Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,472)

Search Parameters:
Keywords = temperature compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 12187 KiB  
Article
Wearable and Thermal Drift-Compensated Monitoring System Based on Fiber Bragg Grating Sensors for a 3D-Printed Foot Prosthesis
by Sara Del Chicca, Gennaro Rollo, Andrea Sorrentino, Emanuele Gruppioni, Marco Tarabini and Paola Saccomandi
Sensors 2025, 25(3), 885; https://doi.org/10.3390/s25030885 (registering DOI) - 31 Jan 2025
Viewed by 313
Abstract
Monitoring foot prostheses is essential, as their performance impacts users’ daily lives. Fiber Bragg Grating (FBG) sensors represent a gold standard in monitoring applications, but traditional optoelectronic units are too cumbersome for wearable applications. This research addresses this issue by using a lightweight [...] Read more.
Monitoring foot prostheses is essential, as their performance impacts users’ daily lives. Fiber Bragg Grating (FBG) sensors represent a gold standard in monitoring applications, but traditional optoelectronic units are too cumbersome for wearable applications. This research addresses this issue by using a lightweight and compact optoelectronic unit and developing a compensation algorithm to overcome the signal drift phenomena caused by the light source instability. The proposed method uses an FBG as a reference to provide the algorithm with information on the signals drift. The developed algorithm is based on the assumptions of linearity among drift in different detection channels and the absence of drift at the initial time instant. The compensation variable was experimentally identified and validated. Experimental validation through temperature tests showed the algorithm reduces the drift error by 60%. Finally, mechanical tests were conducted on a foot prosthesis equipped with two FBGs: one used as a reference and the other for strain sensing. An electrical strain gauge was used to validate the FBG-based sensing system. The results of the mechanical tests indicate the possiblity to monitor a foot prosthesis using FBGs. The FBG and strain gauge measurements comparison aligns with previous studies where high-performance optoelectronic units were used. Full article
(This article belongs to the Special Issue Intelligent Medical Sensors and Applications)
20 pages, 16771 KiB  
Article
A Comparison of the Hot Deformation Behavior and Constitutive Model of the GH4079 Alloy
by Weifeng Ying, Jia Hou, Shengnan Jiang and Jianan Wang
Crystals 2025, 15(2), 148; https://doi.org/10.3390/cryst15020148 - 31 Jan 2025
Viewed by 244
Abstract
In this paper, GH4079 alloy was thermally compressed under processing conditions of 1025 °C–1200 °C and 0.001 s−1–1 s−1. This article established the strain compensation Arrhenius constitutive equation, the improved Johnson–Cook constitutive equation, and the strain compensation Arrhenius constitutive [...] Read more.
In this paper, GH4079 alloy was thermally compressed under processing conditions of 1025 °C–1200 °C and 0.001 s−1–1 s−1. This article established the strain compensation Arrhenius constitutive equation, the improved Johnson–Cook constitutive equation, and the strain compensation Arrhenius constitutive model based on phase transition temperature segmentation and calculated the correlation coefficient (R) and local relative error (AARE) to verify the accuracy of the model, respectively. Finally, a certain microstructural analysis was combined. It can be concluded that the rheological stress of alloy GH4079 gradually decreases with the increase in temperature and strain rate. The AARE values of these three models are 21.09%, 20.47%, and 10.62%, respectively. The strain compensation Arrhenius model based on phase transition temperature segments can better describe the thermal deformation behavior of GH4079. By integrating this model, appropriate processing conditions can be selected to regulate the microstructural organization and achieve optimization during the practical application of the alloy. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

19 pages, 4072 KiB  
Article
Titanium Dioxide/Graphene Oxide Nanocomposite-Based Humidity Sensors with Improved Performance
by Ammar Al-Hamry, Igor A. Pašti and Olfa Kanoun
J. Compos. Sci. 2025, 9(2), 60; https://doi.org/10.3390/jcs9020060 - 27 Jan 2025
Viewed by 413
Abstract
Accurate relative humidity (RH) measurement is critical in many applications, from process control and material preservation to ensuring human comfort and well-being. This study presents high-performance humidity sensors based on titanium oxide nanoparticles/graphene oxide (TiO2/GO) composites, which demonstrate excellent sensing capabilities [...] Read more.
Accurate relative humidity (RH) measurement is critical in many applications, from process control and material preservation to ensuring human comfort and well-being. This study presents high-performance humidity sensors based on titanium oxide nanoparticles/graphene oxide (TiO2/GO) composites, which demonstrate excellent sensing capabilities compared to pure GO-based sensors. The multilayer structure of the TiO2/GO composites enables the enhanced adsorption of water molecules and improved dynamic properties while providing dual-mode sensing capability through both resistive and capacitive measurements. Sensors with different TiO2/GO ratios were systematically investigated to optimize performance over different humidity ranges. The TiO2/GO sensor achieved remarkable sensitivity (8.66 × 104 Ω/%RH), a fast response time (0.61 s), and fast recovery (0.87 s) with minimal hysteresis (4.09%). In particular, the sensors demonstrated excellent mechanical stability, maintaining reliable performance under bending conditions, together with excellent cyclic stability and long-term durability. Temperature dependence studies showed consistent performance under controlled temperature conditions, with the potential for temperature-compensated measurements. These results highlight TiO2/GO nanocomposites as promising candidates for next-generation humidity sensing applications, offering enhanced sensitivity, mechanical flexibility, and operational stability. The dual-mode sensing capability combined with mechanical durability opens up new possibilities for flexible and wearable humidity-sensing devices. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
20 pages, 2596 KiB  
Article
Collaborative Control and Intelligent Optimization of a Lead–Bismuth Cooled Reactor Based on a Modified PSO Method
by Shoujun Yan, Lijie Zhou, Lifeng Song, Huiyu Guo, Junliang Wu, Run Luo and Fuyu Zhao
Energies 2025, 18(3), 567; https://doi.org/10.3390/en18030567 - 25 Jan 2025
Viewed by 275
Abstract
Accelerator-driven subcritical (ADS) reactors with lead–bismuth eutectic (LBE) coolants are some of the Gen-IV nuclear energy systems that can generate clean electricity and potentially transmute spent fuel. The dynamic characteristics and control strategy of an ADS reactor are substantially different from those of [...] Read more.
Accelerator-driven subcritical (ADS) reactors with lead–bismuth eutectic (LBE) coolants are some of the Gen-IV nuclear energy systems that can generate clean electricity and potentially transmute spent fuel. The dynamic characteristics and control strategy of an ADS reactor are substantially different from those of traditional nuclear reactors. In this paper, a new collaborative control strategy is proposed using an accelerator beam and a control rod, and the control system’s parameters are optimized using a modified particle swarm optimization (PSO) method. To test the control performance, a simulation platform is developed with a nonlinear reactor dynamic model, a power compensation control system and a coolant temperature control system. Four typical control transients are used, including a ±10% full-power (FP) step change load and a ±5% FP/min linear variable load. The simulation results show that the collaborative control strategy has a better load tracking capability and a higher power control accuracy than the beam single-control strategy and the rod single-control strategy. The results also show that the performance of the collaborative control system in terms of the reactor’s power and coolant temperature is significantly improved based on the modified PSO parameter optimization. Full article
(This article belongs to the Special Issue Advanced Technologies in Nuclear Engineering)
27 pages, 2737 KiB  
Article
Thermal Decomposition of Date Seed/Polypropylene Homopolymer: Machine Learning CDNN, Kinetics, and Thermodynamics
by Zaid Abdulhamid Alhulaybi Albin Zaid and Abdulrazak Jinadu Otaru
Polymers 2025, 17(3), 307; https://doi.org/10.3390/polym17030307 - 23 Jan 2025
Viewed by 816
Abstract
The buildup of abandoned plastics in the environment and the need to optimize agricultural waste utilization have garnered scrutiny from environmental organizations and policymakers globally. This study presents an assessment of the thermal decomposition of date seeds (DS), polypropylene homopolymer (PP), and their [...] Read more.
The buildup of abandoned plastics in the environment and the need to optimize agricultural waste utilization have garnered scrutiny from environmental organizations and policymakers globally. This study presents an assessment of the thermal decomposition of date seeds (DS), polypropylene homopolymer (PP), and their composites (DS/PP) through experimental measurements, machine learning convolutional deep neural networks (CDNN), and kinetic and thermodynamic analyses. The experimental measurements involved the pyrolysis and co-pyrolysis of these materials in a nitrogen-filled thermogravimetric analyzer (TGA), investigating degradation temperatures between 25 and 600 °C with heating rates of 10, 20, and 40 °C.min−1. These measurements revealed a two-stage process for the bio-composites and a decrease in the thermal stability of pure PP due to the moisture, hemicellulose, and cellulose content of the DS material. By utilizing machine learning CDNN, algorithms and frameworks were developed, providing responses that closely matched (R2~0.942) the experimental data. After various modelling modifications, adjustments, and regularization techniques, a framework comprising four hidden neurons was determined to be most effective. Furthermore, the analysis revealed that temperature was the most influential parameter affecting the thermal decomposition process. Kinetic and thermodynamic analyses were performed using the Coats–Redfern and general Arrhenius model-fitting methods, as well as the Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose model-free approaches. The first-order reaction mechanism was identified as the most appropriate compared to the second and third order F-Series solid-state reaction mechanisms. The overall activation energy values were estimated at 51.471, 51.221, 156.080, and 153.767 kJ·mol−1 for the respective kinetic models. Additionally, the kinetic compensation effect showed an exponential increase in the pre-exponential factor with increasing activation energy values, and the estimated thermodynamic parameters indicated that the process is endothermic, non-spontaneous, and less disordered. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

12 pages, 2486 KiB  
Article
Equivalent Phase Shift Induced by Longitudinal Temperature Distribution in Pumped DFB Fiber Laser
by Wen Liu, Hongcan Gu, Su Zhang, Yandong Pang, Gaofei Yao, Hongwei Han and Junbing Huang
Photonics 2025, 12(2), 101; https://doi.org/10.3390/photonics12020101 - 23 Jan 2025
Viewed by 376
Abstract
The pump heating effect of DFB fiber laser is normally ignored due to the short length of the laser cavity. However, by fabricating a phase-shifted FBG on high concentration Er-Yb codoped fiber to obtain a 16 mm long DFB fiber laser, the gradient [...] Read more.
The pump heating effect of DFB fiber laser is normally ignored due to the short length of the laser cavity. However, by fabricating a phase-shifted FBG on high concentration Er-Yb codoped fiber to obtain a 16 mm long DFB fiber laser, the gradient surface temperature distributions along the active grating with different pump powers were observed. The average surface temperature rose by 16.82 K with a variation of less than 1.11 K, and the position with the highest temperature moved towards the center of the grating by 5.5 mm, when the pump power was increased from 0 mW to 191.6 mW. The transmission spectrum of the active phase-shifted FBG at different pump powers were measured, and an additional drift of the transmission peak in the stopband was testified. It was identified as an equivalent phase shift up to −0.1 π, which was induced by the gradient longitudinal temperature distribution. Considering that the initial phase shift of the grating was about 1.15 π, the increasing chirp of the active grating due to the pump heating could compensate the phase shift deviation from π surprisingly. The experimental results coincided with the simulation results by using the transmission matrix method under the assumption of piecewise-uniform structure for the chirped phase-shifted grating. The modified model of the active phase-shifted FBG reveals the difference between the cool cavity and the hot cavity at different pump powers, which may be used as a self-optimization mechanism for DFB fiber laser operation. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

17 pages, 3493 KiB  
Article
Compensation of Temperature-Induced Errors in Quartz Flexible Accelerometers Using a Polynomial-Based Non-Uniform Mutation Genetic Algorithm Framework
by Jinyue Zhao, Kunpeng He, Kang Le and Yongqiang Tu
Sensors 2025, 25(3), 653; https://doi.org/10.3390/s25030653 - 23 Jan 2025
Viewed by 462
Abstract
The quartz flexible accelerometer (QFA) is a critical component in navigation-grade strapdown inertial navigation systems (SINS) due to its bias error, which significantly impacts the overall navigation accuracy of SINS. Temperature variations induce dynamic changes in the bias and scale factor of QFA, [...] Read more.
The quartz flexible accelerometer (QFA) is a critical component in navigation-grade strapdown inertial navigation systems (SINS) due to its bias error, which significantly impacts the overall navigation accuracy of SINS. Temperature variations induce dynamic changes in the bias and scale factor of QFA, leading to a degradation of the navigation accuracy of SINS. To address this issue, this paper proposes a temperature error compensation method based on a non-uniform mutation strategy genetic algorithm (NUMGA) and a polynomial curve model (PCF). Firstly, the temperature bias mechanism of QFA output is analyzed, and a polynomial temperature error model is established. Then, the NUMGA is utilized to identify the model parameters using the −20–40 °C test data, seeking the optimal parameters for the polynomial. Finally, the compensation parameters are used for cold start static test verification. The results demonstrate that the temperature compensation model based on NUMGA-PCF can automatically select the optimal parameters, which enable the model to exhibit a stable decreasing trend on the adaptation curve without multiple fluctuations. Compared to the traditional GA temperature compensation model, the compensation errors in the three axes of QFA in SINS are reduced by 612.24 μg, 60.82 μg, and 875.82 μg, respectively. Before the 20th generation, there are no decrease in convergence speed observed with the in-crease of population diversity. Within the −20–40 °C temperature range, the average values and standard deviations of QFA for the three optimized axes can be maintained below 0.1 μg by using this compensation model. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 10963 KiB  
Article
Casting Simulation-Based Design for Manufacturing Backward-Curved Fan with High Shape Difficulty
by Chul Kyu Jin
Metals 2025, 15(2), 99; https://doi.org/10.3390/met15020099 - 21 Jan 2025
Viewed by 413
Abstract
A large-sized backward-curved fan with high shape difficulty was designed, and fan performance was roughly predicted from computational fluid dynamics. Three gating systems of aluminum sand casting were designed to fabricate the fan. The flow pattern and solidification process of molten metal were [...] Read more.
A large-sized backward-curved fan with high shape difficulty was designed, and fan performance was roughly predicted from computational fluid dynamics. Three gating systems of aluminum sand casting were designed to fabricate the fan. The flow pattern and solidification process of molten metal were analyzed by casting simulation. Three types were applied: bottom-up with four gates, bottom-up with ten gates, and top-down with a feeder. The simulation results of the bottom-up with four gates show that a large temperature loss occurs while molten metal flows into thin blades, and there is a temperature range below the liquidus temperature. Due to nonuniform temperature distribution, the solidification pattern is also not uniform. The bottom-up with ten gates shows almost similar flow and solidification patterns but has the effect of slightly reducing the temperature loss of molten metal. The top-down type has a much smaller temperature loss, while molten metal flows into the mold cavity compared to the bottom-up type and has a directional solidification pattern. As the feeder also acts as a riser to compensate for the shrinkage of the thick part, the simulation results regarding porosities are also significantly reduced. The fan cast as a top-down type has soundness without any unfilled parts. Full article
Show Figures

Figure 1

12 pages, 7826 KiB  
Communication
Novel MEMS Multisensor Chip for Aerodynamic Pressure Measurements
by Žarko Lazić, Milče M. Smiljanić, Dragan Tanasković, Milena Rašljić-Rafajilović, Katarina Cvetanović, Evgenija Milinković, Marko V. Bošković, Stevan Andrić, Ivana Jokić, Predrag Poljak and Miloš Frantlović
Sensors 2025, 25(3), 600; https://doi.org/10.3390/s25030600 - 21 Jan 2025
Viewed by 398
Abstract
The key equipment for performing aerodynamic testing of objects, such as road and railway vehicles, aircraft, and wind turbines, as well as stationary objects such as bridges and buildings, are multichannel pressure measurement instruments (pressure scanners). These instruments are typically based on arrays [...] Read more.
The key equipment for performing aerodynamic testing of objects, such as road and railway vehicles, aircraft, and wind turbines, as well as stationary objects such as bridges and buildings, are multichannel pressure measurement instruments (pressure scanners). These instruments are typically based on arrays of separate pressure sensors built in an enclosure that also contains temperature sensors used for temperature compensation. However, there are significant limitations to such a construction, especially when increasing requirements in terms of miniaturization, the number of pressure channels, and high measurement performance must be met at the same time. In this paper, we present the development and realization of an innovative MEMS multisensor chip, which is designed with the intention of overcoming these limitations. The chip has four MEMS piezoresistive pressure-sensing elements and two resistive temperature-sensing elements, which are all monolithically integrated, enabling better sensor matching and thermal coupling while providing a high number of pressure channels per unit area. The main steps of chip development are preliminary chip design, numerical simulations of the chip’s mechanical behavior when exposed to the measured pressure, final chip design, fabrication processes (photolithography, thermal oxidation, diffusion, layer deposition, micromachining, anodic bonding, and wafer dicing), and electrical testing. Full article
Show Figures

Figure 1

81 pages, 17721 KiB  
Review
Interactive Coupling Relaxation of Dipoles and Wagner Charges in the Amorphous State of Polymers Induced by Thermal and Electrical Stimulations: A Dual-Phase Open Dissipative System Perspective
by Jean Pierre Ibar
Polymers 2025, 17(2), 239; https://doi.org/10.3390/polym17020239 - 19 Jan 2025
Viewed by 481
Abstract
This paper addresses the author’s current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very [...] Read more.
This paper addresses the author’s current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization. Specifically, this paper describes and tries to explain ‘interactive coupling’ between molecular motions in polymers by their dielectric relaxation characteristics when polymeric samples have been submitted to thermally induced polarization by a voltage field followed by depolarization at a constant heating rate. Interactive coupling results from the modulation of the local interactions by the collective aspect of those interactions, a recursive process pursuant to the dynamics of the interplay between the free volume and the conformation of dual-conformers, two fundamental basic units of the macromolecules introduced by this author in the “dual-phase” model of interactions. This model reconsiders the fundamentals of the TSD and TWD results in a different way: the origin of the dipoles formation, induced or permanent dipoles; the origin of the Wagner space charges and the Tg,ρ transition; the origin of the TLL manifestation; the origin of the Debye elementary relaxations’ compensation or parallelism in a relaxation map; and finally, the dual-phase origin of their super-compensations. In other words, this paper is an attempt to link the fundamentals of TSD and TWD activation and deactivation of dipoles that produce a current signal with the statistical parameters of the “dual-phase” model of interactions underlying the Grain-Field Statistics. Full article
Show Figures

Figure 1

32 pages, 1933 KiB  
Review
New Insights into Duckweed as an Alternative Source of Food and Feed: Key Components and Potential Technological Solutions to Increase Their Digestibility and Bioaccessibility
by Krisztina Takács, Rita Végh, Zsuzsanna Mednyánszky, Joseph Haddad, Karim Allaf, Muying Du, Kewei Chen, Jianquan Kan, Tian Cai, Péter Molnár, Péter Bársony, Anita Maczó, Zsolt Zalán and István Dalmadi
Appl. Sci. 2025, 15(2), 884; https://doi.org/10.3390/app15020884 - 17 Jan 2025
Viewed by 689
Abstract
Sustainability is becoming increasingly important in the world we live in, because of the rapid global population growth and climate change (drought, extreme temperature fluctuations). People in developing countries need more sustainable protein sources instead of the traditional, less sustainable meat, fish, egg, [...] Read more.
Sustainability is becoming increasingly important in the world we live in, because of the rapid global population growth and climate change (drought, extreme temperature fluctuations). People in developing countries need more sustainable protein sources instead of the traditional, less sustainable meat, fish, egg, and dairy products. Alternative sources (plant-based, such as grains (wheat, rice sorghum), seeds (chia, hemp), nuts (almond, walnut), pulses (beans, lentil, pea, lupins), and leaves (duckweed), as well as mycoproteins, microalgae, and insects) can compensate for the increased demand for animal protein. In this context, our attention has been specifically focused on duckweed—which is the third most important aquatic plant after the microalgae Chlorella and Spirulina—to explore its potential for use in a variety of areas, particularly in the food industry. Duckweed has special properties: It is one of the fastest-growing plants in the world (in freshwater), multiplying its mass in two days, so it can cover a water surface quickly even in filtered sunlight (doubling its biomass in 96 hours). During this time, it converts a lot of carbon dioxide into oxygen. It is sustainable, environmentally friendly (without any pesticides), and fast growing; can be grown in indoor vertical farms and aquaculture, so it does not require land; is easy to harvest; and has a good specific protein yield. Duckweed belongs to the family Araceae, subfamily Lemnoideae, and has five genera (Lemna, Spirodela, Wolffia, Wolffiella, Landolita) containing a total of approximately 36–38 recognised species. Duckweed is gaining attention in nutrition and food sciences due to its potential as a sustainable source of protein, vitamins, minerals, and other bioactive compounds. However, there are several gaps in research specifically focused on nutrition and the bioaccessibility of its components. While some studies have analysed the variability in the nutritional composition of different duckweed species, there is a need for comprehensive research on the variability in nutrient contents across species, growth conditions, harvesting times, and geographic locations. There has been limited research on the digestibility, bioaccessibility (the proportion of nutrients that are released from the food matrix during digestion), and bioavailability (the proportion that is absorbed and utilised by the body) of nutrients in duckweed. Furthermore, more studies are needed to understand how food processing (milling, fermentation, cooking, etc.), preparation methods, and digestive physiology affect the nutritional value and bioavailability of the essential bioactive components in duckweed and in food matrices supplemented with duckweed. This could help to optimise the use of duckweed in human diets (e.g., hamburgers or pastas supplemented with duckweed) or animal feed. More research is needed on how to effectively incorporate duckweed into diverse cuisines and dietary patterns. Studies focusing on recipe development, consumer acceptance, palatability, and odour are critical. Addressing these gaps could provide valuable insights into the nutritional potential of duckweed and support its promotion as a sustainable food source, thereby contributing to food security and improved nutrition. In summary, this article covers the general knowledge of duckweed, its important nutritional values, factors that may affect their biological value, and risk factors for the human diet, while looking for technological solutions (covering traditional and novel technologies) that can be used to increase the release of the useful, health-promoting components of duckweed and, thus, their bioavailability. This article, identifying gaps in recent research, could serve as a helpful basis for related research in the future. Duckweed species with good properties could be selected by these research studies and then included in the human diet after they have been tested for food safety. Full article
(This article belongs to the Special Issue Feature Review Papers in Section ‘Food Science and Technology')
Show Figures

Figure 1

17 pages, 5815 KiB  
Article
A 250 °C Low-Power, Low-Temperature-Drift Offset Chopper-Stabilized Operational Amplifier with an SC Notch Filter for High-Temperature Applications
by Zhong Yang, Jiaqi Li, Jiangduo Fu, Jiayin Song, Qingsong Cai and Shushan Qiao
Appl. Sci. 2025, 15(2), 849; https://doi.org/10.3390/app15020849 - 16 Jan 2025
Viewed by 500
Abstract
This paper proposes a three-stage op amp based on the SOI (silicon-on-insulator) process, which achieves a low offset voltage and temperature coefficient across a wide temperature range from −40 °C to 250 °C. It can be used in aerospace, oil and gas exploration, [...] Read more.
This paper proposes a three-stage op amp based on the SOI (silicon-on-insulator) process, which achieves a low offset voltage and temperature coefficient across a wide temperature range from −40 °C to 250 °C. It can be used in aerospace, oil and gas exploration, automotive electronics, nuclear industry, and in other fields where the ability of electronic devices to withstand high-temperature environments is strongly required. By utilizing a SC (Switched Capacitor) notch filter, the op amp achieves low input offset in a power-efficient manner. The circuit features a multi-path nested Miller compensation structure, consisting of a low-speed channel and a high-speed channel, which switch according to the input signal frequency. The input-stage operational amplifier is a fully differential, rail-to-rail design, utilizing tail current control to reduce the impact of common-mode voltage on the transconductance of the input stage. The two-stage operational amplifier uses both cascode and Miller compensation, minimizing the influence of the feedforward signal path and improving the amplifier’s response speed. The prototype op amp is fabricated in a 0.15 µm SOI process and draws 0.3 mA from a 5 V supply. The circuit occupies a chip area of 0.76 mm2. The measured open-loop gain exceeds 140 dB, with a 3 dB bandwidth greater than 100 kHz. The amplifier demonstrates stable performance across a wide temperature range from −40 °C to 250 °C, and exhibits an excellent input offset of approximately 20 µV at room temperature and an offset voltage temperature coefficient of 0.7 μV/°C in the full temperature range. Full article
(This article belongs to the Special Issue Advanced Research on Integrated Circuits and Systems)
Show Figures

Figure 1

20 pages, 5465 KiB  
Article
Design of Shadow Filter Using Low-Voltage Multiple-Input Operational Transconductance Amplifiers
by Montree Kumngern, Fabian Khateb, Tomasz Kulej and Natchayathorn Wattikornsirikul
Appl. Sci. 2025, 15(2), 781; https://doi.org/10.3390/app15020781 - 14 Jan 2025
Viewed by 526
Abstract
This paper introduces shadow filters that employ multiple-input operational transconductance amplifiers (MI-OTAs) as the active component. Two configurations of shadow filters are proposed. The first configuration, in contrast to previous designs, enables the adjustment of the quality factor without affecting the passband gains [...] Read more.
This paper introduces shadow filters that employ multiple-input operational transconductance amplifiers (MI-OTAs) as the active component. Two configurations of shadow filters are proposed. The first configuration, in contrast to previous designs, enables the adjustment of the quality factor without affecting the passband gains of the BPF, LPF, and HPF, thus achieving optimal frequency responses for these filters. The second configuration allows for the variation of the natural frequency without impacting the passband gains of the HPF, LPF, and BPF, maintaining constant passband gains. Moreover, the natural frequency can be electronically controlled by modifying parameters of the original biquad filters, providing advantages in compensating for process, voltage, and temperature variations. The MI-OTA is designed to provide multiple-input differential terminals using the multiple-input bulk-driven MOS transistor (MIBD-MOST) technique, allowing differential input signals to be converted into current output through its transconductance gain. The OTA operates at a supply voltage of 450 mV and consumes 81 nW of power, with the MOS transistors operating in weak inversion. The OTA and shadow filters were designed and simulated using a 0.18 µm CMOS process to validate the functionality and performance of the proposed circuits. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 10391 KiB  
Article
Numerical Modeling and Dynamic and Static Performance Analysis of Hydraulic Mounting
by Ti Wu, Penghui Xu, Jianghua Fu and Jintao Su
Actuators 2025, 14(1), 28; https://doi.org/10.3390/act14010028 - 13 Jan 2025
Viewed by 353
Abstract
In order to accurately evaluate the dynamic characteristics of the hydraulic bushing, the fluid–structure coupling finite element modeling of the hydraulic bushing was carried out, and its fluid–structure coupling characteristics were analyzed. According to the dynamic characteristic response mechanism of hydraulic bushing, the [...] Read more.
In order to accurately evaluate the dynamic characteristics of the hydraulic bushing, the fluid–structure coupling finite element modeling of the hydraulic bushing was carried out, and its fluid–structure coupling characteristics were analyzed. According to the dynamic characteristic response mechanism of hydraulic bushing, the characteristics of bushing temperature, main spring stiffness, liquid viscosity, inertia channel area, and suspension compensation hole were analyzed. The results show that the main spring stiffness, liquid viscosity, and inertial channel area have significant effects on the performance of the bushing. The basic parameters affecting the installation design are obtained. It provides some theoretical basis and parameter verification for hydraulic bushing design. It provides the basis for the multi-factor design of hydraulic bushing. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

14 pages, 2341 KiB  
Article
Gibbs Free Energy and Enthalpy–Entropy Compensation in Protein Folding
by María J. Benítez and Juan S. Jiménez
Viewed by 570
Abstract
The thermodynamic study of protein folding shows the generation of a narrow range of ΔG° values, as a net result of large changes in the ΔH° and TΔS° values of the folding process. The obvious consequence of this narrow range of values is [...] Read more.
The thermodynamic study of protein folding shows the generation of a narrow range of ΔG° values, as a net result of large changes in the ΔH° and TΔS° values of the folding process. The obvious consequence of this narrow range of values is that a linear enthalpy–entropy relationship, showing apparent enthalpy–entropy compensation (EEC), is clearly observed to be associated with the study of protein folding. Herein, we show the ΔH°, TΔS°, and ΔG° values for a set of 583 data from protein folding processes, at various temperatures, as calculated by using the Gibbs–Helmholtz equations. This set of thermodynamic data was calculated from the melting temperature (Tm), the melting enthalpy (ΔHm), and the change in heat capacity (ΔCp°) values, all of them associated with the heat-induced protein unfolding processes and included in the ProTherm Data Base. The average values of enthalpy (ΔH°av), entropy (TΔS°av), and free energy (ΔG°av) for the folding process were calculated within the range of temperature from 0 °C to the average value of Tm. The values and temperature dependency of TΔS°av within this temperature range are practically equal to those corresponding to ΔH°av, while ΔG°av remains small and displaying a curve with a minimum at about 10 °C and a value of ΔG° = −30.9 kJ/mol at the particular temperature of 25 °C. The large negative value of TΔS°av, together with the also large and negative value of ΔCp°av, suggests large conformational changes and important EEC, thus causing the small average value of ΔG° for protein folding, which is enough to guarantee both protein stability and molecular flexibility to allow for adaptation to the chemical potentials of the environment. Our analysis suggests that EEC may be the quantum-mechanical evolutive mechanism to make functional proteins adaptative to environmental temperature and metabolite concentrations. The analysis of protein folding data, compared with those of protein–ligand interaction, allows us to suggest strategies to overcome EEC in the design of new drugs. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

Back to TopTop