Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (195)

Search Parameters:
Keywords = supramolecular hydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4288 KiB  
Article
Polymer Entanglement-Induced Hydrogel Adhesion
by Kai Hu, Qingyun Li and Xiaofan Ji
Viewed by 483
Abstract
Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was [...] Read more.
Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was reported. Hydrogels G1 and G2 contain the monomers M1, with diazonium groups, and M2, with sulfonate groups, respectively. When the two hydrogels come into contact, the monomers diffuse into each other’s networks and assemble into supramolecular polymers (SPs) based on electrostatic interactions, threading the two hydrogel networks. Subsequently, SPs convert into covalent polymers (CPs) under UV light stimulation due to the reaction between the diazonium groups and sulfonate groups, leading to the entanglement of the two hydrogel networks and the production of an adhesive effect. This finding provides a novel strategy for hydrogel adhesion. Full article
Show Figures

Graphical abstract

16 pages, 6306 KiB  
Article
L-Cysteine/Silver Nitrate/Iodate Anions System: Peculiarities of Supramolecular Gel Formation with and Without Visible-Light Exposure
by Dmitry V. Vishnevetskii, Elizaveta E. Polyakova, Yana V. Andrianova, Arif R. Mekhtiev, Alexandra I. Ivanova, Dmitry V. Averkin, Vladimir G. Alekseev, Alexey V. Bykov and Mikhail G. Sulman
Viewed by 655
Abstract
In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine–silver sol (CSS) and iodate anions (IO3) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex [...] Read more.
In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine–silver sol (CSS) and iodate anions (IO3) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO3 ion concentration range. The visible-light exposure of these gels leads to an increase in their viscosity and dramatic change in their color. The morphology of gels alters after light irradiation that is reflected in the formation of a huge number of spherical/elliptical particles and the thickening of the fibers of the gel network. The interaction of CSS with IO3 anions has features of a redox process, which leads to the formation of silver iodide/silver oxide nanoparticles inside and on the surface of CSS particles. CSS possesses selectivity only to IO3 anions compared to many other inorganic ions relevant for humans and the environment. Thus, the CSS/IO3 system is non-trivial and can be considered as a novel low-molecular-weight gelator with photosensitive properties, as another way to produce silver iodide nanoparticles, and as a new approach for IO3 ion detection. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

19 pages, 2968 KiB  
Review
Self-Assembling Peptides for Vaccine Adjuvant Discovery
by Jingyi Fan, Istvan Toth and Rachel J. Stephenson
Immuno 2024, 4(4), 325-343; https://doi.org/10.3390/immuno4040021 - 1 Oct 2024
Viewed by 1187
Abstract
Vaccination is credited as a significant medical achievement contributing to the decline in morbidity and mortality of infectious diseases. Traditional vaccines composed of inactivated and live-attenuated whole pathogens confer the induction of potent and long-term immune responses; however, traditional vaccines pose a high [...] Read more.
Vaccination is credited as a significant medical achievement contributing to the decline in morbidity and mortality of infectious diseases. Traditional vaccines composed of inactivated and live-attenuated whole pathogens confer the induction of potent and long-term immune responses; however, traditional vaccines pose a high risk of eliciting autoimmune and allergic responses as well as inflammations. New modern vaccines, such as subunit vaccines, employ minimum pathogenic components (such as carbohydrates, proteins, or peptides), overcome the drawbacks of traditional vaccines and stimulate effective immunity against infections. However, the low immunogenicity of subunit vaccines requires effective immune stimulants (adjuvants), which are an indispensable factor in vaccine development. Although there are several approved adjuvants in human vaccines, the challenges of matching and designing appropriate adjuvants for specific vaccines, along with managing the side effects and toxicity of existing adjuvants in humans, are driving the development of new adjuvants. Self-assembling peptides are a promising biomaterial rapidly emerging in the fields of biomedicine, vaccination and material science. Here, peptides self-assemble into ordered supramolecular structures, forming different building blocks in nanoparticle size, including fibrils, tapes, nanotubes, micelles, hydrogels or nanocages, with great biostability, biocompatibility, low toxicity and effectiveness at controlled release. Self-assembling peptides are effective immunostimulatory agents used in vaccine development to enhance and prolong immune responses. This review describes the predominant structures of self-assembling peptides and summarises their recent applications as vaccine adjuvants. Challenges and future perspectives on self-assembled peptides as vaccine adjuvants are also highlighted. Full article
Show Figures

Figure 1

17 pages, 4336 KiB  
Article
New Supramolecular Hydrogels Based on Diastereomeric Dehydrotripeptide Mixtures for Potential Drug Delivery Applications
by Carlos B. P. Oliveira, André Carvalho, Renato B. Pereira, David M. Pereira, Loic Hilliou, Peter J. Jervis, José A. Martins and Paula M. T. Ferreira
Viewed by 1107
Abstract
Self-assembly of peptide building blocks offers unique opportunities for bottom-up preparation of exquisite nanostructures, nanoarchitectures, and nanostructured bulk materials, namely hydrogels. In this work we describe the synthesis, characterization, gelation, and rheological properties of new dehydrotripeptides, Cbz-L-Lys(Cbz)-L,D-Asp-∆Phe-OH [...] Read more.
Self-assembly of peptide building blocks offers unique opportunities for bottom-up preparation of exquisite nanostructures, nanoarchitectures, and nanostructured bulk materials, namely hydrogels. In this work we describe the synthesis, characterization, gelation, and rheological properties of new dehydrotripeptides, Cbz-L-Lys(Cbz)-L,D-Asp-∆Phe-OH and (2-Naph)-L-Lys(2-Naph)-L,D-Asp-∆Phe-OH, containing a N-terminal lysine residue Nα,ε-bis-capped with carboxybenzyl (Cbz) and 2-Naphthylacetyl (2-Naph) aromatic moieties, an aspartic acid residue (Asp), and a C-terminal dehydrophenylalanine (∆Phe) residue. The dehydrotripeptides were obtained as diastereomeric mixtures (L,L,Z and L,D,Z), presumably via aspartimide chemistry. The dehydrotripeptides afforded hydrogels at exceedingly low concentrations (0.1 and 0.04 wt%). The hydrogels revealed exceptional elasticity (G’ = 5.44 × 104 and 3.43 × 106 Pa) and self-healing properties. STEM studies showed that the diastereomers of the Cbz-capped peptide undergo co-assembly, generating a fibrillar 3D network, while the diastereomers of the 2-Naph-capped dehydropeptide seem to undergo self-sorting, originating a fibril network with embedded spheroidal nanostructures. The 2-Naph-capped hydrogel displayed full fast recovery following breakup by a mechanical stimulus. Spheroidal nanostructures are absent in the recovered hydrogel, as seen by STEM, suggesting that the mechanical stimulus triggers rearrangement of the spheroidal nanostructures into fibers. Overall, this study demonstrates that diastereomeric mixtures of peptides can be efficacious gelators. Importantly, these results suggest that the structure (size, aromaticity) of the capping group can have a directing effect on the self-assembly (co-assembly vs. self-sorting) of diastereomers. The cytotoxicity of the newly synthesized gelators was evaluated using human keratinocytes (HaCaT cell line). The results indicated that the two gelators exhibited some cytotoxicity, having a small impact on cell viability. In sustained release experiments, the influence of the charge on model drug compounds was assessed in relation to their release rate from the hydrogel matrix. The hydrogels demonstrated sustained release for methyl orange (anionic), while methylene blue (cationic) was retained within the network. Full article
(This article belongs to the Special Issue Recent Advances in Physical Gels and Their Applications)
Show Figures

Graphical abstract

15 pages, 4341 KiB  
Article
Effect of Silk Fibroin on the Mechanical and Transport Properties of Agarose Hydrogels
by Veronika Richterová and Miloslav Pekař
Viewed by 927
Abstract
In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were [...] Read more.
In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were studied. Fibroin did not change the general viscoelastic properties of the investigated hydrogels but changed the viscoelastic moduli values and also the mesh size, as calculated from rheometry data. Fibroin influenced the mechanical properties depending on its concentration: at lower concentrations, it increased the mesh size, while at higher concentrations, it acted as a filler, decreasing the mesh size. Similarly, the storage and loss moduli were affected, either increasing or decreasing based on the fibroin concentration. The fibroin effect on the diffusion of two dyes differing in their charge was the result of a combination of structural effects, responsible also for changes in the rheological properties, and a result of electrostatic interactions between the charged groups. For positively charged methylene blue, low fibroin concentrations accelerated diffusion, while higher concentrations slowed it by filling network vacancies. In contrast, for negatively charged eosin-B, fibroin strongly impeded diffusion at all concentrations due to electrostatic repulsion, leading to its accumulation at the hydrogel interface. The findings of this work may contribute to an understanding of the behavior of the extracellular matrix or soft tissues as well as to the development of the tailored design of hydrogel materials. Full article
(This article belongs to the Special Issue Design of Supramolecular Hydrogels)
Show Figures

Graphical abstract

12 pages, 3018 KiB  
Article
Density Functional Theory Prediction of Laser Dyes–Cucurbit[7]uril Binding Affinities
by Vladislava Petkova, Stefan Dobrev, Nikoleta Kircheva, Dimana Nazarova, Lian Nedelchev, Valya Nikolova, Todor Dudev and Silvia Angelova
Molecules 2024, 29(18), 4394; https://doi.org/10.3390/molecules29184394 - 16 Sep 2024
Viewed by 822
Abstract
Among a variety of diverse host molecules distinguished by specific characteristics, the cucurbit[n]uril (CB) family stands out, being widely known for the attractive properties of its representatives along with their increasingly expanding area of applications. The presented herewith density functional theory (DFT)-based study [...] Read more.
Among a variety of diverse host molecules distinguished by specific characteristics, the cucurbit[n]uril (CB) family stands out, being widely known for the attractive properties of its representatives along with their increasingly expanding area of applications. The presented herewith density functional theory (DFT)-based study is inspired by some recent studies exploring CBs as a key component in multifunctional hydrogels with applications in materials science, thus considering CB-assisted supramolecular polymeric hydrogels (CB-SPHs), a new class of 3D cross-linked polymer materials. The research systematically investigates the inclusion process between the most applied representative of the cavitand family CB[7] and a series of laser dye molecules as guests, as well as the possible encapsulation of a model side chain from the photoanisotropic polymer PAZO and its sodium-containing salt. The obtained results shed light on the most significant factors that play a key role in the recognition process, such as binding mode, charge, and dielectric constant of the solvent. The observed findings provide valuable insights at a molecular level for the design of dye–CB[7] systems in various environments, with potential applications in intriguing and prosperous fields like photonics and material science. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

17 pages, 4400 KiB  
Article
Preparation of Composite Hydrogels Based on Cysteine–Silver Sol and Methylene Blue as Promising Systems for Anticancer Photodynamic Therapy
by Dmitry V. Vishnevetskii, Fedor A. Metlin, Yana V. Andrianova, Elizaveta E. Polyakova, Alexandra I. Ivanova, Dmitry V. Averkin and Arif R. Mekhtiev
Cited by 1 | Viewed by 1212
Abstract
In this study, a novel supramolecular composite, “photogels”, was synthesized by mixing of cysteine–silver sol (CSS) and methylene blue (MB). A complex of modern physico-chemical methods of analysis such as viscosimetry, UV spectroscopy, dynamic and electrophoretic light scattering, scanning electron microscopy and energy-dispersive [...] Read more.
In this study, a novel supramolecular composite, “photogels”, was synthesized by mixing of cysteine–silver sol (CSS) and methylene blue (MB). A complex of modern physico-chemical methods of analysis such as viscosimetry, UV spectroscopy, dynamic and electrophoretic light scattering, scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that MB molecules are uniformly localized mainly in the space between fibers of the gel-network formed by CSS particles. Molecules of the dye also bind with the surface of CSS particles by non-covalent interactions. This fact is reflected in the appearance of a synergistic anticancer effect of gels against human squamous cell carcinoma even in the absence of light irradiation. A mild toxic influence of hydrogels was observed in normal keratinocyte cells. Photodynamic exposure significantly increased gel activity, and there remained a synergistic effect. The study of free-radical oxidation in cells has shown that gels are not only capable of generating reactive oxygen species, but also have other targets of action. Flow cytometric analysis allowed us to find out that obtained hydrogels caused cell cycle arrest both without irradiation and with light exposure. The obtained gels are of considerable interest both from the point of view of academics and applied science, for example, in the photodynamic therapy of superficial neoplasms. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

55 pages, 49774 KiB  
Review
Structural Rheology in the Development and Study of Complex Polymer Materials
by Sergey O. Ilyin
Polymers 2024, 16(17), 2458; https://doi.org/10.3390/polym16172458 - 29 Aug 2024
Cited by 7 | Viewed by 1517
Abstract
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, [...] Read more.
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, and a structure of a multi-component polymer-containing material. Determination of a relation between the structure of a complex material, the structure and properties of its constituent elements, and the rheological properties of the material as a whole is the subject of structural rheology—a valuable tool for the development and study of novel materials. This work summarizes the author’s structural–rheological studies of complex polymer materials for determining the conditions and rheo-manifestations of their micro- and nanostructuring. The complicated chemical composition of macromolecular chains and its role in polymer structuring via block segregation and cooperative hydrogen bonds in melt and solutions is considered using tri- and multiblock styrene/isoprene and vinyl acetate/vinyl alcohol copolymers. Specific molecular interactions are analyzed in solutions of cellulose; its acetate butyrate; a gelatin/carrageenan combination; and different acrylonitrile, oxadiazole, and benzimidazole copolymers. A homogeneous structuring may result from a conformational transition, a mesophase formation, or a macromolecular association caused by a complex chain composition or specific inter- and supramolecular interactions, which, however, may be masked by macromolecular entanglements when determining a rheological behavior. A heterogeneous structure formation implies a microscopic phase separation upon non-solvent addition, temperature change, or intense shear up to a macroscopic decomposition. Specific polymer/particle interactions have been examined using polyethylene oxide solutions, polyisobutylene melts, and cellulose gels containing solid particles of different nature, demonstrating the competition of macromolecular entanglements, interparticle interactions, and adsorption polymer/particle bonds in governing the rheological properties. Complex chain architecture has been considered using long-chain branched polybutylene-adipate-terephthalate and polyethylene melts, cross-linked sodium hyaluronate hydrogels, asphaltene solutions, and linear/highly-branched polydimethylsiloxane blends, showing that branching raises the viscosity and elasticity and can result in limited miscibility with linear isomonomer chains. Finally, some examples of composite adhesives, membranes, and greases as structured polymeric functional materials have been presented with the demonstration of the relation between their rheological and performance properties. Full article
(This article belongs to the Special Issue Rheology and Processing of Polymer Materials)
Show Figures

Figure 1

22 pages, 4454 KiB  
Article
Supramolecular Polymer Co-Assembled Multifunctional Chiral Hybrid Hydrogels with Adhesive, Self-Healing and Antibacterial Properties
by Zakia Riaz, Sravan Baddi, Fengli Gao, Xiaxin Qiu and Chuanliang Feng
Viewed by 1119
Abstract
Amino acid-derived self-assembled nanofibers comprising supramolecular chiral hydrogels with unique physiochemical characteristics are highly demanded biomaterials for various biological applications. However, their narrow functionality often limits practical use, necessitating the development of biomaterials with multiple features within a single system. Herein, chiral co-assembled [...] Read more.
Amino acid-derived self-assembled nanofibers comprising supramolecular chiral hydrogels with unique physiochemical characteristics are highly demanded biomaterials for various biological applications. However, their narrow functionality often limits practical use, necessitating the development of biomaterials with multiple features within a single system. Herein, chiral co-assembled hybrid hydrogel systems termed LPH-EGCG and DPH-EGCG were constructed by co-assembling L/DPFEG gelators with epigallocatechin gallate (EGCG) followed by cross-linking with polyvinyl alcohol (PVA) and hyaluronic acid (HA). The developed hybrid hydrogels exhibit superior mechanical strength, self-healing capabilities, and adhesive properties, owing to synergistic non-covalent interactions. Integrating hydrophilic polymers enhances the system’s capacity to demonstrate favorable swelling characteristics. Furthermore, the introduction of EGCG facilitated the hybrid gels to display notable antibacterial properties against both Gram-positive and Gram-negative bacterial strains, alongside showcasing strong antioxidant capabilities. In vitro investigation demonstrated enhanced cell adhesion and migration with the LPH-EGCG system in comparison to DPH-EGCG, thus emphasizing the promising prospects of these hybrid hydrogels in advanced tissue engineering applications. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

21 pages, 4612 KiB  
Review
Hydrogels for Lubrication: Synthesis, Properties, Mechanism, and Challenges
by Lulin Hu, Yi Yang, Weiyan Yu and Lu Xu
Lubricants 2024, 12(6), 186; https://doi.org/10.3390/lubricants12060186 - 24 May 2024
Cited by 1 | Viewed by 2310
Abstract
Hydrogels have received extensive attention as functional lubricants because of their excellent anti-friction and anti-wear properties, tunable tribological performances, and effectiveness in alleviating lubrication failures caused by the creeping or leakage of conventional liquid lubricants owing to their semi-solid nature. This review summarizes [...] Read more.
Hydrogels have received extensive attention as functional lubricants because of their excellent anti-friction and anti-wear properties, tunable tribological performances, and effectiveness in alleviating lubrication failures caused by the creeping or leakage of conventional liquid lubricants owing to their semi-solid nature. This review summarizes the current research advances in hydrogel lubricants fabricated with various organic and/or inorganic gelators, including organic polymeric or supramolecular hydrogels, inorganic particles-based hydrogels, and organic polymer-inorganic particle hybrid hydrogels. We illustrate not only the design strategies for constructing high-performance hydrogel lubricants but also the tribological behavior and mechanism of different types of hydrogel lubricants and their potential applications in industrial and biomimetic fields. Corresponding outlooks and suggestions for future studies have also been proposed. Full article
(This article belongs to the Special Issue Tribological Properties of Soft Materials)
Show Figures

Graphical abstract

14 pages, 3676 KiB  
Article
Fluoride-Ion-Responsive Sol–Gel Transition in an L-Cysteine/AgNO3 System: Self-Assembly Peculiarities and Anticancer Activity
by Dmitry V. Vishnevetskii, Yana V. Andrianova, Elizaveta E. Polyakova, Alexandra I. Ivanova and Arif R. Mekhtiev
Cited by 2 | Viewed by 1768
Abstract
Supramolecular hydrogels based on low-molecular-weight compounds are a unique class of so-called “soft” materials, formed by weak non-covalent interactions between precursors at their millimolar concentrations. Due to the variety of structures that can be formed using different low-molecular-weight gelators, they are widely used [...] Read more.
Supramolecular hydrogels based on low-molecular-weight compounds are a unique class of so-called “soft” materials, formed by weak non-covalent interactions between precursors at their millimolar concentrations. Due to the variety of structures that can be formed using different low-molecular-weight gelators, they are widely used in various fields of technology and medicine. In this study, we report for the first time an unusual self-assembly process of mixing a hydrosol obtained from L-cysteine and silver nitrate (cysteine–silver sol—CSS) with sodium halides. Modern instrumental techniques such as viscosimetry, UV spectroscopy, dynamic light scattering, zeta potential measurements, SEM and EDS identified that adding fluoride anions to CSS is able to form stable hydrogels of a thixotropic nature, while Cl, Br and I lead to precipitation. The self-assembly process proceeds using a narrow concentration range of F. An increase in the fluoride anion content in the system leads to a change in the gel network morphology from elongated structures to spherical ones. This fact is reflected in a decrease in the gel viscosity and a number of gel–sol–gel transition cycles. The mechanism of F’s interaction with hydrosol includes the condensation of anions on the positive surface of the CSS nanoparticles, their binding via electrostatic forces and the formation of a resulting gel carcass. In vitro analysis showed that the hydrogels suppressed human squamous carcinoma cells at a micromolar sample concentration. The obtained soft gels could have potential applications against cutaneous malignancy and as carriers for fluoride anion and other bioactive substance delivery. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

16 pages, 16857 KiB  
Article
Cationic Azobenzenes as Light-Responsive Crosslinkers for Alginate-Based Supramolecular Hydrogels
by Miriam Di Martino, Lucia Sessa, Barbara Panunzi, Rosita Diana, Stefano Piotto and Simona Concilio
Polymers 2024, 16(9), 1233; https://doi.org/10.3390/polym16091233 - 28 Apr 2024
Viewed by 1685
Abstract
Azobenzene photoswitches are fundamental components in contemporary approaches aimed at light-driven control of intelligent materials. Significant endeavors are directed towards enhancing the light-triggered reactivity of azobenzenes for such applications and obtaining water-soluble molecules able to act as crosslinkers in a hydrogel. Here, we [...] Read more.
Azobenzene photoswitches are fundamental components in contemporary approaches aimed at light-driven control of intelligent materials. Significant endeavors are directed towards enhancing the light-triggered reactivity of azobenzenes for such applications and obtaining water-soluble molecules able to act as crosslinkers in a hydrogel. Here, we report the rational design and the synthesis of azobenzene/alginate photoresponsive hydrogels endowed with fast reversible sol–gel transition. We started with the synthesis of three cationic azobenzenes (AZOs A, B, and C) and then incorporated them in sodium alginate (SA) to obtain photoresponsive supramolecular hydrogels (SMHGs). The photoresponsive properties of the azobenzenes were investigated by UV–Vis and 1H NMR spectroscopy. Upon irradiation with 365 nm UV light, the azobenzenes demonstrated efficient trans-to-cis isomerization, with complete isomerization occurring within seconds. The return to the trans form took several hours, with AZO C exhibiting the fastest return, possibly due to higher trans isomer stability. In the photoresponsive SMHGs, the minimum gelation concentration (MGC) of azobenzenes was determined for different compositions, indicating that small amounts of azobenzenes could induce gel formation, particularly in 5 wt% SA. Upon exposure to 365 nm UV light, the SMHGs exhibited reversible gel–sol transitions, underscoring their photoresponsive nature. This research offers valuable insights into the synthesis and photoresponsive properties of cationic, water-soluble azobenzenes, as well as their potential application in the development of photoresponsive hydrogels. Full article
(This article belongs to the Special Issue New Progress in Polymer Self-Assembly)
Show Figures

Graphical abstract

16 pages, 4160 KiB  
Article
Supramolecular Hydrogel Dexamethasone–Diclofenac for the Treatment of Rheumatoid Arthritis
by Yanqin Song, Pufan Yang, Wen Guo, Panpan Lu, Congying Huang, Zhiruo Cai, Xin Jiang, Gangqiang Yang, Yuan Du and Feng Zhao
Nanomaterials 2024, 14(7), 645; https://doi.org/10.3390/nano14070645 - 8 Apr 2024
Cited by 2 | Viewed by 1915
Abstract
Rheumatoid arthritis (RA) severely affects patients’ quality of life and is commonly treated with glucocorticosteroids injections, like dexamethasone, which may have side effects. This study aimed to create a novel low dose of twin-drug hydrogel containing dexamethasone and diclofenac and explore its potential [...] Read more.
Rheumatoid arthritis (RA) severely affects patients’ quality of life and is commonly treated with glucocorticosteroids injections, like dexamethasone, which may have side effects. This study aimed to create a novel low dose of twin-drug hydrogel containing dexamethasone and diclofenac and explore its potential as a drug delivery system for an enhanced anti-inflammatory effect. Its characterization involved rheology, transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Furthermore, the hydrogel demonstrated thixotropic properties. The hydrogel exhibited no cytotoxicity against RAW 264.7 macrophages. Furthermore, the hydrogel demonstrated a significant anti-inflammatory efficacy by effectively downregulating the levels of NO, TNF-α, and IL-6 in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The co-delivery approach, when intra-articularly injected in adjuvant-induced arthritis (AIA) rats, significantly alleviated chronic inflammation leading to reduced synovitis, delayed bone erosion onset, and the downregulation of inflammatory cytokines. The biocompatibility and adverse effect evaluation indicated good biological safety. Furthermore, the hydrogel demonstrated efficacy in reducing NF-κB nuclear translocation in LPS-induced RAW 264.7 macrophages and inhibited p-NF-kB, COX-2, and iNOS expression both in RAW 264.7 macrophages and the joints of AIA rats. In conclusion, the findings indicate that the hydrogel possesses potent anti-inflammatory activity, which effectively addresses the limitations associated with free forms. It presents a promising therapeutic strategy for the management of RA. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

22 pages, 5525 KiB  
Article
Self-Assembly of a Novel Pentapeptide into Hydrogelated Dendritic Architecture: Synthesis, Properties, Molecular Docking and Prospective Applications
by Stefania-Claudia Jitaru, Andra-Cristina Enache, Corneliu Cojocaru, Gabi Drochioiu, Brindusa-Alina Petre and Vasile-Robert Gradinaru
Cited by 1 | Viewed by 2163
Abstract
Currently, ultrashort oligopeptides consisting of fewer than eight amino acids represent a cutting-edge frontier in materials science, particularly in the realm of hydrogel formation. By employing solid-phase synthesis with the Fmoc/tBu approach, a novel pentapeptide, FEYNF-NH2, was designed, inspired by a [...] Read more.
Currently, ultrashort oligopeptides consisting of fewer than eight amino acids represent a cutting-edge frontier in materials science, particularly in the realm of hydrogel formation. By employing solid-phase synthesis with the Fmoc/tBu approach, a novel pentapeptide, FEYNF-NH2, was designed, inspired by a previously studied sequence chosen from hen egg-white lysozyme (FESNF-NH2). Qualitative peptide analysis was based on reverse-phase high performance liquid chromatography (RP-HPLC), while further purification was accomplished using solid-phase extraction (SPE). Exact molecular ion confirmation was achieved by matrix-assisted laser desorption–ionization mass spectrometry (MALDI-ToF MS) using two different matrices (HCCA and DHB). Additionally, the molecular ion of interest was subjected to tandem mass spectrometry (MS/MS) employing collision-induced dissociation (CID) to confirm the synthesized peptide structure. A combination of research techniques, including Fourier-transform infrared spectroscopy (FTIR), fluorescence analysis, transmission electron microscopy, polarized light microscopy, and Congo red staining assay, were carefully employed to glean valuable insights into the self-assembly phenomena and gelation process of the modified FEYNF-NH2 peptide. Furthermore, molecular docking simulations were conducted to deepen our understanding of the mechanisms underlying the pentapeptide’s supramolecular assembly formation and intermolecular interactions. Our study provides potential insights into amyloid research and proposes a novel peptide for advancements in materials science. In this regard, in silico studies were performed to explore the FEYNF peptide’s ability to form polyplexes. Full article
(This article belongs to the Special Issue Hydrogelated Matrices: Structural, Functional and Applicative Aspects)
Show Figures

Graphical abstract

3 pages, 163 KiB  
Editorial
Structural and Biomechanical Properties of Supramolecular Nanofiber-Based Hydrogels in Biomedicine
by Raffaele Pugliese
Biomedicines 2024, 12(1), 205; https://doi.org/10.3390/biomedicines12010205 - 17 Jan 2024
Cited by 1 | Viewed by 1095
Abstract
The field of supramolecular nanofiber-based hydrogels in biomedicine has witnessed remarkable growth over the past two decades [...] Full article
Back to TopTop