Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (824)

Search Parameters:
Keywords = terrestrial laser scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 11382 KiB  
Article
Evaluation of Two-Dimensional DBH Estimation Algorithms Using TLS
by Jorge Luis Compeán-Aguirre, Pablito Marcelo López-Serrano, José Luis Silván-Cárdenas, Ciro Andrés Martínez-García-Moreno, Daniel José Vega-Nieva, José Javier Corral-Rivas and Marín Pompa-García
Forests 2024, 15(11), 1964; https://doi.org/10.3390/f15111964 - 7 Nov 2024
Viewed by 287
Abstract
Terrestrial laser scanning (TLS) has become a vital tool in forestry for accurately measuring tree parameters, such as diameter at breast height (DBH). However, its application in Mexican forests remains underexplored. This study evaluates the performance of five two-dimensional DBH estimation algorithms (Nelder–Mead, [...] Read more.
Terrestrial laser scanning (TLS) has become a vital tool in forestry for accurately measuring tree parameters, such as diameter at breast height (DBH). However, its application in Mexican forests remains underexplored. This study evaluates the performance of five two-dimensional DBH estimation algorithms (Nelder–Mead, least squares, Hough transform, RANSAC, and convex hull) within a temperate Mexican forest and explores their broader applicability across diverse ecosystems, using published point cloud data from various scanning devices. Results indicate that algorithm accuracy is influenced by local factors like point cloud density, occlusion, vegetation, and tree structure. In the Mexican study area, the Nelder–Mead algorithm achieved the highest accuracy (R² = 0.98, RMSE = 1.59 cm, MAPE = 6.12%), closely followed by least squares (R² = 0.98, RMSE = 1.67 cm, MAPE = 6.42%), with different outcomes in other sites. These findings advance DBH estimation methods by highlighting the importance of tailored algorithm selection and environmental considerations, thereby contributing to more accurate and efficient forest management across various landscapes. Full article
Show Figures

Figure 1

26 pages, 21893 KiB  
Article
An Example of Using Low-Cost LiDAR Technology for 3D Modeling and Assessment of Degradation of Heritage Structures and Buildings
by Piotr Kędziorski, Marcin Jagoda, Paweł Tysiąc and Jacek Katzer
Materials 2024, 17(22), 5445; https://doi.org/10.3390/ma17225445 - 7 Nov 2024
Viewed by 299
Abstract
This article examines the potential of low-cost LiDAR technology for 3D modeling and assessment of the degradation of historic buildings, using a section of the Koszalin city walls in Poland as a case study. Traditional terrestrial laser scanning (TLS) offers high accuracy but [...] Read more.
This article examines the potential of low-cost LiDAR technology for 3D modeling and assessment of the degradation of historic buildings, using a section of the Koszalin city walls in Poland as a case study. Traditional terrestrial laser scanning (TLS) offers high accuracy but is expensive. The study assessed whether more accessible LiDAR options, such as those integrated with mobile devices such as the Apple iPad Pro, can serve as viable alternatives. This study was conducted in two phases—first assessing measurement accuracy and then assessing degradation detection—using tools such as the FreeScan Combo scanner and the Z+F 5016 IMAGER TLS. The results show that, while low-cost LiDAR is suitable for small-scale documentation, its accuracy decreases for larger, complex structures compared to TLS. Despite these limitations, this study suggests that low-cost LiDAR can reduce costs and improve access to heritage conservation, although further development of mobile applications is recommended. Full article
Show Figures

Figure 1

19 pages, 14346 KiB  
Article
Potential of Low-Cost UAV Photogrammetry for Documenting Hard-to-Access Interior Spaces Through Building Openings
by Marián Marčiš, Marek Fraštia and Katarína Terao Vošková
Heritage 2024, 7(11), 6173-6191; https://doi.org/10.3390/heritage7110290 - 1 Nov 2024
Viewed by 332
Abstract
Unmanned aerial vehicles (UAVs) are primarily used in the field of cultural heritage for mapping the exteriors of larger objects and documenting the roofs and façades of tall structures that cannot be efficiently or feasibly measured using conventional terrestrial technologies and methods. However, [...] Read more.
Unmanned aerial vehicles (UAVs) are primarily used in the field of cultural heritage for mapping the exteriors of larger objects and documenting the roofs and façades of tall structures that cannot be efficiently or feasibly measured using conventional terrestrial technologies and methods. However, due to the considerable diversity of cultural heritage, there are practical demands for the measurement of complex and inaccessible objects in interior spaces. This article focuses on the use of two different off-the-shelf UAVs for partial photogrammetric reconstruction of the attic of a mining house, which was only visible through a window in the gable wall. Data from both UAVs were compared with each other and with terrestrial laser scanning. Despite the lower quality of the results from the DJI Mini 4 Pro compared to the DJI Mavic 3 Enterprise, the results from both UAVs would still be suitable for documenting the interior attic spaces. However, a detailed analysis of the photogrammetric data indicates that, when selecting a UAV for this purpose, it is necessary to consider the limitations of the camera system, which may lead to a reduction in the geometric accuracy and completeness of the point clouds. Full article
(This article belongs to the Special Issue 3D Reconstruction of Cultural Heritage and 3D Assets Utilisation)
Show Figures

Figure 1

22 pages, 15919 KiB  
Article
A Unified Virtual Model for Real-Time Visualization and Diagnosis in Architectural Heritage Conservation
by Federico Luis del Blanco García, Alejandro Jesús González Cruz, Cristina Amengual Menéndez, David Sanz Arauz, Jose Ramón Aira Zunzunegui, Milagros Palma Crespo, Soledad García Morales and Luis Javier Sánchez-Aparicio
Buildings 2024, 14(11), 3396; https://doi.org/10.3390/buildings14113396 - 25 Oct 2024
Viewed by 538
Abstract
The aim of this paper is to propose a workflow for the real-time visualization of virtual environments that supports diagnostic tasks in heritage buildings. The approach integrates data from terrestrial laser scanning (3D point clouds and meshes), along with panoramic and thermal images, [...] Read more.
The aim of this paper is to propose a workflow for the real-time visualization of virtual environments that supports diagnostic tasks in heritage buildings. The approach integrates data from terrestrial laser scanning (3D point clouds and meshes), along with panoramic and thermal images, into a unified virtual model. Additionally, the methodology incorporates several post-processing stages designed to enhance the user experience in visualizing both the building and its associated damage. The methodology was tested on the Medieval Templar Church of Vera Cruz in Segovia, utilizing a combination of visible and infrared data, along with manually prepared damage maps. The project results demonstrate that the use of a hybrid digital model—combining 3D point clouds, polygonal meshes, and panoramic images—is highly effective for real-time rendering, providing detailed visualization while maintaining adaptability for mobile devices with limited computational power. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

13 pages, 6373 KiB  
Article
Mapping Forest Parameters to Model the Mobility of Terrain Vehicles
by Tomáš Mikita, Marian Rybansky, Dominika Krausková, Filip Dohnal, Ondřej Vystavěl and Sabina Hollmannová
Forests 2024, 15(11), 1882; https://doi.org/10.3390/f15111882 - 25 Oct 2024
Viewed by 385
Abstract
This study aims to evaluate the feasibility of using non-contact data collection methods—specifically, UAV (unmanned aerial vehicle)-based and terrestrial laser scanning technologies—to assess forest stand passability, which is crucial for military operations. The research was conducted in a mixed forest stand in the [...] Read more.
This study aims to evaluate the feasibility of using non-contact data collection methods—specifically, UAV (unmanned aerial vehicle)-based and terrestrial laser scanning technologies—to assess forest stand passability, which is crucial for military operations. The research was conducted in a mixed forest stand in the Březina military training area, where the position of trees and their DBHs (Diameter Breast Heights) were recorded. The study compared the effectiveness of different methods, including UAV RGB imaging, UAV-LiDAR, and handheld mobile laser scanning (HMLS), in detecting tree positions and estimating DBH. The results indicate that HMLS data provided the highest number of detected trees and the most accurate positioning relative to the reference measurements. UAV-LiDAR showed better tree detection compared to UAV RGB imaging, though both aerial methods struggled with canopy penetration in densely structured forests. The study also found significant variability in DBH estimation, especially in complex forest stands, highlighting the challenges of accurate tree detection in diverse environments. The findings suggest that while current non-contact methods show promise, further refinement and integration of data sources are necessary to improve their applicability for assessing forest passability in military or rescue contexts. Full article
(This article belongs to the Special Issue Modeling of Vehicle Mobility in Forests and Rugged Terrain)
Show Figures

Figure 1

19 pages, 6528 KiB  
Article
Estimation of Tree Diameter at Breast Height from Aerial Photographs Using a Mask R-CNN and Bayesian Regression
by Kyeongnam Kwon, Seong-kyun Im, Sung Yong Kim, Ye-eun Lee and Chun Geun Kwon
Forests 2024, 15(11), 1881; https://doi.org/10.3390/f15111881 - 25 Oct 2024
Viewed by 472
Abstract
A probabilistic estimation model for forest biomass using unmanned aerial vehicle (UAV) photography was developed. We utilized a machine-learning-based object detection algorithm, a mask region-based convolutional neural network (Mask R-CNN), to detect trees in aerial photographs. Subsequently, Bayesian regression was used to calibrate [...] Read more.
A probabilistic estimation model for forest biomass using unmanned aerial vehicle (UAV) photography was developed. We utilized a machine-learning-based object detection algorithm, a mask region-based convolutional neural network (Mask R-CNN), to detect trees in aerial photographs. Subsequently, Bayesian regression was used to calibrate the model based on an allometric model using the estimated crown diameter (CD) obtained from aerial photographs and analyzed the diameter at breast height (DBH) data acquired through terrestrial laser scanning. The F1 score of the Mask R-CNN for individual tree detection was 0.927. Moreover, CD estimation using the Mask R-CNN was acceptable (rRMSE = 10.17%). Accordingly, the probabilistic DBH estimation model was successfully calibrated using Bayesian regression. A predictive distribution accurately predicted the validation data, with 98.6% and 56.7% of the data being within the 95% and 50% prediction intervals, respectively. Furthermore, the estimated uncertainty of the probabilistic model was more practical and reliable compared to traditional ordinary least squares (OLS). Our model can be applied to estimate forest biomass at the individual tree level. Particularly, the probabilistic approach of this study provides a benefit for risk assessments. Additionally, since the workflow is not interfered by the tree canopy, it can effectively estimate forest biomass in dense canopy conditions. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

22 pages, 6820 KiB  
Article
Deriving Vegetation Indices for 3D Canopy Chlorophyll Content Mapping Using Radiative Transfer Modelling
by Ahmed Elsherif, Magdalena Smigaj, Rachel Gaulton, Jean-Philippe Gastellu-Etchegorry and Alexander Shenkin
Forests 2024, 15(11), 1878; https://doi.org/10.3390/f15111878 - 25 Oct 2024
Viewed by 672
Abstract
Leaf chlorophyll content is a major indicator of plant health and productivity. Optical remote sensing estimation of chlorophyll limits its retrievals to two-dimensional (2D) estimates, not allowing examination of its distribution within the canopy, although it exhibits large variation across the vertical profile. [...] Read more.
Leaf chlorophyll content is a major indicator of plant health and productivity. Optical remote sensing estimation of chlorophyll limits its retrievals to two-dimensional (2D) estimates, not allowing examination of its distribution within the canopy, although it exhibits large variation across the vertical profile. Multispectral and hyperspectral Terrestrial Laser Scanning (TLS) instruments can produce three-dimensional (3D) chlorophyll estimates but are not widely available. Thus, in this study, 14 chlorophyll vegetation indices were developed using six wavelengths employed in commercial TLS instruments (532 nm, 670 nm, 808 nm, 785 nm, 1064 nm, and 1550 nm). For this, 200 simulations were carried out using the novel bidirectional mode in the Discrete Anisotropic Radiative Transfer (DART) model and a realistic forest stand. The results showed that the Green Normalized Difference Vegetation Index (GNDVI) of the 532 nm and either the 808 nm or the 785 nm wavelengths were highly correlated to the chlorophyll content (R2 = 0.74). The Chlorophyll Index (CI) and Green Simple Ratio (GSR) of the same wavelengths also displayed good correlation (R2 = 0.73). This study was a step towards canopy 3D chlorophyll retrieval using commercial TLS instruments, but methods to couple the data from the different instruments still need to be developed. Full article
(This article belongs to the Special Issue Growth Models for Forest Stand Development Dynamics)
Show Figures

Figure 1

33 pages, 28774 KiB  
Article
Quality Evaluation of Sizeable Surveying-Industry-Produced Terrestrial Laser Scanning Point Clouds That Facilitate Building Information Modeling—A Case Study of Seven Point Clouds
by Sander Varbla, Raido Puust and Artu Ellmann
Buildings 2024, 14(11), 3371; https://doi.org/10.3390/buildings14113371 - 24 Oct 2024
Viewed by 447
Abstract
Terrestrial laser scanning can provide high-quality, detailed point clouds, with state-of-the-art research reporting the potential for sub-centimeter accuracy. However, state-of-the-art research may not represent real-world practices reliably. This study aims to deliver a different perspective through collaboration with the surveying industry, where time [...] Read more.
Terrestrial laser scanning can provide high-quality, detailed point clouds, with state-of-the-art research reporting the potential for sub-centimeter accuracy. However, state-of-the-art research may not represent real-world practices reliably. This study aims to deliver a different perspective through collaboration with the surveying industry, where time constraints and productivity requirements limit the effort which can go to ensuring point cloud quality. Seven sizeable buildings’ point clouds (490 to 1392 scanning stations) are evaluated qualitatively and quantitatively. Quantitative evaluations based on independent total station control surveys indicate that sub-centimeter accuracy is achievable for smaller point cloud portions (e.g., a single building story) but caution against such optimism for sizable point clouds of large, multi-story buildings. The control surveys reveal common registration errors around the 5 cm range, resulting from complex surface geometries, as in stairways. Potentially hidden from visual inspection, such systematic errors can cause misalignments between point cloud portions in the compound point cloud structure, which could be detrimental to further applications of the point clouds. The study also evaluates point cloud georeferencing, affirming the resection method’s capability of providing high consistency and an accuracy of a few centimeters. Following the study’s findings, practical recommendations for terrestrial laser scanning surveys and data processing are formulated. Full article
(This article belongs to the Special Issue BIM Uptake and Adoption: New Perspectives)
Show Figures

Figure 1

21 pages, 31110 KiB  
Article
A Drone-Based Structure from Motion Survey, Topographic Data, and Terrestrial Laser Scanning Acquisitions for the Floodgate Gaps Deformation Monitoring of the Modulo Sperimentale Elettromeccanico System (Venice, Italy)
by Massimo Fabris and Michele Monego
Viewed by 502
Abstract
The structural deformation monitoring of civil infrastructures can be performed using different geomatic techniques: topographic measurements with total stations and levels, TLS (terrestrial laser scanning) acquisitions, and drone-based SfM (structure from motion) photogrammetric surveys, among others, can be applied. In this work, these [...] Read more.
The structural deformation monitoring of civil infrastructures can be performed using different geomatic techniques: topographic measurements with total stations and levels, TLS (terrestrial laser scanning) acquisitions, and drone-based SfM (structure from motion) photogrammetric surveys, among others, can be applied. In this work, these techniques are used for the floodgate gaps and the rubber joints deformation monitoring of the MOSE system (Modulo Sperimentale Elettromeccanico), the civil infrastructure that protects Venice and its lagoon (Italy) from high waters. Since the floodgates are submerged most of the time and cannot be directly measured and monitored using high-precision data, topographic surveys were performed in accessible underwater tunnels. In this way, after the calculation of the coordinates of some reference points, the coordinates of the floodgate corners were estimated knowing the geometric characteristics of the system. A specific activity required the acquisition of the TLS scans of the stairwells in the shoulder structures of the Treporti barrier because many of the reference points fixed on the structures were lost during the placement of elements on the seabed. They were replaced with new points whose coordinates in the project/as-built reference system were calculated by applying the Procrustean algorithm by means of homologous points. The procedure allowed the estimation of the transformation parameters with maximum residuals of less than 2.5 cm, a value in agreement with the approximation of the real concrete structures built. Using the obtained parameters, the coordinates of the new reference points were calculated in the project reference system. Once the 3D orientation of all caissons in the barrier was reconstructed, the widths of the floodgate gaps were estimated and compared with the designed values and over time. The obtained values were validated in the Treporti barrier using a drone-based SfM photogrammetric survey of the eight raised floodgates, starting from the east shoulder caisson. The comparison between floodgate gaps estimated from topographic and TLS surveys, and those obtained from measurements on the 3D photogrammetric model, provided a maximum difference of 1.6 cm. Full article
(This article belongs to the Special Issue Unconventional Drone-Based Surveying 2nd Edition)
Show Figures

Figure 1

16 pages, 6577 KiB  
Article
An Acoustic Sensor System to Measure Aeolian Ripple Morphology and Migration Rates
by Pei Zhang, Jinsu Bae, Eric J. R. Parteli, Diane Sherman and Douglas J. Sherman
Sensors 2024, 24(20), 6555; https://doi.org/10.3390/s24206555 - 11 Oct 2024
Viewed by 518
Abstract
Acoustic distance sensors have a long history of use to detect subaqueous bedforms. There have been few comparable applications for aeolian bedforms such as ripples. To address this, we developed a simple and reliable apparatus comprising a pair of distance sensors, a bracket [...] Read more.
Acoustic distance sensors have a long history of use to detect subaqueous bedforms. There have been few comparable applications for aeolian bedforms such as ripples. To address this, we developed a simple and reliable apparatus comprising a pair of distance sensors, a bracket upon which they are mounted, and a base upon which the bracket can slide. Our system relies on two Senix Corporation (Hinesburg, VT, USA), ToughSonic® model 14-TSPC-30S1-232 acoustic distance sensors: one to measure surface elevation changes (in this case, ripple morphology) and a second to measure horizontal location. The ToughSonic® vertical resolution was 0.22 mm and the horizontal scan distance was about 0.60 m with a locational accuracy of 0.22 mm. The measurement rate was 20 Hz, but we over-sampled at 1 KHz. Signal processing involves converting volts to meters, detrending the data, and removing noise. Analysis produces ripple morphologies and migration rates that conform with independent measurements. The advantages of this system relative to terrestrial laser scanning or structure from motion are described. Full article
(This article belongs to the Special Issue Advances in Photoacoustic Resonators and Sensors)
Show Figures

Figure 1

19 pages, 8166 KiB  
Article
Assessment of New Techniques for Measuring Volume in Large Wood Chip Piles
by Miloš Gejdoš, Jozef Výbošťok, Juliána Chudá, Daniel Tomčík, Martin Lieskovský, Michal Skladan, Matej Masný and Tomáš Gergeľ
Forests 2024, 15(10), 1747; https://doi.org/10.3390/f15101747 - 3 Oct 2024
Viewed by 572
Abstract
Our work aimed to compare the chip pile volumes calculated by laser ground scanning, UAV technology, and laser ground measurement and also to determine the accuracy, speed, and economic efficiency of each method. The large chip pile was measured in seven different ways: [...] Read more.
Our work aimed to compare the chip pile volumes calculated by laser ground scanning, UAV technology, and laser ground measurement and also to determine the accuracy, speed, and economic efficiency of each method. The large chip pile was measured in seven different ways: band measurement, laser measurement with Vertex, global navigation satellite system, handheld mobile laser scanner, terrestrial laser scanner, drone, and smartphone with a light detection and ranging sensor. All the methods were compared in terms of accuracy, price, user-friendliness, and time required to obtain results. The calculated pile volume, depending on the method, varied from 2588 to 3362 m3. The most accurate results were provided by the terrestrial laser scanning method, which, however, was the most expensive and the most demanding in terms of collecting and evaluating the results. From a time and economic point of view, the most effective methods were UAVs and smartphones with LiDAR. Full article
Show Figures

Figure 1

29 pages, 12094 KiB  
Article
Bitemporal Radiative Transfer Modeling Using Bitemporal 3D-Explicit Forest Reconstruction from Terrestrial Laser Scanning
by Chang Liu, Kim Calders, Niall Origo, Louise Terryn, Jennifer Adams, Jean-Philippe Gastellu-Etchegorry, Yingjie Wang, Félicien Meunier, John Armston, Mathias Disney, William Woodgate, Joanne Nightingale and Hans Verbeeck
Remote Sens. 2024, 16(19), 3639; https://doi.org/10.3390/rs16193639 - 29 Sep 2024
Viewed by 1212
Abstract
Radiative transfer models (RTMs) are often used to retrieve biophysical parameters from earth observation data. RTMs with multi-temporal and realistic forest representations enable radiative transfer (RT) modeling for real-world dynamic processes. To achieve more realistic RT modeling for dynamic forest processes, this study [...] Read more.
Radiative transfer models (RTMs) are often used to retrieve biophysical parameters from earth observation data. RTMs with multi-temporal and realistic forest representations enable radiative transfer (RT) modeling for real-world dynamic processes. To achieve more realistic RT modeling for dynamic forest processes, this study presents the 3D-explicit reconstruction of a typical temperate deciduous forest in 2015 and 2022. We demonstrate for the first time the potential use of bitemporal 3D-explicit RT modeling from terrestrial laser scanning on the forward modeling and quantitative interpretation of: (1) remote sensing (RS) observations of leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and canopy light extinction, and (2) the impact of canopy gap dynamics on light availability of explicit locations. Results showed that, compared to the 2015 scene, the hemispherical-directional reflectance factor (HDRF) of the 2022 forest scene relatively decreased by 3.8% and the leaf FAPAR relatively increased by 5.4%. At explicit locations where canopy gaps significantly changed between the 2015 scene and the 2022 scene, only under diffuse light did the branch damage and closing gap significantly impact ground light availability. This study provides the first bitemporal RT comparison based on the 3D RT modeling, which uses one of the most realistic bitemporal forest scenes as the structural input. This bitemporal 3D-explicit forest RT modeling allows spatially explicit modeling over time under fully controlled experimental conditions in one of the most realistic virtual environments, thus delivering a powerful tool for studying canopy light regimes as impacted by dynamics in forest structure and developing RS inversion schemes on forest structural changes. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

23 pages, 6593 KiB  
Article
Multitemporal Quantification of the Geomorphodynamics on a Slope within the Cratère Dolomieu at the Piton de la Fournaise (La Réunion, Indian Ocean) Using Terrestrial LiDAR Data, Terrestrial Photographs, and Webcam Data
by Kerstin Wegner, Virginie Durand, Nicolas Villeneuve, Anne Mangeney, Philippe Kowalski, Aline Peltier, Manuel Stark, Michael Becht and Florian Haas
Geosciences 2024, 14(10), 259; https://doi.org/10.3390/geosciences14100259 - 28 Sep 2024
Viewed by 464
Abstract
In this study, the geomorphological evolution of an inner flank of the Cratère Dolomieu at Piton de La Fournaise/La Réunion was investigated with the help of terrestrial laser scanning (TLS) data, terrestrial photogrammetric images, and historical webcam photographs. While TLS data and the [...] Read more.
In this study, the geomorphological evolution of an inner flank of the Cratère Dolomieu at Piton de La Fournaise/La Réunion was investigated with the help of terrestrial laser scanning (TLS) data, terrestrial photogrammetric images, and historical webcam photographs. While TLS data and the terrestrial images were recorded during three field surveys, the study was also able to use historical webcam images that were installed for the monitoring of the volcanic activity inside the crater. Although the webcams were originally intended to be used only for visual monitoring of the area, at certain times they captured image pairs that could be analyzed using structure from motion (SfM) and subsequently processed to create digital terrain models (DTMs). With the help of all the data, the geomorphological evolution of selected areas of the crater was investigated in high temporal and spatial resolution. Surface changes were detected and quantified on scree slopes in the upper area of the crater as well as on scree slopes at the transition from the slope to the crater floor. In addition to their quantification, these changes could be assigned to individual geomorphological processes over time. The webcam photographs were a very important additional source of information here, as they allowed the observation period to be extended further into the past. Besides this, the webcam images made it possible to determine the exact dates at which geomorphological processes were active. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

25 pages, 12251 KiB  
Article
Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping
by Maria Makuch, Pelagia Gawronek and Bartosz Mitka
Sensors 2024, 24(18), 6045; https://doi.org/10.3390/s24186045 - 18 Sep 2024
Viewed by 605
Abstract
Hyperboloid cooling towers are counted among the largest cast-in-place industrial structures. They are an essential element of cooling systems used in many power plants in service today. Their main structural component, a reinforced-concrete shell in the form of a one-sheet hyperboloid with bidirectional [...] Read more.
Hyperboloid cooling towers are counted among the largest cast-in-place industrial structures. They are an essential element of cooling systems used in many power plants in service today. Their main structural component, a reinforced-concrete shell in the form of a one-sheet hyperboloid with bidirectional curvature continuity, makes them stand out against other towers and poses very high construction and service requirements. The safe service and adequate durability of the hyperboloid structure are guaranteed by the proper geometric parameters of the reinforced-concrete shell and monitoring of their condition over time. This article presents an original concept for employing terrestrial laser scanning to conduct an end-to-end assessment of the geometric condition of a hyperboloid cooling tower as required by industry standards. The novelty of the proposed solution lies in the use of measurements of the interior of the structure to determine the actual thickness of the hyperboloid shell, which is generally disregarded in geometric measurements of such objects. The proposal involves several strategies and procedures for a reliable verification of the structure’s verticality, the detection of signs of ovalisation of the shell, the estimation of the parameters of the structure’s theoretical model, and the analysis of the distribution of the thickness and geometric imperfections of the reinforced-concrete shell. The idea behind the method for determining the actual thickness of the shell (including its variation due to repairs and reinforcement operations), which is generally disregarded when measuring the geometry of such structures, is to estimate the distance between point clouds of the internal and external surfaces of the structure using the M3C2 algorithm principle. As a particularly dangerous geometric anomaly of hyperboloid cooling towers, shell ovalisation is detected with an innovative analysis of the bimodality of the frequency distribution of radial deviations in horizontal cross-sections. The concept of a complete assessment of the geometry of a hyperboloid cooling tower was devised and validated using three measurement series of a structure that has been continuously in service for fifty years. The results are consistent with data found in design and service documents. We identified a permanent tilt of the structure’s axis to the northeast and geometric imperfections of the hyperboloid shell from −0.125 m to +0.136 m. The results also demonstrated no advancing deformation of the hyperboloid shell over a two-year research period, which is vital for its further use. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

25 pages, 50037 KiB  
Article
Surface Reconstruction from SLAM-Based Point Clouds: Results from the Datasets of the 2023 SIFET Benchmark
by Antonio Matellon, Eleonora Maset, Alberto Beinat and Domenico Visintini
Remote Sens. 2024, 16(18), 3439; https://doi.org/10.3390/rs16183439 - 16 Sep 2024
Viewed by 807
Abstract
The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. [...] Read more.
The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. Although the performance of such systems in terms of point cloud accuracy and noise level has been deeply investigated in the literature, there are fewer works about the evaluation of their use for surface reconstruction, cartographic production, and as-built Building Information Model (BIM) creation. The objective of this study is to assess the suitability of SLAM devices for surface modeling in an urban/architectural environment. To this end, analyses are carried out on the datasets acquired by three commercial portable laser scanners in the context of a benchmark organized in 2023 by the Italian Society of Photogrammetry and Topography (SIFET). In addition to the conventional point cloud assessment, we propose a comparison between the reconstructed mesh and a ground-truth model, employing a model-to-model methodology. The outcomes are promising, with the average distance between models ranging from 0.2 to 1.4 cm. However, the surfaces modeled from the terrestrial laser scanning point cloud show a level of detail that is still unmatched by SLAM systems. Full article
Show Figures

Figure 1

Back to TopTop