphoma (LBCL). Expanding clinical experience with these advanced therapies shows the potential for the optimization of their use with combination or consolidation strategies, which necessitates the prognostic stratification of patients. While traditional clinical prognostic factors identified in the era of chemotherapy are characterized by limited value, the tumor microenvironment (TME) is becoming a new prognostic cluster. We examine how the heterogeneity of LBCL, characterized by variations in tumor parameters and differences in TME immune cell composition, immune checkpoint expression, and cytokine milieu, correlates with both positive responses and resistance to treatment. While classical parameters such as histological subtype, cell of origin, and target antigen expression lack proven prognostic value for T-cell redirecting therapies, the density and functional state of tumor-infiltrating lymphocytes, tumor-associated macrophages, and immune checkpoint molecules are shown to be critical determinants of therapeutic success, particularly in CAR-T therapy. We identify several gaps in the current knowledge and suggest that the insights gained from CAR-T experience could be instrumental in refining BSA applications. This report also highlights limitations in the current knowledge, as TME data derive from a limited number of registrational trials with varying methodologies, complicating cross-study comparisons and often focusing on immediate response metrics rather than long-term outcomes. By dissecting the complex interactions within the TME, this review aims to identify new prognostic factors and targets, ultimately fostering more effective and tailored treatment strategies for LBCL patients. Full article
(This article belongs to the Special Issue CAR T Cells in Lymphoma and Multiple Myeloma)
Show Figures

Figure 1

19 pages, 8598 KiB  
Article
Identification of Hepatocellular Carcinoma Subtypes Based on Global Gene Expression Profiling to Predict the Prognosis and Potential Therapeutic Drugs
by Cunzhen Zhang, Jiyao Wang, Lin Jia, Qiang Wen, Na Gao and Hailing Qiao
Biomedicines 2025, 13(1), 236; https://doi.org/10.3390/biomedicines13010236 (registering DOI) - 20 Jan 2025
Viewed by 308
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and distinguishing its subtypes holds significant value for diagnosis, treatment, and the prognosis. Methods: Unsupervised clustering analysis was conducted to classify HCC subtypes. Subtype signature genes were identified using LASSO, SVM, and logistic regression. [...] Read more.
Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and distinguishing its subtypes holds significant value for diagnosis, treatment, and the prognosis. Methods: Unsupervised clustering analysis was conducted to classify HCC subtypes. Subtype signature genes were identified using LASSO, SVM, and logistic regression. Survival-related genes were identified using Cox regression, and their expression and function were validated via qPCR and gene interference. GO, KEGG, GSVA, and GSEA were used to determine enriched signaling pathways. ESTIMATE and CIBERSORT were used to calculate the stromal score, tumor purity, and immune cell infiltration. TIDE was employed to predict the patient response to immunotherapy. Finally, drug sensitivity was analyzed using the oncoPredict algorithm. Results: Two HCC subtypes with different gene expression profiles were identified, where subtype S1 exhibited a significantly shorter survival time. A subtype scoring formula and a nomogram were constructed, both of which showed an excellent predictive performance. COL11A1 and ACTL8 were identified as survival-related genes among the signature genes, and the downregulation of COL11A1 could suppress the invasion and migration of HepG2 cells. Subtype S1 was characterized by the upregulation of pathways related to collagen and the extracellular matrix, as well as downregulation associated with the xenobiotic metabolic process and fatty acid degradation. Subtype S1 showed higher stromal scores, immune scores, and ESTIMATE scores and infiltration of macrophages M0 and plasma cells, as well as lower tumor purity and infiltration of NK cells (resting/activated) and resting mast cells. Subtype S2 was more likely to benefit from immunotherapy. Subtype S1 appeared to be more sensitive to BMS-754807, JQ1, and Axitinib, while subtype S2 was more sensitive to SB505124, Pevonedistat, and Tamoxifen. Conclusions: HCC patients can be classified into two subtypes based on their gene expression profiles, which exhibit distinctions in terms of signaling pathways, the immune microenvironment, and drug sensitivity. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

24 pages, 7359 KiB  
Article
Integrative Single-Cell and Bulk RNA Sequencing Identifies a Macrophage-Related Prognostic Signature for Predicting Prognosis and Therapy Responses in Colorectal Cancer
by Shaozhuo Xie, Siyu Hou, Jiajia Chen and Xin Qi
Int. J. Mol. Sci. 2025, 26(2), 811; https://doi.org/10.3390/ijms26020811 (registering DOI) - 19 Jan 2025
Viewed by 183
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors, characterized by a high incidence and mortality rate. Macrophages, as a key immune cell type within the tumor microenvironment (TME), play a key role in tumor immune evasion and the progression of [...] Read more.
Colorectal cancer (CRC) is one of the most common malignant tumors, characterized by a high incidence and mortality rate. Macrophages, as a key immune cell type within the tumor microenvironment (TME), play a key role in tumor immune evasion and the progression of CRC. Therefore, identifying macrophage biomarkers is of great significance for predicting the prognosis of CRC patients. This study integrates scRNA-seq and bulk RNA-seq data to identify macrophage-related genes in CRC. By applying a comprehensive machine learning framework, the macrophage-related prognostic signature (MRPS) was constructed by 15 macrophage-related genes with prognostic values. The MRPS demonstrated strong predictive performance across multiple datasets, effectively stratifying high-risk and low-risk patients in terms of overall survival (OS) and disease-specific survival (DSS). Furthermore, immune analysis revealed significant differences between the high-risk and low-risk groups in immune cell infiltration levels and immune checkpoint gene expression patterns. Drug screening identified several small molecules, including Bortezomib and Mitoxantrone, as potential therapeutic options for high-risk patients. Pseudotime trajectory analysis further highlighted the potential role of genes comprising the MRPS in macrophage differentiation. This study provides a powerful tool for personalized prognosis prediction in CRC patients, offering new insights into macrophage-driven mechanisms in tumor progression and potential therapeutic strategies. Full article
(This article belongs to the Special Issue Machine Learning in Disease Diagnosis and Treatment)
Show Figures

Figure 1

34 pages, 3049 KiB  
Review
Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer
by Pathea Shawnae Bruno, Aneeta Arshad, Maria-Raluca Gogu, Natalie Waterman, Rylie Flack, Kimberly Dunn, Costel C. Darie and Anca-Narcisa Neagu
Life 2025, 15(1), 126; https://doi.org/10.3390/life15010126 (registering DOI) - 18 Jan 2025
Viewed by 336
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they [...] Read more.
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein–protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

19 pages, 692 KiB  
Review
Investigating Tumor-Infiltrating Lymphocytes in the Microenvironment of Oral Squamous Cell Carcinoma (OSCC) and Oral Potentially Malignant Disorders (OPMDs): Can They Shift Our Perspective? A Scoping Review
by Samuele Sutera, Olga Anna Furchì and Monica Pentenero
J. Clin. Med. 2025, 14(2), 606; https://doi.org/10.3390/jcm14020606 (registering DOI) - 18 Jan 2025
Viewed by 212
Abstract
Background/Objectives: Tumor-infiltrating lymphocytes (TILs) play a crucial role in the tumor microenvironment (TME), influencing the progression, prognosis, and response to treatment in oral squamous cell carcinoma (OSCC) and its precursors, oral potentially malignant disorders (OPMDs). This scoping review assesses the current literature [...] Read more.
Background/Objectives: Tumor-infiltrating lymphocytes (TILs) play a crucial role in the tumor microenvironment (TME), influencing the progression, prognosis, and response to treatment in oral squamous cell carcinoma (OSCC) and its precursors, oral potentially malignant disorders (OPMDs). This scoping review assesses the current literature on TILs in the TME of OSCC and OPMDs, aiming to identify trends and gaps in the research. Methods: A comprehensive search was performed in PubMed, using the following query terms: “Tumor Microenvironment AND (mouth neoplasms OR oral lichen OR leukoplakia OR oral lichenoid OR dysplasia OR GVHD OR lupus)”. Based on the inclusion criteria, we selected in vivo human original research and clinical observational studies that focused on TILs within the TME of OSCC and OPMDs. Results: Out of 1152 results in PubMed, 58 studies were selected and analyzed. These studies investigated various TILs, including T cells, B cells, and natural killer (NK) cells. Of these, 47 studies focused on the OSCC TME, 4 examined the OPMDs ME, and 7 compared OSCC TME and OPMDs ME. Discussion: While TILs in OSCC have been extensively studied, research on infiltrating lymphocytes in OPMDs is still limited. In OSCC, CD8+ T cells, T helper 1 cells, and NK cells are associated with strong antitumor activity, whereas CD4+ T cells, including T helper 2 and regulatory T cells, are linked to protumoral effects. B cells remain less explored due to their low frequency in the TME. In OPMDs, trends suggest an increase in activated CD8+ T cells in OLP and lower NK cell numbers compared to OSCC, which may contribute to malignant transformation. Understanding the spatial distribution and activation status of TILs within the TME is essential for deciphering their role. The variability in TIL composition highlights the complexity of the TME. Conclusions: Current knowledge remains preliminary, though it highlights the crucial role of TILs in carcinogenesis and OSCC. A more in-depth understanding could improve diagnostic and therapeutic strategies, including the assessment of the risk of malignant transformation in OPMDs. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

12 pages, 2446 KiB  
Article
Advancing Radiobiology: Investigating the Effects of Photon, Proton, and Carbon-Ion Irradiation on PANC-1 Cells in 2D and 3D Tumor Models
by Alexandra Charalampopoulou, Amelia Barcellini, Giuseppe Magro, Anna Bellini, Sara Sevan Borgna, Giorgia Fulgini, Giovanni Battista Ivaldi, Alessio Mereghetti, Ester Orlandi, Marco Giuseppe Pullia, Simone Savazzi, Paola Tabarelli De Fatis, Gaia Volpi and Angelica Facoetti
Curr. Oncol. 2025, 32(1), 49; https://doi.org/10.3390/curroncol32010049 (registering DOI) - 18 Jan 2025
Viewed by 393
Abstract
Introduction: Pancreatic cancer (PC) is one of the most aggressive and lethal malignancies, calling for enhanced research. Pancreatic ductal adenocarcinoma (PDAC) represents 70–80% of all cases and is known for its resistance to conventional therapies. Carbon-ion radiotherapy (CIRT) has emerged as a promising [...] Read more.
Introduction: Pancreatic cancer (PC) is one of the most aggressive and lethal malignancies, calling for enhanced research. Pancreatic ductal adenocarcinoma (PDAC) represents 70–80% of all cases and is known for its resistance to conventional therapies. Carbon-ion radiotherapy (CIRT) has emerged as a promising approach due to its ability to deliver highly localized doses and unique radiobiological properties compared to X-rays. In vitro radiobiology has relied on two-dimensional (2D) cell culture models so far; however, these are not sufficient to replicate the complexity of the in vivo tumor architecture. Three-dimensional (3D) models become a paradigm shift, surpassing the constraints of traditional models by accurately re-creating morphological, histological, and genetic characteristics as well as the interaction of tumour cells with the microenvironment. Materials and Methods: This study investigates the survival of pancreatic cancer cells in both 2D and spheroids, a 3D model, following photon, proton, and carbon-ion irradiation by means of clonogenic, MTT, spheroid growth, and vitality assays. Results: Our results demonstrate that carbon ions are more efficient in reducing cancer cell survival compared to photons and protons. In 2D cultures, carbon-ion irradiation reduced cell survival to approximately 15%, compared to 45% with photons and 30% with protons. In the 3D culture model, spheroid growth was similarly inhibited by carbon-ion irradiation; however, the overall survival rates were higher across all irradiation modalities compared to the 2D cultures. Carbon ions consistently showed the highest efficacy in reducing cell viability in both models. Conclusions: Our research highlights the pivotal role of 3D models in unraveling the complexities of pancreatic cancer radiobiology, offering new avenues for designing more effective and precise treatment protocols. Full article
(This article belongs to the Special Issue New Treatments in Pancreatic Ductal Adenocarcinoma)
Show Figures

Figure 1

18 pages, 5240 KiB  
Article
Assessing the Efficacy of Mitochondria-Accumulating Self-Assembly Peptides in Pancreatic Cancer: An Animal Study
by Ho Joong Choi, Seongeon Jin, Junghyun Park, Dosang Lee, Hee Jeong Jeong, Ok-Hee Kim, Ja-Hyoung Ryu and Say-June Kim
Int. J. Mol. Sci. 2025, 26(2), 784; https://doi.org/10.3390/ijms26020784 (registering DOI) - 17 Jan 2025
Viewed by 263
Abstract
Although pancreatic cancer presents with one of the most unfavorable prognoses, its treatment options are very limited. Mitochondria-targeting moieties, considered a new and prominent treatment modality, are expected to demonstrate synergistic anticancer effects due to their distinct mechanism compared to conventional chemotherapeutic approaches. [...] Read more.
Although pancreatic cancer presents with one of the most unfavorable prognoses, its treatment options are very limited. Mitochondria-targeting moieties, considered a new and prominent treatment modality, are expected to demonstrate synergistic anticancer effects due to their distinct mechanism compared to conventional chemotherapeutic approaches. This study evaluated the therapeutic potential of mitochondria-accumulating self-assembly peptides, referred to as Mito-FFs, utilizing both in vitro and in vivo pancreatic cancer models. Cellular viability assays revealed a concentration-dependent decrease in the survival of MIA-PACA2 pancreatic cancer cells upon exposure to Mito-FF treatment (p < 0.05). Subsequent in vitro Mito-FF treatments prompted the use of several molecular analyses, including Real-time PCR, Western blot analysis, and MitoSOX staining, which collectively indicated an upsurge in apoptosis, a concurrent reduction in the antioxidant enzyme expression, and an elevation in mitochondrial ROS levels (p < 0.05). In a murine xenograft model of pancreatic cancer, the intravenous administration of Mito-FF yielded a notable reduction in the tumor volume. Moreover, it upregulated the expression of pro-apoptotic markers, such as cleaved PARP and c-caspase 3, while concurrently downregulating the expression of an anti-apoptotic marker, MCL-1, as evidenced by both Western blot analysis and immunohistochemical staining (p < 0.05). It also resulted in the reduced expression of antioxidant enzymes like HO-1, catalase, and SOD2 within excised tumor tissues, as confirmed using Western blot analysis (p < 0.05). Cumulatively, the findings underscore the significant anticancer efficacy of Mito-FF against pancreatic cancer cells, predominantly mediated through the induction of apoptosis, suppression of antioxidant enzyme expression, and enhancement of mitochondrial ROS levels within the tumor microenvironment. Full article
(This article belongs to the Special Issue Mitochondrial Function in Health and Diseases)
Show Figures

Figure 1

24 pages, 2707 KiB  
Review
New Progress in Zebrafish Liver Tumor Models: Techniques and Applications in Hepatocellular Carcinoma Research
by Qizhuan Lin, Libo Jin and Renyi Peng
Int. J. Mol. Sci. 2025, 26(2), 780; https://doi.org/10.3390/ijms26020780 (registering DOI) - 17 Jan 2025
Viewed by 303
Abstract
Liver tumors represent a serious clinical health problem that threatens human life. Previous studies have demonstrated that the pathogenesis of liver tumors is complex and influenced by various factors, highlighting limitations in both basic pathological research and clinical treatment. Traditional research methods often [...] Read more.
Liver tumors represent a serious clinical health problem that threatens human life. Previous studies have demonstrated that the pathogenesis of liver tumors is complex and influenced by various factors, highlighting limitations in both basic pathological research and clinical treatment. Traditional research methods often begin with the discovery of phenomena and gradually progress to the development of animal models and human trials. Among these, liver tumor animal models play a critical role in advancing related research. The zebrafish liver closely resembles the human liver in structure, function, and regenerative capacity. Additionally, the high transparency and rapid development of zebrafish embryos and larvae make them ideal model organisms for studying liver tumors. This review systematically summarizes recent methods for constructing zebrafish liver tumor models, including transplantation, transgenesis, induction, and gene knockout. Furthermore, the present paper explores the applications of these models in the study of liver cancer pathogenesis, metastasis, the tumor microenvironment, drug screening, and other related areas. By comparing the advantages and limitations of various models and integrating their distinct characteristics, this review provides insights for developing a novel liver tumor model that better aligns with clinical needs. This approach will offer valuable reference information for further in-depth studies of the pathological mechanisms of liver tumors and the development of new therapeutic drugs or strategies. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

12 pages, 1507 KiB  
Article
Transcriptomic Profiling and Tumor Microenvironment Classification Reveal Unique and Dynamic Immune Biology in HIV-Associated Kaposi Sarcoma
by Jihua Yang, Ayse Ece Cali Daylan, Aleksei Shevkoplias, Ekaterina Postovalova, Meng Wang, Andrey Tyshevich, Matthew Lee, Hiba Narvel, Ksenia Zornikova, Nara Shin, Nikita Kotlov, Luca Paoluzzi, Changcheng Zhu, Balazs Halmos, Xingxing Zang and Haiying Cheng
Viewed by 428
Abstract
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for [...] Read more.
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for advanced KS remain limited. This study investigates the tumor microenvironment (TME) of KS through whole-transcriptomic profiling, analyzing changes over time and differences based on HIV status. The TME was categorized into four subtypes: immune-enriched (IE), non-fibrotic, immune-enriched/fibrotic (IE/F), fibrotic (F) and immune-depleted (D). Nine KS patients (four HIV-negative and five HIV-positive) were enrolled in the study. Longitudinally collected KS samples from three patients (one HIV-negative and two HIV-positive) allowed for the investigation of dynamic TME changes within individual patients. The immune cellular composition was determined using deconvolution and compared to a cohort of non-KS patients. Our findings revealed that all KS samples, regardless of HIV status, were enriched in endothelial cells. Compared to non-KS tissues, the KS samples contained a higher percentage of NK and CD8+ T cells. HIV-negative KS samples displayed the IE and IE/F TME subtypes, while HIV-positive samples exhibited IE, IE/F, and F subtypes. Over the course of the disease, a decrease in angiogenic signatures was observed in two HIV-positive KS patients. Notably, HIV-negative KS samples showed alterations in NK cell-mediated immunity and cytotoxic response pathways, whereas HIV-positive samples exhibited changes in growth regulation and protein kinase activity pathways at the time of initial diagnosis. The gene expression of immune checkpoints, including CD274 (PD-L1) and PDCD1LC2 (PD-L2), was comparable between HIV-positive and HIV-negative KS samples at diagnosis. Furthermore, sequencing identified a shared TCRβ chain in all patients analyzed, indicating a T-cell immune response to a common antigen. This study demonstrates unique transcriptomic features and TME subtypes in KS that differ based on HIV status. Additionally, it illustrates longitudinal dynamic changes in the gene signatures and TME subtypes in individual patients. The identification of a shared TCRβ chain suggests that immune T cells in KS patients may target a common antigen. Future studies should further explore the immune microenvironment and unique T cell clonotypes, which could pave the way for the development of novel therapeutic strategies for KS patients. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Figure 1

25 pages, 65903 KiB  
Article
Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments
by Xinhe Lu, Yuhang Luo, Yun Huang, Zhiqiang Zhu, Hongyan Yin and Shunqing Xu
Int. J. Mol. Sci. 2025, 26(2), 773; https://doi.org/10.3390/ijms26020773 (registering DOI) - 17 Jan 2025
Viewed by 279
Abstract
Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine [...] Read more.
Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs). Consensus clustering revealed molecular subtypes. The single-cell analysis explored the tumor microenvironment, immune checkpoints, and immunotherapy responses. In vitro, RNA interference mediated BIRC5 knockdown, and co-culture experiments assessed its impact. Cellular senescence-related genes predicted HCC survival information better than differential expression genes (DEGs). Eight key HCC-CSMs were identified, which revealed two distinct clusters with different clinical characteristics and mutation patterns. By single-cell RNA-seq data, we investigated the immunological microenvironment and observed that increasing immune cells allow hepatocytes to regain population dominance. This phenomenon may be associated with the HCC-CSMs identified in our study. By combining bulk RNA sequencing and single-cell RNA sequencing data, we identified the key gene BIRC5 and the natural killer (NK) cells that express BIRC5 at the highest levels. BIRC5 knockdown increased NK cell proliferation but reduced function, potentially aiding tumor survival. These findings provide insights into senescence-driven HCC progression and potential therapeutic targets. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

13 pages, 2563 KiB  
Article
Early Effects of Bronchoscopic Cryotherapy in Metastatic Non-Small Cell Lung Cancer Patients Receiving Immunotherapy: A Single-Center Prospective Study
by Gediminas Vasiliauskas, Evelina Žemaitė, Erika Skrodenienė, Lina Poškienė, Gertrūda Maziliauskienė, Aurimas Mačionis, Skaidrius Miliauskas, Donatas Vajauskas and Marius Žemaitis
Diagnostics 2025, 15(2), 201; https://doi.org/10.3390/diagnostics15020201 - 17 Jan 2025
Viewed by 258
Abstract
Background/Objectives: Cryotherapy is used for local tissue destruction through rapid freeze–thaw cycles. It induces cancer cell necrosis followed by inflammation in the treated tumor microenvironment, and it stimulates systemic adaptive immunity. Combining cryotherapy with immunotherapy may provide a sustained immune response by preventing [...] Read more.
Background/Objectives: Cryotherapy is used for local tissue destruction through rapid freeze–thaw cycles. It induces cancer cell necrosis followed by inflammation in the treated tumor microenvironment, and it stimulates systemic adaptive immunity. Combining cryotherapy with immunotherapy may provide a sustained immune response by preventing T cell exhaustion. Methods: Fifty-five patients with metastatic non-small cell lung cancer who had received no prior treatment were randomized into two groups in a 1:1 ratio: the bronchoscopic cryotherapy group or the control group. Patients received up to four cycles of pembrolizumab as monotherapy or in combination with platinum-based chemotherapy. Immune-related adverse events (irAEs), complications, tumor size changes, overall response rate (ORR), and disease control rate (DCR) were evaluated. Results: Lung tumors, treated with cryotherapy, demonstrated continuous reduction from the baseline (22.4 cm2 vs. 14.4 cm2 vs. 10.2 cm2, p < 0.001). Similar changes were observed in pulmonary tumors in the control group (19.0 cm2 vs. 10.0 cm2, p < 0.001). The median change in pulmonary tumors between two groups was not significant (−42.9% vs. −27.7%, p = 0.175). No significant differences were observed in the ORR (28.6% vs. 23.1%, p = 0.461) or target lesion decrease (−24.0% vs. −23.4%, p = 0.296) between the groups. However, the DCR was significantly higher in the cryotherapy group (95.2% vs. 73.1%, p = 0.049). No cases of serious bleeding during cryotherapy or pneumothorax were observed. Six patients (25.0%) in the cryotherapy group and eight (26.7%) in the control group experienced irAEs. Conclusions: Our study demonstrated that combined bronchoscopic cryotherapy and immunotherapy with or without chemotherapy may reduce the rate of progressive disease in metastatic non-small cell lung cancer patients while maintaining a satisfactory safety profile. Full article
(This article belongs to the Special Issue Lung Cancer: Screening, Diagnosis and Management)
Show Figures

Figure 1

19 pages, 834 KiB  
Review
Divergent Crosstalk Between Microglia and T Cells in Brain Cancers: Implications for Novel Therapeutic Strategies
by Min-Hee Yi, Jinkyung Lee, Subin Moon, EunA So, Geonhyeok Bang, Kyung-Sub Moon and Kyung-Hwa Lee
Biomedicines 2025, 13(1), 216; https://doi.org/10.3390/biomedicines13010216 - 16 Jan 2025
Viewed by 365
Abstract
Background: Brain cancers represent a formidable oncological challenge characterized by their aggressive nature and resistance to conventional therapeutic interventions. The tumor microenvironment has emerged as a critical determinant of tumor progression and treatment efficacy. Within this complex ecosystem, microglia and macrophages play [...] Read more.
Background: Brain cancers represent a formidable oncological challenge characterized by their aggressive nature and resistance to conventional therapeutic interventions. The tumor microenvironment has emerged as a critical determinant of tumor progression and treatment efficacy. Within this complex ecosystem, microglia and macrophages play fundamental roles, forming intricate networks with peripheral immune cell populations, particularly T cells. The precise mechanisms underlying microglial interactions with T cells and their contributions to immunosuppression remain incompletely understood. Methods: This review comprehensively examines the complex cellular dialogue between microglia and T cells in two prominent brain malignancies: primary glioblastoma and secondary brain metastases. Results: Through a comprehensive review of the current scientific literature, we explore the nuanced mechanisms through which microglial-T cell interactions modulate tumor growth and immune responses. Conclusions: Our analysis seeks to unravel the cellular communication pathways that potentially underpin tumor progression, with the ultimate goal of illuminating novel therapeutic strategies for brain cancer intervention. Full article
(This article belongs to the Special Issue Advances in Macrophage-Based Immunotherapy)
Show Figures

Figure 1

36 pages, 2305 KiB  
Review
Dysbiosis–NK Cell Crosstalk in Pancreatic Cancer: Toward a Unified Biomarker Signature for Improved Clinical Outcomes
by Sara Fanijavadi and Lars Henrik Jensen
Int. J. Mol. Sci. 2025, 26(2), 730; https://doi.org/10.3390/ijms26020730 - 16 Jan 2025
Viewed by 289
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects. Dysbiosis can affect NK cell function, leading to resistance and side effects. We propose that a combined biomarker approach, integrating microbiome composition and NK cell profiles, can help predict treatment resistance and side effects, enabling more personalized therapies. This review examines how dysbiosis contributes to NK cell dysfunction in PDAC and discusses strategies (e.g., antibiotics, probiotics, vaccines) to modulate the microbiome and enhance NK cell function. Targeting dysbiosis could modulate NK cell activity, improve the effectiveness of PDAC treatments, and reduce side effects. However, further research is needed to develop unified NK cell–microbiome interaction-based biomarkers for more precise and effective patient outcomes. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

20 pages, 8828 KiB  
Article
Oncogene OSTM1 Promotes Gastric-Cancer Metastasis by Modulating the Metastatic Microenvironment Through Altered Tumor-Cell Autocrine Signaling
by Yucheng Tang, Yi Guo, Jiangyi Feng and Ziwei Wang
Curr. Issues Mol. Biol. 2025, 47(1), 55; https://doi.org/10.3390/cimb47010055 - 16 Jan 2025
Viewed by 260
Abstract
Gastric cancer remains a malignancy with high incidence, mortality rates, and poor prognosis globally. Osteoclastogenesis-associated transmembrane protein 1 (OSTM1), a transmembrane protein overexpressed in various tumors, has unclear functions in gastric-cancer progression. This study explores OSTM1’s role in gastric-cancer proliferation and metastasis. OSTM1 [...] Read more.
Gastric cancer remains a malignancy with high incidence, mortality rates, and poor prognosis globally. Osteoclastogenesis-associated transmembrane protein 1 (OSTM1), a transmembrane protein overexpressed in various tumors, has unclear functions in gastric-cancer progression. This study explores OSTM1’s role in gastric-cancer proliferation and metastasis. OSTM1 expression was analyzed in gastric-cancer and adjacent tissues using immunohistochemistry and RT-qPCR. OSTM1 overexpression and knockdown cell lines were established to assess its effects on cancer-cell behavior through in vitro and in vivo experiments. Western blot and RT-qPCR were used to examine OSTM1’s regulation of S100A4 expression. OSTM1 was significantly overexpressed in gastric-cancer tissues, negatively correlating with TNM staging and overall survival. OSTM1 overexpression enhanced cancer-cell proliferation, colony formation, migration, and invasion, while its knockdown showed opposite effects. In vivo studies confirmed increased lung metastatic capability in high OSTM1-expressing cells. Mechanistically, OSTM1 positively regulated S100A4 expression, with S100A4 knockdown reducing OSTM1-enhanced metastasis. Gastric-cancer lung metastases showed higher microvascular density and α-SMA-positive fibroblast infiltration in the OSTM1 high-expression group. OSTM1 promotes gastric-cancer progression by upregulating S100A4 and modifying the tumor microenvironment through enhanced angiogenesis and fibroblast activation. OSTM1 represents a potential diagnostic and prognostic biomarker, with the OSTM1–S100A4 axis offering new therapeutic possibilities for gastric-cancer treatment. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop