Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = range cell migration correction (RCMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6412 KiB  
Article
Detection of Flight Target via Multistatic Radar Based on Geosynchronous Orbit Satellite Irradiation
by Jia Dong, Peng Liu, Bingnan Wang and Yaqiu Jin
Remote Sens. 2024, 16(23), 4582; https://doi.org/10.3390/rs16234582 - 6 Dec 2024
Viewed by 589
Abstract
As a special microwave detection system, multistatic radar has obvious advantages in covert operation, anti-jamming, and anti-stealth due to its configuration of spatial diversity. As a high-orbit irradiation source, a geosynchronous orbit satellite (GEO) has the advantages of a low revisit period, large [...] Read more.
As a special microwave detection system, multistatic radar has obvious advantages in covert operation, anti-jamming, and anti-stealth due to its configuration of spatial diversity. As a high-orbit irradiation source, a geosynchronous orbit satellite (GEO) has the advantages of a low revisit period, large beam coverage area, and stable power of ground beam compared with traditional passive radar irradiation sources. This paper focuses on the key technologies of flight target detection in multistatic radar based on geosynchronous orbit satellite irradiation with one transmitter and multiple receivers. We carry out the following work: Firstly, we aim to address the problems of low signal-to-noise ratio (SNR) and range cell migration of high-speed cruise targets. The Radon–Fourier transform constant false alarm rate detector-range cell migration correction (RFT-CFAR-RCMC) is adopted to realize the coherent integration of echoes with range cell migration correction (RCM) and Doppler phase compensation. It significantly improves the SNR. Furthermore, we utilize the staggered PRF to solve the ambiguity and obtain multi-view data. Secondly, based on the aforementioned target multi-view detection data, the linear least square (LLS) multistatic positioning method combining bistatic range positioning (BR) and time difference of arrival positioning (TDOA) is used, which constructs the BR and TDOA measurement equations and linearizes by mathematical transformation. The measurement equations are solved by the LLS method, and the target positioning and velocity inversion are realized by the fusion of multistatic data. Finally, using target positioning data as observation values of radar, the Kalman filter (KF) is used to achieve flight trajectory tracking. Numerical simulation verifies the effectiveness of the proposed process. Full article
Show Figures

Figure 1

33 pages, 14046 KiB  
Article
High-Resolution Collaborative Forward-Looking Imaging Using Distributed MIMO Arrays
by Shipei Shen, Xiaoli Niu, Jundong Guo, Zhaohui Zhang and Song Han
Remote Sens. 2024, 16(21), 3991; https://doi.org/10.3390/rs16213991 - 27 Oct 2024
Viewed by 1370
Abstract
Airborne radar forward-looking imaging holds significant promise for applications such as autonomous navigation, battlefield reconnaissance, and terrain mapping. However, traditional methods are hindered by complex system design, azimuth ambiguity, and low resolution. This paper introduces a distributed array collaborative, forward-looking imaging approach, where [...] Read more.
Airborne radar forward-looking imaging holds significant promise for applications such as autonomous navigation, battlefield reconnaissance, and terrain mapping. However, traditional methods are hindered by complex system design, azimuth ambiguity, and low resolution. This paper introduces a distributed array collaborative, forward-looking imaging approach, where multiple aircraft with linear arrays fly in parallel to achieve coherent imaging. We analyze signal model characteristics and highlight the limitations of conventional algorithms. To address these issues, we propose a high-resolution imaging algorithm that combines an enhanced missing-data iterative adaptive approach with aperture interpolation technique (MIAA-AIT) for effective signal recovery in distributed arrays. Additionally, a novel reference range cell migration correction (reference RCMC) is employed for precise range–azimuth decoupling. The forward-looking algorithm effectively transforms distributed arrays into a virtual long-aperture array, enabling high-resolution, high signal-to-noise ratio imaging with a single snapshot. Simulations and real data tests demonstrate that our method not only improves resolution but also offers flexible array configurations and robust performance in practical applications. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

23 pages, 3642 KiB  
Article
A Novel Chirp-Z Transform Algorithm for Multi-Receiver Synthetic Aperture Sonar Based on Range Frequency Division
by Mingqiang Ning, Heping Zhong, Jinsong Tang, Haoran Wu, Jiafeng Zhang, Peng Zhang and Mengbo Ma
Remote Sens. 2024, 16(17), 3265; https://doi.org/10.3390/rs16173265 - 3 Sep 2024
Viewed by 949
Abstract
When a synthetic aperture sonar (SAS) system operates under low-frequency broadband conditions, the azimuth range coupling of the point target reference spectrum (PTRS) is severe, and the high-resolution imaging range is limited. To solve the above issue, we first convert multi-receivers’ signal into [...] Read more.
When a synthetic aperture sonar (SAS) system operates under low-frequency broadband conditions, the azimuth range coupling of the point target reference spectrum (PTRS) is severe, and the high-resolution imaging range is limited. To solve the above issue, we first convert multi-receivers’ signal into the equivalent monostatic signal and then divide the equivalent monostatic signal into range subblocks and the range frequency subbands within each range subblock in order. The azimuth range coupling terms are converted into linear terms based on piece-wise linear approximation (PLA), and the phase error of the PTRS within each subband is less than π/4. Then, we use the chirp-z transform (CZT) to correct range cell migration (RCM) to obtain low-resolution results for different subbands. After RCM correction, the subbands’ signals are coherently summed in the range frequency domain to obtain a high-resolution image. Finally, different subblocks are concatenated in the range time domain to obtain the final result of the whole swath. The processing of different subblocks and different subbands can be implemented in parallel. Computer simulation experiments and field data have verified the superiority of the proposed method over existing methods. Full article
(This article belongs to the Special Issue Ocean Remote Sensing Based on Radar, Sonar and Optical Techniques)
Show Figures

Figure 1

24 pages, 15283 KiB  
Article
Simulation of Synthetic Aperture Radar Images for Ocean Ship Wakes
by Shuya Wu, Yunhua Wang, Qian Li, Yanmin Zhang, Yining Bai and Honglei Zheng
Remote Sens. 2023, 15(23), 5521; https://doi.org/10.3390/rs15235521 - 27 Nov 2023
Cited by 1 | Viewed by 1769
Abstract
To assist in the detection of ship targets in complex sea conditions, a numerical simulation method is proposed to obtain synthetic aperture radar (SAR) images of time-varying ocean ship wakes under various radar, ship, and sea surface parameters. This method addresses the limitations [...] Read more.
To assist in the detection of ship targets in complex sea conditions, a numerical simulation method is proposed to obtain synthetic aperture radar (SAR) images of time-varying ocean ship wakes under various radar, ship, and sea surface parameters. This method addresses the limitations of recent simulations, which failed to simultaneously incorporate different types of time-varying ship wakes, simulate based on the echo data, and discuss the velocity bunching (VB) effect on the image results. To address these issues, firstly, the time-varying wave height and velocity fields of the sea surface, Kelvin wakes, and turbulence wakes are simulated using the linear filtering method, classic fluid dynamics models, and attenuation function method, respectively. Secondly, raw data of the ocean ship wakes are obtained by calculating the backscattering fields using geophysical model functions (GMFs), as well as by determining the changing slant range varying with the elevation and velocity fields. Thirdly, by applying the Range-Doppler algorithm (RDA) for pulse compression and range cell migration correction (RCMC) on the echo data, SAR images with and without the VB effect are generated. Our simulation also accounts for the influence of speckle noise. The SAR imaging results indicate that whether the VB effect is considered or not, the radar electromagnetic wavebands, polarization modes, wind speeds, and the relative wind directions have distinct impacts on the SAR image intensity, and the texture and morphology of ship wakes vary significantly with the wind speeds, ship speeds, and the relative radar looking directions. When considering the VB effect, the azimuthal offset and blur in the images caused by the more intense wave motion also increase with the wave speeds. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

21 pages, 7485 KiB  
Article
A Signal Model Based on the Space–Time Coding Array and a Novel Imaging Method Based on the Hybrid Correlation Algorithm for F-SCAN SAR
by Yuqing Liu, Pengbo Wang, Zhirong Men, Yanan Guo, Tao He, Rui Bao and Lei Cui
Remote Sens. 2023, 15(17), 4276; https://doi.org/10.3390/rs15174276 - 31 Aug 2023
Cited by 1 | Viewed by 1367
Abstract
The F-SCAN principle is a better alternative to the scan-on-receive technique (SCORE) based on digital beamforming (DBF), which can avoid low gain caused by a conventional broad beam in the case of a wide swath. In F-SCAN SAR, a pencil beam scans the [...] Read more.
The F-SCAN principle is a better alternative to the scan-on-receive technique (SCORE) based on digital beamforming (DBF), which can avoid low gain caused by a conventional broad beam in the case of a wide swath. In F-SCAN SAR, a pencil beam scans the entire target area from far to near, providing high energy independent of the position and ensuring a low range ambiguity-to-signal ratio (RASR). Moreover, echo compression can be achieved via appropriate system parameter configuration, significantly shortening the receive window and reducing the amount of data. A wider range swath can, therefore, be achieved. However, for this novel F-SCAN SAR working mode, signal modeling and imaging processing are key issues that needed to be addressed. In this paper, the far-field synthetic antenna pattern of the space–time coding array (STCA) is first derived and analyzed, based on which the signal modeling of the F-SCAN SAR is carried out. Then, according to the signal model and echo characteristics, a novel imaging processing method based on the hybrid correlation algorithm is presented for the F-SCAN SAR. First, the dechirp operation is performed to compensate for the quadratic phase of the range time. The range compressed result is obtained after a range Fourier transform, where different range targets are successfully separated and range aliasing is avoided. Then, the modified azimuth reference function is correlated with the echo at each range cell to complete range cell migration correction (RCMC) and azimuth compensation. The received signal parameters and the Doppler parameters of each range cell are derived to update the azimuth reference function. Finally, accurate focused results are obtained in the range-frequency, azimuth-time domain. The simulation results indicate that the signal model based on the STCA can satisfy the requirements of the F-SCAN principle, and the proposed imaging algorithm can complete the precise focusing processing of the F-SCAN SAR echo. Full article
Show Figures

Graphical abstract

19 pages, 20906 KiB  
Article
A Modified Range Doppler Algorithm for High-Squint SAR Data Imaging
by Yanan Guo, Pengbo Wang, Zhirong Men, Jie Chen, Xinkai Zhou, Tao He and Lei Cui
Remote Sens. 2023, 15(17), 4200; https://doi.org/10.3390/rs15174200 - 26 Aug 2023
Cited by 4 | Viewed by 2444
Abstract
The high-squint airborne Synthetic Aperture Radar (SAR) has the ability to detect the target area flexibly, and the detection swath is significantly increased compared with the side-looking SAR system. Therefore, it is of great significance to carry out research on high-precision imaging methods [...] Read more.
The high-squint airborne Synthetic Aperture Radar (SAR) has the ability to detect the target area flexibly, and the detection swath is significantly increased compared with the side-looking SAR system. Therefore, it is of great significance to carry out research on high-precision imaging methods for high-squint airborne SAR. However, the high-squint SAR echoes have large Range Cell Migration (RCM), resulting in severe range–azimuth coupling and strong spatial variation. In this paper, a Modified Range Doppler Algorithm (MRDA) is proposed to cope with these effects introduced by the significant RCM in high-squint airborne SAR imaging. The bulk compensation preprocessing is first adopted to remove the considerable RCM and severe cross-coupling in a two-dimensional frequency domain. Then, Non-Linear Chirp Scaling (NLCS) in the range direction is utilized to equalize the range-variant chirp rate caused by the residual RCM and coupling and, therefore, the consistent range phase compensation can be fulfilled in range frequency domain. The modified correlation processing is executed to compensate the residual Doppler phase modulation, the residual RCM and the range-variant cubic phase modulation, which guarantees the characteristics of high efficiency and high precision. The simulations have demonstrated that the MRDA can focus the SAR echoes with large squint angles more effectively than the algorithms based on the Linear Range Walk Correction (LRWC) method. Full article
(This article belongs to the Special Issue Advanced Radar Signal Processing and Applications)
Show Figures

Figure 1

24 pages, 4258 KiB  
Article
An Improved UAV Bi-SAR Imaging Algorithm with Two-Dimensional Spatial Variant Range Cell Migration Correction and Azimuth Non-Linear Phase Equalization
by Junjie Yan, Linghao Li, Han Li, Meng Ke, Xinnong Ma and Xinshuai Sun
Remote Sens. 2023, 15(15), 3734; https://doi.org/10.3390/rs15153734 - 27 Jul 2023
Cited by 1 | Viewed by 1382
Abstract
The transmitter and receiver of unmanned aerial vehicle (UAV) bistatic synthetic aperture radar (Bi-SAR) are respectively carried on different UAV platforms, which has the advantages of flexible movement and strong concealment, and has broad application prospects in remote sensing fields. However, the range [...] Read more.
The transmitter and receiver of unmanned aerial vehicle (UAV) bistatic synthetic aperture radar (Bi-SAR) are respectively carried on different UAV platforms, which has the advantages of flexible movement and strong concealment, and has broad application prospects in remote sensing fields. However, the range cell migration (RCM) and azimuth non-linear phase (ANP) of UAV Bi-SAR are seriously spatially variant along the range and azimuth directions, while the UAV Bi-SAR has a short operating range, complex trajectory and wide azimuth beam. Aiming at the problem that the RCM and ANP of UAV Bi-SAR in spotlight mode are difficult to correct and equalize due to the severe two-dimensional (2D) spatial variation, an RCM correction (RCMC) and ANP equalization (ANPE) method based on Doppler domain blocking is proposed. First, the azimuth spatial variance of RCM is eliminated by Doppler blocking, and the range spatial variant RCMC is realized by RNCS. Second, by combining Doppler blocking with azimuth nonlinear chirp scaling (ANCS), this method can adapt to ANPE with larger width and more severe spatial variation. At last, the criteria of Doppler blocking are given in detail, and the effectiveness of the proposed method is verified by UAV Bi-SAR real data and computer simulation. Full article
(This article belongs to the Special Issue Advances in SAR: Sensors, Methodologies, and Applications II)
Show Figures

Figure 1

20 pages, 7002 KiB  
Article
High-Resolution SAR Imaging with Azimuth Missing Data Based on Sub-Echo Segmentation and Reconstruction
by Nan Jiang, Jiahua Zhu, Dong Feng, Zhuang Xie, Jian Wang and Xiaotao Huang
Remote Sens. 2023, 15(9), 2428; https://doi.org/10.3390/rs15092428 - 5 May 2023
Cited by 4 | Viewed by 1647
Abstract
Due to the substantial electromagnetic interference, radar interruptions, and other factors, the SAR system may fail to receive valid data in some azimuth areas. This phenomenon is known as Azimuth Missing Data (AMD). If classical SAR imaging algorithms are performed directly using AMD [...] Read more.
Due to the substantial electromagnetic interference, radar interruptions, and other factors, the SAR system may fail to receive valid data in some azimuth areas. This phenomenon is known as Azimuth Missing Data (AMD). If classical SAR imaging algorithms are performed directly using AMD echo, the imaging results may be defocused or even display false targets, which seriously affects the accuracy of the image. Thus, we proposed a Sub-echo Segmentation and Reconstruction Azimuth Missing Data SAR Imaging Algorithm (SSR-AMDIA) to solve the problem of incomplete echo SAR imaging in this article. Instead of using the motion compensation step of the Polar Format algorithm (PFA) to recover the full echo from the AMD echo, the proposed SSR-AMDIA eliminates the effect of the planar approximation in PFA and expands the maximum depth of focus (DOF). The raw AMD echo was first subjected to range compression and Range Cell Migration Correction (RCMC), after which the AMD-RCMC echo was divided along the range direction. Then, we constructed a series of phase compensation functions based on the sub-segment AMD-RCMC echoes to guarantee the perfect recovery of the full RCMC echoes corresponding to the sub-scenes. Finally, we combined them to obtain the complete RCMC echo, and an excellent focused imaging result was then obtained via azimuth compression. Simulation and experimental data verified the effectiveness of the proposed algorithm. Furthermore, we derived the mathematical expressions for the two-dimensional maximum DOFs of the proposed algorithm. In contrast to the State-Of-the-Art (SOA) AMDIA, the SSR-AMDIA can obtain a superior imaging performance in a larger imaging scope under the conditions of most AMD cases. Full article
(This article belongs to the Special Issue Advanced Array Signal Processing for Target Imaging and Detection)
Show Figures

Figure 1

17 pages, 10511 KiB  
Article
FPGA Implementation of the Chirp-Scaling Algorithm for Real-Time Synthetic Aperture Radar Imaging
by Jaehyeon Lee, Dongmin Jeong, Seongwook Lee, Myeongjin Lee, Wookyung Lee and Yunho Jung
Sensors 2023, 23(2), 959; https://doi.org/10.3390/s23020959 - 14 Jan 2023
Cited by 8 | Viewed by 3381
Abstract
Synthetic aperture radar (SAR), which can generate images of regions or objects, is an important research area of radar. The chirp scaling algorithm (CSA) is a representative SAR imaging algorithm. The CSA has a simple structure comprising phase compensation and fast Fourier transform [...] Read more.
Synthetic aperture radar (SAR), which can generate images of regions or objects, is an important research area of radar. The chirp scaling algorithm (CSA) is a representative SAR imaging algorithm. The CSA has a simple structure comprising phase compensation and fast Fourier transform (FFT) operations by replacing interpolation for range cell migration correction (RCMC) with phase compensation. However, real-time processing still requires many computations and a long execution time. Therefore, it is necessary to develop a hardware accelerator to improve the speed of algorithm processing. In addition, the demand for a small SAR system that can be mounted on a small aircraft or drone and that satisfies the constraints of area and power consumption is increasing. In this study, we proposed a CSA-based SAR processor that supports FFT and phase compensation operations and presents field-programmable gate array (FPGA)-based implementation results. We also proposed a modified CSA flow that simplifies the traditional CSA flow by changing the order in which the transpose operation occurs. Therefore, the proposed CSA-based SAR processor was designed to be suitable for modified CSA flow. We designed the multiplier for FFT to be shared for phase compensation, thereby achieving area efficiency and simplifying the data flow. The proposed CSA-based SAR processor was implemented on a Xilinx UltraScale+ MPSoC FPGA device and designed using Verilog-HDL. After comparing the execution times of the proposed SAR processor and the ARM cortex-A53 microprocessor, we observed a 136.2-fold increase in speed for the 4096 × 4096-pixel image. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

17 pages, 6898 KiB  
Article
Correction of Range-Variant Motion Error and Residual RCM in Sparse Regularization SAR Imaging
by Jingyi Zhang and Jiacheng Ni
Sensors 2022, 22(20), 7927; https://doi.org/10.3390/s22207927 - 18 Oct 2022
Viewed by 1395
Abstract
Lq (0 < q ≤ 1) regularization has been confirmed effective when applied to sparse SAR imaging. However, the inaccuracies caused by motion errors in the observation model will lead to various degradations and defocus in the reconstructed image. For high-resolution and [...] Read more.
Lq (0 < q ≤ 1) regularization has been confirmed effective when applied to sparse SAR imaging. However, the inaccuracies caused by motion errors in the observation model will lead to various degradations and defocus in the reconstructed image. For high-resolution and light-small SAR systems, the range-variant motion errors will decrease the accuracy of range cell migration correction (RCMC), and residual range cell migration (RCM) will exceed multiple range resolution cells and degrade the image quality substantially. Aiming at this problem, in this paper, a novel azimuth-range decoupled sparse SAR imaging method with coarse-to-fine range-variant motion errors and residual RCM correction method is proposed. First, a one-step motion compensation (MOCO) operator is proposed using the inertial navigation systems (INS)/global positioning systems (GPS) information, which can significantly reduce the residual RCM and improve the reconstruction accuracy. Second, a fine high-order phase-error correction method is performed to correct the range and cross-range-varying phase errors using a joint imaging and phase-error estimation scheme, which will further improve the image focusing quality. Experimental results indicate the effectiveness of the proposed method. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

12 pages, 20988 KiB  
Article
FPGA Implementation of the Range-Doppler Algorithm for Real-Time Synthetic Aperture Radar Imaging
by Yeongung Choi, Dongmin Jeong, Myeongjin Lee, Wookyung Lee and Yunho Jung
Electronics 2021, 10(17), 2133; https://doi.org/10.3390/electronics10172133 - 2 Sep 2021
Cited by 9 | Viewed by 4654
Abstract
In this paper, we propose a range-Doppler algorithm (RDA)-based synthetic aperture radar (SAR) processor for real-time SAR imaging and present FPGA-based implementation results. The processing steps for the RDA include range compression, range cell migration correction (RCMC), and azimuth compression. A matched filtering [...] Read more.
In this paper, we propose a range-Doppler algorithm (RDA)-based synthetic aperture radar (SAR) processor for real-time SAR imaging and present FPGA-based implementation results. The processing steps for the RDA include range compression, range cell migration correction (RCMC), and azimuth compression. A matched filtering unit (MFU) and an RCMC processing unit (RPU) are required for real-time processing. Therefore, the proposed RDA-based SAR processor contains an MFU that uses the mixed-radix multi-path delay commutator (MRMDC) FFT and an RPU. The MFU reduces the memory requirements by applying a decimation-in-frequency (DIF) FFT and decimation-in-time (DIT) IFFT. The RPU provides a variable tap size and variable interpolation kernel. In addition, the MFU and RPU are designed to enable parallel processing of four 32-bit which are transferred via a 128-bit AXI bus. The proposed RDA-based SAR processor was designed using Verilog-HDL and implemented in a Xilinx UltraScale+ MPSoC FPGA device. After comparing the execution time taken by the proposed SAR processor with that taken by an ARM cortex-A53 microprocessor, we observed a 85-fold speedup for a 2048 × 2048 pixel image. A performance evaluation based on related studies indicated that the proposed processor achieved an execution time that was approximately 6.5 times less than those of previous FPGA implementations of RDA processors. Full article
(This article belongs to the Special Issue System-on-Chip (SoC) Design and Its Applications)
Show Figures

Figure 1

17 pages, 5010 KiB  
Article
Spatial-Variant SAR Range Cell Migration Correction Using Subaperture Strategy
by Liping Hu, Guanyong Wang and Lin Hou
Sensors 2021, 21(7), 2444; https://doi.org/10.3390/s21072444 - 1 Apr 2021
Cited by 2 | Viewed by 2728
Abstract
The coupling between range and azimuth dimensions is the main obstacle for highly squinted synthetic aperture radar (SAR) data focusing. Range walk correction (RWC) processing is effective to remove the linear coupling term, but the residual high order range cell migration (RCM) parts [...] Read more.
The coupling between range and azimuth dimensions is the main obstacle for highly squinted synthetic aperture radar (SAR) data focusing. Range walk correction (RWC) processing is effective to remove the linear coupling term, but the residual high order range cell migration (RCM) parts are spatial-variant in both range and azimuth dimensions. In this paper, we propose a precise spatial-variant range cell migration correction (RCMC) method with subaperture processing. The method contains two stages. Firstly, the main component of range-variant RCM is corrected in the coarse RCMC stage. Secondly, data are derived into azimuth subapertures (SAs), an SA-image-domain RCMC is developed by interp correction, where the SA image is obtained using a modified spectrum analysis (SPECAN) algorithm by establishing the relationship between Doppler frequency and residual spatial-variant RCM. In the proposed algorithm, precise compensation of space-variant RCM is implemented by SA processing, which is designed for a better practicality in real-time processing system. Simulated and real measured data experiments are designed to validate the effectiveness of the proposed approach for highly squinted SAR imaging. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

24 pages, 7580 KiB  
Article
Azimuth Multichannel Reconstruction for Moving Targets in Geosynchronous Spaceborne–Airborne Bistatic SAR
by Wei Xu, Zhengbin Wei, Pingping Huang, Weixian Tan, Bo Liu, Zhiqi Gao and Yifan Dong
Remote Sens. 2020, 12(11), 1703; https://doi.org/10.3390/rs12111703 - 26 May 2020
Cited by 10 | Viewed by 3363
Abstract
In a multichannel geosynchronous spaceborne–airborne bistatic synthetic aperture radar (GEO-SA-BiSAR) system, the airborne receiver can obtain high-resolution microwave images with good signal-to-noise ratios (SNRs) by passively receiving echoes from the desired area. Since the Doppler modulation and range history of a moving target [...] Read more.
In a multichannel geosynchronous spaceborne–airborne bistatic synthetic aperture radar (GEO-SA-BiSAR) system, the airborne receiver can obtain high-resolution microwave images with good signal-to-noise ratios (SNRs) by passively receiving echoes from the desired area. Since the Doppler modulation and range history of a moving target are obviously different from a stationary target, a signal geometry model for moving targets in multichannel GEO-SA-BiSAR is established in this paper. According to simulation results, the along track velocity introduces target defocusing in azimuth, and the slant range velocity mainly causes multiple false targets. To resolve these problems, a modified multichannel reconstruction method in azimuth channel GEO-SA-BiSAR is proposed according to the azimuth multichannel impulse response of the imaged moving target. Before azimuth multichannel raw data combination, both spatial-variant range cell migration correction (RCMC) and azimuth nonlinear chirp scaling (ANLCS) should be performed to reduce the influence of the range offset and lower the Doppler bandwidth of the whole raw data, respectively. Afterward, a novel azimuth multichannel reconstruction algorithm is carried out via the modified reconstruction matrix based on the estimated target velocity. The target slant range velocity estimation is implemented by introducing the signal intensity ratio (SIR). Compared with the conventional method for the stationary target to handle the raw data of the moving target, the false targets could be obviously suppressed by using the proposed approach. Imaging results on both simulated point and distributed scene targets validate the proposed multichannel reconstruction approach. Full article
Show Figures

Graphical abstract

14 pages, 2080 KiB  
Article
Focusing Arc-Array Bistatic Synthetic Aperture Radar Data Based on Keystone Transform
by Pingping Huang, Kai Li, Wei Xu, Weixian Tan, Zhiqi Gao and Yachao Li
Electronics 2019, 8(12), 1389; https://doi.org/10.3390/electronics8121389 - 21 Nov 2019
Cited by 10 | Viewed by 3063
Abstract
Arc-array synthetic aperture radar (AA-SAR) has become a novel imaging scheme for full azimuth observation. However, the exiting arc-array monostatic SAR system is placed on a single platform and is easy to detect. Arc-array bistatic SAR (AA-BiSAR) with a stationary transmitter is proposed [...] Read more.
Arc-array synthetic aperture radar (AA-SAR) has become a novel imaging scheme for full azimuth observation. However, the exiting arc-array monostatic SAR system is placed on a single platform and is easy to detect. Arc-array bistatic SAR (AA-BiSAR) with a stationary transmitter is proposed in this paper, which can obtain high data acquisition efficiency and reduce vulnerability of arc-array monostatic SAR. Furthermore, since the azimuth resolution with full azimuth observation is not related to the location of the stationary transmitter, the transmitter can be placed far away from the receiver. Compared with imaging algorithms for other modes, the key points of AA-BiSAR imaging algorithms are a square root in the bistatic slant range equation and an arc synthetic array in azimuth. According to the imaging geometry of AA-BiSAR, a novel imaging approach for AA-BiSAR based on keystone transform (KT) is proposed, and the KT implements range-cell migration correction (RCMC) in conditions of trigonometric function under square root in the range history and arc synthetic array in azimuth via reformatting the AA-BiSAR raw data. Besides presenting the proposed imaging approach, a complete resolution analysis of AA-BiSAR is given. Results of numerical simulation experiments on point targets validate the proposed imaging approach. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 4230 KiB  
Article
Extended Subaperture Imaging Method for Airborne Low Frequency Ultrawideband SAR Data
by Daoxiang An, Wu Wang and Leping Chen
Sensors 2019, 19(20), 4516; https://doi.org/10.3390/s19204516 - 17 Oct 2019
Cited by 1 | Viewed by 2136
Abstract
The subaperture processing is one of the essential strategies for low frequency ultrawideband synthetic aperture radar (LF UWB SAR) imaging, especially for the real-time LF UWB SAR imaging because it can improve the parallelization of the imaging algorithm. However, due to the longer [...] Read more.
The subaperture processing is one of the essential strategies for low frequency ultrawideband synthetic aperture radar (LF UWB SAR) imaging, especially for the real-time LF UWB SAR imaging because it can improve the parallelization of the imaging algorithm. However, due to the longer synthetic aperture of LF UWB SAR, the traditional subaperture imaging encounters an azimuth ambiguities problem, which severely degrades the focused quality of the imaging results. In this paper, the reason for the presence of azimuth ambiguities in the LF UWB SAR subaperture imaging and its influence on image quality is first analyzed in theory. Then, an extended subaperture imaging method based on the extension of subaperture length before Range Cell Migration Correction (RCMC) was proposed. By lengthening the subaperture length, the azimuth ambiguities are effectively eliminated. Finally, the extended part of subaperture is wiped off before the azimuth compression (AC), and the LF UWB SAR image of high focused quality is obtained. The correctness of the theory analysis and the effectiveness of the proposed method have been validated through simulated and real LF UWB SAR data. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop