Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = sensitivity NO/NO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5404 KiB  
Article
Elucidating the Effects of COVID-19 Lockdowns in the UK on the O3-NOx-VOC Relationship
by Rayne Holland, Katya Seifert, Eric Saboya, M. Anwar H. Khan, Richard G. Derwent and Dudley E. Shallcross
Atmosphere 2024, 15(5), 607; https://doi.org/10.3390/atmos15050607 - 16 May 2024
Cited by 4 | Viewed by 1258
Abstract
The unprecedented reductions in anthropogenic emissions over the COVID-19 lockdowns were utilised to investigate the response of ozone (O3) concentrations to changes in its precursors across various UK sites. Ozone, volatile organic compounds (VOCs) and NOx (NO+NO2) data [...] Read more.
The unprecedented reductions in anthropogenic emissions over the COVID-19 lockdowns were utilised to investigate the response of ozone (O3) concentrations to changes in its precursors across various UK sites. Ozone, volatile organic compounds (VOCs) and NOx (NO+NO2) data were obtained for a 3-year period encompassing the pandemic period (January 2019–December 2021), as well as a pre-pandemic year (2017), to better understand the contribution of precursor emissions to O3 fluctuations. Compared with pre-lockdown levels, NO and NO2 declined by up to 63% and 42%, respectively, over the lockdown periods, with the most significant changes in pollutant concentrations recorded across the urban traffic sites. O3 levels correspondingly increased by up to 30%, consistent with decreases in the [NO]/[NO2] ratio for O3 concentration response. Analysis of the response of O3 concentrations to the NOx reductions suggested that urban traffic, suburban background and suburban industrial sites operate under VOC-limited regimes, while urban background, urban industrial and rural background sites are NOx-limited. This was in agreement with the [VOC]/[NOx] ratios determined for the London Marylebone Road (LMR; urban traffic) site and the Chilbolton Observatory (CO; rural background) site, which produced values below and above 8, respectively. Conversely, [VOC]/[NOx] ratios for the London Eltham (LE; suburban background) site indicated NOx-sensitivity, which may suggest the [VOC]/[NOx] ratio for O3 concentration response may have had a slight NOx-sensitive bias. Furthermore, O3 concentration response with [NO]/[NO2] and [VOC]/[NOx] were also investigated to determine their relevance and accuracy in identifying O3-NOx-VOC relationships across UK sites. While the results obtained via utilisation of these metrics would suggest a shift in photochemical regime, it is likely that variation in O3 during this period was primarily driven by shifts in oxidant (OX; NO2 + O3) equilibrium as a result of decreasing NO2, with increased O3 transported from Europe likely having some influence. Full article
(This article belongs to the Special Issue Mechanisms of Urban Ozone Pollution)
Show Figures

Figure 1

18 pages, 2339 KiB  
Article
The Roles of Gut Microbiome and Plasma Metabolites in the Associations between ABO Blood Groups and Insulin Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES)
by Ruifang Li-Gao, Kirk Grubbs, Alain G. Bertoni, Kristi L. Hoffman, Joseph F. Petrosino, Gautam Ramesh, Martin Wu, Jerome I. Rotter, Yii-Der Ida Chen, Anne M. Evans, Richard J. Robinson, Laura Sommerville, Dennis Mook-Kanamori, Mark O. Goodarzi, Gregory A. Michelotti and Patricia A. Sheridan
Metabolites 2022, 12(9), 787; https://doi.org/10.3390/metabo12090787 - 25 Aug 2022
Cited by 1 | Viewed by 2626
Abstract
Non-O blood groups are associated with decreased insulin sensitivity and risk of type 2 diabetes. A recent study pinpointed the associations between ABO blood groups and gut microbiome, which may serve as potential mediators for the observed increased disease risks. We aimed to [...] Read more.
Non-O blood groups are associated with decreased insulin sensitivity and risk of type 2 diabetes. A recent study pinpointed the associations between ABO blood groups and gut microbiome, which may serve as potential mediators for the observed increased disease risks. We aimed to characterize associations between ABO haplotypes and insulin-related traits as well as potential mediating pathways. We assessed insulin homeostasis in African Americans (AAs; n = 109) and non-Hispanic whites (n = 210) from the Microbiome and Insulin Longitudinal Evaluation Study. The ABO haplotype was determined by six SNPs located in the ABO gene. Based on prior knowledge, we included 21 gut bacteria and 13 plasma metabolites for mediation analysis. In the white study cohort (60 ± 9 years, 42% male), compared to the O1 haplotype, A1 was associated with a higher Matsuda insulin sensitivity index, while a lower relative abundance of Bacteroides massiliensis and lactate levels. Lactate was a likely mediator of this association but not Bacteroides massiliensis. In the AAs group (57 ± 8 years, 33% male), we found no association between any haplotype and insulin-related traits. In conclusion, the A1 haplotype may promote healthy insulin sensitivity in non-Hispanic whites and lactate likely play a role in this process but not selected gut bacteria. Full article
Show Figures

Figure 1

9 pages, 637 KiB  
Article
Molecular Detection of Non-O157 Shiga Toxin-Producing Escherichia coli (STEC) Directly from Stool Using Multiplex qPCR Assays
by Michael Bording-Jorgensen, Brendon Parsons, Jonas Szelewicki, Colin Lloyd and Linda Chui
Microorganisms 2022, 10(2), 329; https://doi.org/10.3390/microorganisms10020329 - 31 Jan 2022
Cited by 4 | Viewed by 3082
Abstract
Non-O157 Shiga toxin-producing E. coli (STEC) can cause outbreaks that have great economic and health impact. Since the implementation of STEC screening in Alberta in 2018, it is also essential to have a molecular serotyping method with faster turnaround time for cluster identification [...] Read more.
Non-O157 Shiga toxin-producing E. coli (STEC) can cause outbreaks that have great economic and health impact. Since the implementation of STEC screening in Alberta in 2018, it is also essential to have a molecular serotyping method with faster turnaround time for cluster identification and surveillance purposes. This study sought to perform molecular serotyping of the top six non-O157 (O26, O45, O103, O111, O121 and O145) STEC serotypes directly from stools and enrichment broths compared to conventional methods on isolates. Multiplex, serotyping qPCR assays were used to determine sensitivity and specificity of the top six non-O157 STEC serotypes. Sensitivity and specificity were assessed for both singleplex and multiplex qPCR assays for comparison of the top six serotypes. Blinded stool specimens (n = 116) or broth samples (n = 482) submitted from frontline microbiology laboratories for STEC investigation were analyzed by qPCR. Both singleplex and multiplex assays were comparable, and we observed 100% specificity with a limit of detection of 100 colony-forming units per mL. Direct molecular serotyping from stool specimens mostly correlated (88%) with conventional serotyping of the cultured isolate. In cases of discordant serotypes, the top six non-O157 STEC mixed infections were identified and confirmed by culture and conventional serotyping. Detection of non-O157 STEC can be done directly from stool specimens using multiplex PCR assays with the ability to identify mixed infections, which would otherwise remain undetected by conventional serotyping of a single colony. This method can be easily implemented into a frontline diagnostic laboratory to enhance surveillance of non-O157 STEC, as more frontline microbiology laboratories move to culture independent assays. Full article
Show Figures

Figure 1

15 pages, 3868 KiB  
Article
AC016745.3 Regulates the Transcription of AR Target Genes by Antagonizing NONO
by Yali Lu, Xuechao Wan, Wenhua Huang, Lu Zhang, Jun Luo, Dujian Li, Yan Huang, Yao Li and Yaoting Xu
Cited by 2 | Viewed by 1825
Abstract
The androgen receptor (AR) and its related signaling pathways play an important role in the development of prostate cancer (PCa). Long non-coding RNAs (lncRNAs) are involved in the regulation of tumorigenesis and development, but their specific mechanism of action remains unclear. This study [...] Read more.
The androgen receptor (AR) and its related signaling pathways play an important role in the development of prostate cancer (PCa). Long non-coding RNAs (lncRNAs) are involved in the regulation of tumorigenesis and development, but their specific mechanism of action remains unclear. This study examines the function and mechanisms of action of lncRNA AC016745.3 in the development of PCa. It shows that dihydrotestosterone (DHT) results in the AR-dependent suppression of AC016745.3 expression in the LNCaP androgen-sensitive human prostate adenocarcinoma cell line. In addition, overexpression of AC016745.3 inhibits the proliferation and migration of PCa cells, and suppresses the expression of AR target genes. This research also demonstrates that the protein NONO interacts with AR and functions as an AR co-activator, promoting AR transcriptional activity. Furthermore, using RNA immunoprecipitation (RIP)-PCR experiments, the study demonstrates that both NONO and AR can bind AC016745.3. Moreover, cell phenotypic experiments reveal that NONO can promote cellular proliferation and migration, and that AC016745.3 can partially antagonize the pro-oncogenic functions of NONO in PCa cells. In summary, the results indicate that AC016745.3 can bind NONO, suppressing its ability to promote AR-dependent transcriptional activity. Furthermore, DHT-dependent suppression of AC016745.3 expression can enhance NONO’s promotion effect on AR. Full article
(This article belongs to the Special Issue Androgen Receptor and AR-Related Signaling in Health and Disease)
Show Figures

Figure 1

12 pages, 2407 KiB  
Review
Cell Death Signaling Pathway Induced by Cholix Toxin, a Cytotoxin and eEF2 ADP-Ribosyltransferase Produced by Vibrio cholerae
by Kohei Ogura, Kinnosuke Yahiro and Joel Moss
Cited by 15 | Viewed by 4433
Abstract
Pathogenic microorganisms produce various virulence factors, e.g., enzymes, cytotoxins, effectors, which trigger development of pathologies in infectious diseases. Cholera toxin (CT) produced by O1 and O139 serotypes of Vibrio cholerae (V. cholerae) is a major cytotoxin causing severe diarrhea. Cholix cytotoxin [...] Read more.
Pathogenic microorganisms produce various virulence factors, e.g., enzymes, cytotoxins, effectors, which trigger development of pathologies in infectious diseases. Cholera toxin (CT) produced by O1 and O139 serotypes of Vibrio cholerae (V. cholerae) is a major cytotoxin causing severe diarrhea. Cholix cytotoxin (Cholix) was identified as a novel eukaryotic elongation factor 2 (eEF2) adenosine-diphosphate (ADP)-ribosyltransferase produced mainly in non-O1/non-O139 V. cholerae. The function and role of Cholix in infectious disease caused by V. cholerae remain unknown. The crystal structure of Cholix is similar to Pseudomonas exotoxin A (PEA) which is composed of an N-terminal receptor-recognition domain and a C-terminal ADP-ribosyltransferase domain. The endocytosed Cholix catalyzes ADP-ribosylation of eEF2 in host cells and inhibits protein synthesis, resulting in cell death. In a mouse model, Cholix caused lethality with severe liver damage. In this review, we describe the mechanism underlying Cholix-induced cytotoxicity. Cholix-induced apoptosis was regulated by mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways, which dramatically enhanced tumor necrosis factor-α (TNF-α) production in human liver, as well as the amount of epithelial-like HepG2 cancer cells. In contrast, Cholix induced apoptosis in hepatocytes through a mitochondrial-dependent pathway, which was not stimulated by TNF-α. These findings suggest that sensitivity to Cholix depends on the target cell. A substantial amount of information on PEA is provided in order to compare/contrast this well-characterized mono-ADP-ribosyltransferase (mART) with Cholix. Full article
(This article belongs to the Special Issue Structure and Function of Bacterial ADP-Ribosylation Toxins)
Show Figures

Figure 1

9 pages, 1753 KiB  
Article
Fully Integrated Photoacoustic NO2 Sensor for Sub-ppb Level Measurement
by Yang Dong, Mingsi Gu, Gongdong Zhu, Tu Tan, Kun Liu and Xiaoming Gao
Sensors 2020, 20(5), 1270; https://doi.org/10.3390/s20051270 - 26 Feb 2020
Cited by 15 | Viewed by 3965
Abstract
A fully integrated photoacoustic nitrogen dioxide (NO2) sensor is developed and demonstrated. In this sensor, an embedded photoacoustic cell was manufactured by using an up-to-date 3D printing technique. A blue laser diode was used as a light source for excitation of [...] Read more.
A fully integrated photoacoustic nitrogen dioxide (NO2) sensor is developed and demonstrated. In this sensor, an embedded photoacoustic cell was manufactured by using an up-to-date 3D printing technique. A blue laser diode was used as a light source for excitation of photoacoustic wave in the photoacoustic cell. The photoacoustic wave is detected by a sensitive microelectromechanical system (MEMS) microphone. Homemade circuits are integrated into the sensor for laser diode driving and signal processing. The sensor was calibrated by using a chemiluminescence NO–NO2–NOX gas analyzer. And the performance of this sensor was evaluated. The linear relationship between photoacoustic signals and NO2 concentrations was verified in a range of below 202 ppb. The limit of detection was determined to 0.86 ppb with an integration time of 1 s. The corresponding normalized noise equivalent absorption was 2.0 × 10−8 cm−1∙W∙Hz−1/2. The stability and the optimal integration time were evaluated with an Allan deviation analysis, from which a detection limit of 0.25 ppb at the optimal integration time of 240 s was obtained. The sensor was used to measure outdoor air and the results agree with that obtained from the NO–NO2–NOX gas analyzer. The low-cost and portable photoacoustic NO2 sensor has a potential application for atmospheric NO2 monitoring. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Graphical abstract

11 pages, 2639 KiB  
Article
Characterization of Non-O157 STEC Infecting Bacteriophages Isolated from Cattle Faeces in North-West South Africa
by Emmanuel W. Bumunang, Tim A. McAllister, Kim Stanford, Hany Anany, Yan D. Niu and Collins N. Ateba
Microorganisms 2019, 7(12), 615; https://doi.org/10.3390/microorganisms7120615 - 26 Nov 2019
Cited by 14 | Viewed by 3547
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) E. coli are emerging pathotypes that are frequently associated with diseases in humans around the world. The consequences of these serogroups for public health is a concern given the lack of effective prevention and treatment measures. In [...] Read more.
Non-O157 Shiga toxin-producing Escherichia coli (STEC) E. coli are emerging pathotypes that are frequently associated with diseases in humans around the world. The consequences of these serogroups for public health is a concern given the lack of effective prevention and treatment measures. In this study, ten bacteriophages (phages; SA20RB, SA79RD, SA126VB, SA30RD, SA32RD, SA35RD, SA21RB, SA80RD, SA12KD and SA91KD) isolated from cattle faeces collected in the North-West of South Africa were characterized. Activity of these phages against non-O157 STEC isolates served as hosts for these phages. All of the phages except SA80RD displayed lytic against non-O157 E. coli isolates. Of 22 non-O157 E. coli isolates, 14 were sensitive to 9 of the 10 phages tested. Phage SA35RD was able to lyse 13 isolates representing a diverse group of non-O157 E. coli serotypes including a novel O-antigen Shiga toxigenic (wzx-Onovel5:H19) strain. However, non-O157 E. coli serotypes O76:H34, O99:H9, O129:H23 and O136:H30 were insensitive to all phages. Based on transmission electron microscopy, the non-O157 STEC phages were placed into Myoviridae (n = 5) and Siphoviridae (n = 5). Genome of the phage ranged from 44 to 184.3 kb. All but three phages (SA91KD, SA80RD and SA126VB) were insensitive to EcoRI-HF and HindIII nucleases. This is the first study illustrating that cattle from North-West South Africa harbour phages with lytic potentials that could potentially be exploited for biocontrol against a diverse group of non-O157 STEC isolated from the same region. Full article
Show Figures

Graphical abstract

Back to TopTop