Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = solanesol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4239 KiB  
Article
Solanesol Ameliorates Anxiety-like Behaviors via the Downregulation of Cingulate T Cell-Restricted Intracellular Antigen-1 in a Complete Freund’s Adjuvant-Induced Mouse Model
by Shufan Ding, Yifan Li, Zhichao Chen, Jingnan Hu, Jiayi Li, Junlan Li and Yongjie Wang
Int. J. Mol. Sci. 2024, 25(18), 10165; https://doi.org/10.3390/ijms251810165 - 21 Sep 2024
Viewed by 1459
Abstract
Anxiety disorder is a universal disease related to neuro-inflammation. Solanesol has shown positive effects because of its anti-inflammatory, anti-tumor, and anti-ulcer properties. This study focused on determining whether solanesol could ameliorate anxiety-like behaviors in a mouse model of neuro-inflammation and identify its working [...] Read more.
Anxiety disorder is a universal disease related to neuro-inflammation. Solanesol has shown positive effects because of its anti-inflammatory, anti-tumor, and anti-ulcer properties. This study focused on determining whether solanesol could ameliorate anxiety-like behaviors in a mouse model of neuro-inflammation and identify its working targets. Complete Freund’s adjuvant (CFA)-induced mice that were intra-peritoneally administered with solanesol (50 mg/kg) for 1 week showed a statistically significant reduction in anxiety-like behaviors, as measured by open field and elevated plus-maze tests. Western blot analysis revealed that CFA-induced upregulation of the levels of pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor α (TNF-α), which played crucial roles in regulating anxiety, returned to normal in the anterior cingulate cortex (ACC) after solanesol treatment. The level of T cell-restricted intracellular antigen-1 (TIA1), a key component of stress granules, also decreased in the ACC. Moreover, immunofluorescence results indicated that solanesol suppressed CFA-induced microglial and astrocytic activation in the ACC. CFA was injected in the hind paws of TIA1Nestin conditional knockout (cKO) mice to confirm whether TIA1 is a potential modulatory molecule that influences pro-inflammatory cytokines and anxiety-like behaviors. Anxiety-like behaviors could not be observed in cKO mice after CFA injection with IL-1β and TNF-α levels not remarkedly increasing. Our findings suggest that solanesol inhibits neuro-inflammation by decreasing the TIA1 level to reduce IL-1β and TNF-α expression, meanwhile inhibiting microglial and astrocytic activation in the ACC and ultimately ameliorating anxiety-like behaviors in mice. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

17 pages, 2636 KiB  
Article
Quantitative Trait Loci Mapping and Association Analysis of Solanesol Content in Tobacco (Nicotiana tabacum L.)
by Jing Liu, Dehu Xiang, Yongmei Du, Zhongfeng Zhang, Hongbo Zhang, Lirui Cheng, Qiujuan Fu, Ning Yan, Fuzhu Ju, Chaofan Qi, Yunkang Lei, Jun Wang and Yanhua Liu
Agronomy 2024, 14(7), 1370; https://doi.org/10.3390/agronomy14071370 - 26 Jun 2024
Viewed by 1209
Abstract
Solanesol, which accumulates predominantly in the leaves of tobacco plants, has medically important bioactive properties. To investigate the genetic basis of solanesol in tobacco (Nicotiana tabacum), the solanesol contents of 222 accessions, 206 individuals from an N. tabacum Maryland609 (low-solanesol) × [...] Read more.
Solanesol, which accumulates predominantly in the leaves of tobacco plants, has medically important bioactive properties. To investigate the genetic basis of solanesol in tobacco (Nicotiana tabacum), the solanesol contents of 222 accessions, 206 individuals from an N. tabacum Maryland609 (low-solanesol) × K326 (high-solanesol) F2 population and their corresponding F1 self-pollinations, were determined using ultra-performance liquid chromatography. Genome-wide quantitative trait locus (QTL) and association analysis were performed to identify QTLs and markers associated with solanesol content based on simple sequence repeat molecular markers. A total of 12 QTLs underlying solanesol content were mapped to seven linkage groups (LGs), with three of the QTLs (QTL3-1, QTL21-6, and QTL23-3) explaining 5.19–10.05% of the phenotypic variation. Association analysis revealed 38 significant marker-trait associations in at least one environment. The associations confirmed the QTLs located on LG3, LG10, LG14, LG21, and LG23, while new elite makers were located on 11 additional LGs, each explaining, respectively, 5.16–20.07% of the phenotypic variation. The markers LG14-PT54448, LG10-PT60114-2, LG10-PT60510, LG10-PT61061, and LG-21PT20388 may be useful for molecular-assisted selection of solanesol content in tobacco leaves. These results increase our understanding of the inheritance of solanesol-associated genes and will contribute to molecular-assisted breeding and further isolation of regulatory genes involved in solanesol biosynthesis in tobacco leaves. Full article
(This article belongs to the Special Issue Metabolomics-Centered Mining of Crop Metabolic Diversity and Function)
Show Figures

Figure 1

24 pages, 6195 KiB  
Article
Development and Characterization of Innovative Multidrug Nanoformulation for Cardiac Therapy
by Amandine Gendron, Séverine Domenichini, Sandrine Zanna, Frédéric Gobeaux, Christophe Piesse, Didier Desmaële and Mariana Varna
Materials 2023, 16(5), 1812; https://doi.org/10.3390/ma16051812 - 22 Feb 2023
Viewed by 1716
Abstract
For several decades, various peptides have been under investigation to prevent ischemia/reperfusion (I/R) injury, including cyclosporin A (CsA) and Elamipretide. Therapeutic peptides are currently gaining momentum as they have many advantages over small molecules, such as better selectivity and lower toxicity. However, their [...] Read more.
For several decades, various peptides have been under investigation to prevent ischemia/reperfusion (I/R) injury, including cyclosporin A (CsA) and Elamipretide. Therapeutic peptides are currently gaining momentum as they have many advantages over small molecules, such as better selectivity and lower toxicity. However, their rapid degradation in the bloodstream is a major drawback that limits their clinical use, due to their low concentration at the site of action. To overcome these limitations, we have developed new bioconjugates of Elamipretide by covalent coupling with polyisoprenoid lipids, such as squalenic acid or solanesol, embedding self-assembling ability. The resulting bioconjugates were co-nanoprecipitated with CsA squalene bioconjugate to form Elamipretide decorated nanoparticles (NPs). The subsequent composite NPs were characterized with respect to mean diameter, zeta potential, and surface composition by Dynamic Light Scattering (DLS), Cryogenic Transmission Electron Microscopy (CryoTEM) and X-ray Photoelectron Spectrometry (XPS). Further, these multidrug NPs were found to have less than 20% cytotoxicity on two cardiac cell lines even at high concentrations, while maintaining an antioxidant capacity. These multidrug NPs could be considered for further investigations as an approach to target two important pathways involved in the development of cardiac I/R lesions. Full article
Show Figures

Graphical abstract

33 pages, 5727 KiB  
Article
Activating SIRT-1 Signalling with the Mitochondrial-CoQ10 Activator Solanesol Improves Neurobehavioral and Neurochemical Defects in Ouabain-Induced Experimental Model of Bipolar Disorder
by Bidisha Rajkhowa, Sidharth Mehan, Pranshul Sethi, Aradhana Prajapati, Manisha Suri, Sumit Kumar, Sonalika Bhalla, Acharan S. Narula, Abdulrahman Alshammari, Metab Alharbi, Nora Alkahtani, Saeed Alghamdi and Reni Kalfin
Pharmaceuticals 2022, 15(8), 959; https://doi.org/10.3390/ph15080959 - 2 Aug 2022
Cited by 17 | Viewed by 3256
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by mood fluctuations that range from depressive lows to manic highs. Several studies have linked the downregulation of SIRT-1 (silent mating type information regulation-2 homologs) signaling to the onset of BD and other neurological [...] Read more.
Bipolar disorder (BD) is a chronic mental illness characterized by mood fluctuations that range from depressive lows to manic highs. Several studies have linked the downregulation of SIRT-1 (silent mating type information regulation-2 homologs) signaling to the onset of BD and other neurological dysfunctions. This research aimed to look into the neuroprotective potential of Solanesol (SNL) in rats given ICV-Ouabain injections, focusing on its effect on SIRT-1 signaling activation in the brain. Ouabain, found in hypothalamic and medullary neurons, is an endogenous inhibitor of brain Na+/K+ ATPase. The inhibition of brain Na+/K+ ATPase by Ouabain may also result in changes in neurotransmission within the central nervous system. SNL is a Solanaceae family active phytoconstituent produced from the plant Nicotiana tabacum. SNL is used as a precursor for the production of CoQ10 (Coenzyme Q10), a powerful antioxidant and neuroprotective compound. In the current study, lithium (Li), an important mood stabilizer drug, was used as a control. This study looked at the neuroprotective potential of SNL at dosages of 40 and 80 mg/kg in ICV-OUA injections that caused BD-like neurobehavioral and neurochemical defects in Wistar rats. Wistar rats were placed into eight groups (n = 6) and administered 1 mM/0.5 µL ICV-OUA injections for three days. Neurochemical assessments were done in rat brain homogenates, CSF, and blood plasma samples at the end of the experiment protocol schedule. Long-term SNL and lithium administration have been shown to decrease the number of rearing and crossings and reduce time spent in the center, locomotor activities, and immobility time. Solansesol treatment gradually raises the amount of Na+/K+ ATPase, limiting the severity of behavioural symptoms. These findings also revealed that SNL increases the levels of SIRT-1 in CSF, blood plasma, and brain homogenate samples. Moreover, in rat brain homogenates and blood plasma samples, SNL modulates apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic). Mitochondrial-ETC complex enzymes, including complex-I, II, IV, V, and CoQ10, were also restored following long-term SNL treatment. Furthermore, SNL lowered inflammatory cytokines (TNF-α, IL-1β) levels while restoring neurotransmitter levels (serotonin, dopamine, glutamate, and acetylcholine) and decreasing oxidative stress markers. Histological examinations also validated Solanesol’s protective effect. As a result, our findings suggest that SNL, as a SIRT-1 signalling activator, may be a promising therapeutic approach for BD-like neurological dysfunctions. Full article
(This article belongs to the Special Issue Optimized or Precise Pharmacological Treatment of Bipolar Disorder)
Show Figures

Graphical abstract

10 pages, 1363 KiB  
Article
A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure
by Clifford H. Watson, Jane Yan, Stephen Stanfill, Liza Valentin-Blasini, Roberto Bravo Cardenas and Benjamin C. Blount
Int. J. Environ. Res. Public Health 2021, 18(19), 10546; https://doi.org/10.3390/ijerph181910546 - 8 Oct 2021
Viewed by 2344
Abstract
Standard machine smoking protocols provide useful information for examining the impact of design parameters, such as filter ventilation, on mainstream smoke delivery. Unfortunately, their results do not accurately reflect human smoke exposure. Clinical research and topography devices in human studies yield insights into [...] Read more.
Standard machine smoking protocols provide useful information for examining the impact of design parameters, such as filter ventilation, on mainstream smoke delivery. Unfortunately, their results do not accurately reflect human smoke exposure. Clinical research and topography devices in human studies yield insights into how products are used, but a clinical setting or smoking a cigarette attached to such a device may alter smoking behavior. To better understand smokers’ use of filtered cigarette products in a more natural environment, we developed a low-cost, high-throughput approach to estimate mainstream cigarette smoke exposure on a per-cigarette basis. This approach uses an inexpensive flatbed scanner to scan smoked cigarette filter butts and custom software to analyze tar-staining patterns. Total luminosity, or optical staining density, of the scanned images provides quantitative information proportional to mainstream smoke-constituent deliveries on a cigarette-by-cigarette basis. Duplicate sample analysis using this new approach and our laboratory’s gold-standard liquid chromatography/tandem mass spectrometry (LC/MS/MS) solanesol method yielded comparable results (+7% bias) from the analysis of 20 commercial cigarettes brands (menthol and nonmentholated). The brands varied in design parameters such as length, filter ventilation, and diameter. Plots correlating the luminosity to mainstream smoked-nicotine deliveries on a per-cigarette basis for these cigarette brands were linear (average R2 > 0.91 for nicotine and R2 > 0.83 for the tobacco-specific nitrosamine NNK), on a per-brand basis, with linearity ranging from 0.15 to 3.00 mg nicotine/cigarette. Analysis of spent cigarette filters allows exposures to be characterized on a per-cigarette basis or a “daily dose” via summing across results from all filter butts collected over a 24 h period. This scanner method has a 100-fold lower initial capital cost for equipment than the LC/MS/MS solanesol method and provides high-throughput results (~200 samples per day). Thus, this new method is useful for characterizing exposure related to filtered tobacco-product use. Full article
(This article belongs to the Special Issue Tobacco Smoke Exposure and Tobacco Product Use)
Show Figures

Figure 1

15 pages, 3230 KiB  
Article
Synthesis of Molecularly Imprinted Polymer via Emulsion Polymerization for Application in Solanesol Separation
by Guojie Zhao, Jing Liu, Minghong Liu, Xiaobin Han, Yulong Peng, Xiatian Tian, Jialei Liu and Shaofeng Zhang
Appl. Sci. 2020, 10(8), 2868; https://doi.org/10.3390/app10082868 - 21 Apr 2020
Cited by 48 | Viewed by 4379
Abstract
High-purity solanesol can be used for pharmaceutical applications, but the current method for purifying solanesol has high cost and difficult continuous operation, and the use of molecular imprinting to purify natural products is a hot research topic of current research. Solanesol molecularly imprinted [...] Read more.
High-purity solanesol can be used for pharmaceutical applications, but the current method for purifying solanesol has high cost and difficult continuous operation, and the use of molecular imprinting to purify natural products is a hot research topic of current research. Solanesol molecularly imprinted polymers were synthesized via emulsion polymerization for the first time. The morphology of the SSO-MIPs was observed with a scanning electron microscope, and the effects of the synthesis time, initiator dosage, functional monomer dosage, and cross-linking agent dosage on the adsorption effects under high-temperature and rapid synthesis conditions were discussed. The results demonstrate that the optimum synthesis conditions were a ratio of the template molecules to the functional monomers to the cross-linking agents of 1:8:30 (mol:mol:mol), 10 mg of the initiator, and a synthesis temperature of 70 °C. The imprinting factor of SSO-MIPs synthesized under the optimized process was found to reach 2.51, and the SSO-MIPs synthesized by this method exhibited a good adsorption effect, emitted less pollution during the synthesis process, and are convenient for demulsification. This research reports a reliable method for the synthesis of solanesol molecularly imprinted polymers. Full article
Show Figures

Figure 1

18 pages, 1890 KiB  
Article
Effects of NtSPS1 Overexpression on Solanesol Content, Plant Growth, Photosynthesis, and Metabolome of Nicotiana tabacum
by Ning Yan, Xiaolei Gai, Lin Xue, Yongmei Du, John Shi and Yanhua Liu
Cited by 3 | Viewed by 2950
Abstract
Nicotiana tabacum solanesyl diphosphate synthase 1 (NtSPS1) is the key enzyme in solanesol biosynthesis. However, changes in the solanesol content, plant growth, photosynthesis, and metabolome of tobacco plants after NtSPS1 overexpression (OE) have not been previously reported. In the present study, these parameters, [...] Read more.
Nicotiana tabacum solanesyl diphosphate synthase 1 (NtSPS1) is the key enzyme in solanesol biosynthesis. However, changes in the solanesol content, plant growth, photosynthesis, and metabolome of tobacco plants after NtSPS1 overexpression (OE) have not been previously reported. In the present study, these parameters, as well as photosynthetic gas exchange, chlorophyll content, and chlorophyll fluorescence parameters, were compared between NtSPS1 OE and wild type (WT) lines of tobacco. As expected, NtSPS1 OE significantly increased solanesol content in tobacco leaves. Although NtSPS1 OE significantly increased leaf growth, photosynthesis, and chlorophyll content, the chlorophyll fluorescence parameters in the leaves of the NtSPS1 OE lines were only slightly higher than those in the WT leaves. Furthermore, NtSPS1 OE resulted in 64 differential metabolites, including 30 up-regulated and 34 down-regulated metabolites, between the OE and WT leaves. Pathway enrichment analysis of these differential metabolites identified differentially enriched pathways between the OE and WT leaves, e.g., carbon fixation in photosynthetic organisms. The maximum carboxylation rate of RuBisCO and the maximum rate of RuBP regeneration were also elevated in the NtSPS1 OE line. To our knowledge, this is the first study to confirm the role of NtSPS1 in solanesol biosynthesis and its possible functional mechanisms in tobacco. Full article
(This article belongs to the Special Issue Biosynthesis and Functions of Terpenoids in Plants)
Show Figures

Figure 1

11 pages, 2229 KiB  
Article
Preparation of Key Intermediates for the Syntheses of Coenzyme Q10 and Derivatives by Cross-Metathesis Reactions
by Trang Nguyen, Hung Mac and Phong Pham
Molecules 2020, 25(3), 448; https://doi.org/10.3390/molecules25030448 - 21 Jan 2020
Cited by 1 | Viewed by 3316
Abstract
An alternative catalytic strategy for the preparation of benzylmethacrylate esters, key intermediates in the synthesis of coenzyme Q10 and derivatives, was reported. This strategy avoided undesirable stoichiometric reduction/oxidation processes by utilizing the catalytic formation of allylarenes and then cross-metathesis to selectively form [...] Read more.
An alternative catalytic strategy for the preparation of benzylmethacrylate esters, key intermediates in the synthesis of coenzyme Q10 and derivatives, was reported. This strategy avoided undesirable stoichiometric reduction/oxidation processes by utilizing the catalytic formation of allylarenes and then cross-metathesis to selectively form E-benzylmethacrylate esters with good yields (58–64%) and complete E-selectivity. The ester intermediates were reduced to common key benzylallylic alcohols (90–92% yield), which were subsequently used in the formal syntheses of coenzyme Q10 and one derivative. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Scheme 1

17 pages, 1230 KiB  
Review
Bioactivities and Medicinal Value of Solanesol and Its Accumulation, Extraction Technology, and Determination Methods
by Ning Yan, Yanhua Liu, Linqing Liu, Yongmei Du, Xinmin Liu, Hongbo Zhang and Zhongfeng Zhang
Biomolecules 2019, 9(8), 334; https://doi.org/10.3390/biom9080334 - 2 Aug 2019
Cited by 24 | Viewed by 5182
Abstract
Solanesol, an aliphatic terpene alcohol composed of nine isoprene units, is mainly found in solanaceous plants. Particularly, tobacco (Nicotiana tabacum), belonging to the Solanaceae family, is the richest plant source of solanesol, and its leaves have been regarded as the ideal [...] Read more.
Solanesol, an aliphatic terpene alcohol composed of nine isoprene units, is mainly found in solanaceous plants. Particularly, tobacco (Nicotiana tabacum), belonging to the Solanaceae family, is the richest plant source of solanesol, and its leaves have been regarded as the ideal material for solanesol extraction. Since the discovery of solanesol in tobacco, significant progress has been achieved in research on solanesol’s bioactivities, medicinal value, accumulation, extraction technology, and determination methods. Solanesol possesses strong free radical absorption ability and antioxidant activity owing to the presence of several non-conjugated double bonds. Notably, solanesol’s anti-inflammatory, neuroprotective, and antimicrobial activities have been previously demonstrated. Solanesol is a key intermediate in the synthesis of coenzyme Q10, vitamin K2, and the anticancer agent synergiser N-solanesyl-N,N′-bis(3,4-dimethoxybenzyl) ethylenediamine. Other applications of solanesol include solanesol derivative micelles for hydrophobic drug delivery, solanesol-derived scaffolds for bioactive peptide multimerization, and solanesol-anchored DNA for mediating vesicle fusion. Solanesol accumulation in plants is influenced by genetic and environmental factors, including biotic stresses caused by pathogen infections, temperature, illumination, and agronomic measures. Seven extraction technologies and seven determination methods of solanesol are also systematically summarized in the present review. This review can serve as a reference for solanesol’s comprehensive application. Full article
Show Figures

Figure 1

14 pages, 695 KiB  
Article
Optimization of Ultrasound-Assisted Extraction of Some Bioactive Compounds from Tobacco Waste
by Marija Banožić, Ines Banjari, Martina Jakovljević, Drago Šubarić, Srećko Tomas, Jurislav Babić and Stela Jokić
Molecules 2019, 24(8), 1611; https://doi.org/10.3390/molecules24081611 - 24 Apr 2019
Cited by 48 | Viewed by 4934
Abstract
This is the first study on ultrasound-assisted extraction (UAE) of bioactive compounds from different types of tobacco industry wastes (scrap, dust, and midrib). The obtained results were compared with starting raw material (tobacco leaves) to see the changes in bioactive compounds during tobacco [...] Read more.
This is the first study on ultrasound-assisted extraction (UAE) of bioactive compounds from different types of tobacco industry wastes (scrap, dust, and midrib). The obtained results were compared with starting raw material (tobacco leaves) to see the changes in bioactive compounds during tobacco processing. Results suggested that tobacco waste extracts possess antioxidant activity and considerable amounts of targeted bioactive compounds (phenolics and solanesol). The content of chlorogenic acid varied between 3.64 and 804.2 μg/mL, caffeic acid between 2.34 and 10.8 μg/mL, rutin between 11.56 and 93.7 μg/mL, and solanesol between 294.9 and 598.9 μg/mL for waste and leaf extracts, respectively. There were noticeable differences between bioactive compounds content and antioxidant activity in extracts related to applied UAE conditions and the used type of tobacco waste. Results show that optimal UAE parameters obtained by response surface methodology (RSM) were different for each type of material, so process optimization proved to be necessary. Considering that tobacco waste is mostly discarded or not effectively utilized, the results clearly show that tobacco waste could be used as a potential source of some bioactive compounds. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

15 pages, 1404 KiB  
Article
RNA Sequencing Provides Insights into the Regulation of Solanesol Biosynthesis in Nicotiana tabacum Induced by Moderately High Temperature
by Ning Yan, Yongmei Du, Hongbo Zhang, Zhongfeng Zhang, Xinmin Liu, John Shi and Yanhua Liu
Biomolecules 2018, 8(4), 165; https://doi.org/10.3390/biom8040165 - 7 Dec 2018
Cited by 5 | Viewed by 3981
Abstract
Solanesol is a terpene alcohol composed of nine isoprene units that mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum). The present study aimed to investigate the regulation of solanesol accumulation in tobacco leaves induced by moderately high temperature (MHT). Exposure [...] Read more.
Solanesol is a terpene alcohol composed of nine isoprene units that mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum). The present study aimed to investigate the regulation of solanesol accumulation in tobacco leaves induced by moderately high temperature (MHT). Exposure to MHT resulted in a significant increase in solanesol content, dry weight, and net photosynthetic rate in tobacco leaves. In MHT-exposed tobacco leaves, 492 and 1440 genes were significantly up- and downregulated, respectively, as revealed by RNA-sequencing. Functional enrichment analysis revealed that most of the differentially expressed genes (DEGs) were mainly related to secondary metabolite biosynthesis, metabolic pathway, carbohydrate metabolism, lipid metabolism, hydrolase activity, catalytic activity, and oxidation-reduction process. Moreover, 122 transcription factors of DEGs were divided into 22 families. Significant upregulation of N. tabacum 3-hydroxy-3-methylglutaryl-CoA reductase (NtHMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (NtDXR), geranylgeranyl diphosphate synthase (NtGGPS), and solanesyl diphosphate synthase (NtSPS) and significant downregulation of N. tabacum 1-deoxy-d-xylulose 5-phosphate synthase (NtDXS) and farnesyl diphosphate synthase (NtFPS) transcription upon MHT exposure were monitored by quantitative real-time PCR (qRT-PCR). This study indicated that solanesol accumulation in tobacco leaves can be manipulated through regulation of the environmental temperature and established a basis for further elucidation of the molecular mechanism of temperature regulation of solanesol accumulation. Full article
Show Figures

Figure 1

523 KiB  
Review
Solanesol Biosynthesis in Plants
by Ning Yan, Yanhua Liu, Hongbo Zhang, Yongmei Du, Xinmin Liu and Zhongfeng Zhang
Molecules 2017, 22(4), 510; https://doi.org/10.3390/molecules22040510 - 23 Mar 2017
Cited by 22 | Viewed by 7663
Abstract
Solanesol is a non-cyclic terpene alcohol composed of nine isoprene units that mainly accumulates in solanaceous plants. Solanesol plays an important role in the interactions between plants and environmental factors such as pathogen infections and moderate-to-high temperatures. Additionally, it is a key intermediate [...] Read more.
Solanesol is a non-cyclic terpene alcohol composed of nine isoprene units that mainly accumulates in solanaceous plants. Solanesol plays an important role in the interactions between plants and environmental factors such as pathogen infections and moderate-to-high temperatures. Additionally, it is a key intermediate for the pharmaceutical synthesis of ubiquinone-based drugs such as coenzyme Q10 and vitamin K2, and anti-cancer agent synergizers such as N-solanesyl-N,N′-bis(3,4-dimethoxybenzyl) ethylenediamine (SDB). In plants, solanesol is formed by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway within plastids. Solanesol’s biosynthetic pathway involves the generation of C5 precursors, followed by the generation of direct precursors, and then the biosynthesis and modification of terpenoids; the first two stages of this pathway are well understood. Based on the current understanding of solanesol biosynthesis, we here review the key enzymes involved, including 1-deoxy-d-xylulose 5-phosphate synthase (DXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), isopentenyl diphosphate isomerase (IPI), geranyl geranyl diphosphate synthase (GGPPS), and solanesyl diphosphate synthase (SPS), as well as their biological functions. Notably, studies on microbial heterologous expression and overexpression of key enzymatic genes in tobacco solanesol biosynthesis are of significant importance for medical uses of tobacco. Full article
(This article belongs to the Special Issue Isoprenoid Biosynthesis)
Show Figures

Figure 1

2250 KiB  
Article
Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content
by Ning Yan, Hongbo Zhang, Zhongfeng Zhang, John Shi, Michael P. Timko, Yongmei Du, Xinmin Liu and Yanhua Liu
Molecules 2016, 21(11), 1536; https://doi.org/10.3390/molecules21111536 - 15 Nov 2016
Cited by 13 | Viewed by 6537
Abstract
Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.). In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol [...] Read more.
Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.). In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol biosynthesis genes. Six 1-deoxy-d-xylulose 5-phosphate synthase (DXS), two 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), two 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD), four 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (IspE), two 2-C-methyl-d-erythritol 2,4-cyclo-diphosphate synthase (IspF), four 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (IspG), two 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IspH), six isopentenyl diphosphate isomerase (IPI), and two solanesyl diphosphate synthase (SPS) candidate genes were identified in the solanesol biosynthetic pathway. Furthermore, the two N. tabacum SPS proteins (NtSPS1 and NtSPS2), which possessed two conserved aspartate-rich DDxxD domains, were highly homologous with SPS enzymes from other solanaceous plant species. In addition, the solanesol contents of three organs and of leaves from four growing stages of tobacco plants corresponded with the distribution of chlorophyll. Our findings provide a comprehensive evaluation of the correlation between the expression of different biosynthesis genes and the accumulation of solanesol, thus providing valuable insight into the regulation of solanesol biosynthesis in tobacco. Full article
Show Figures

Figure 1

Back to TopTop