Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,073)

Search Parameters:
Keywords = polyimide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1438 KiB  
Article
Fabrication and Electrical Characterization of Low-Temperature Polysilicon Films for Sensor Applications
by Filipa C. Mota, Inês S. Garcia, Aritz Retolaza, Dimitri E. Santos, Patrícia C. Sousa, Diogo E. Aguiam, Rosana A. Dias, Carlos Calaza, Alexandre F. Silva and Filipe S. Alves
Micromachines 2025, 16(1), 57; https://doi.org/10.3390/mi16010057 - 31 Dec 2024
Viewed by 213
Abstract
The development of low-temperature piezoresistive materials provides compatibility with standard silicon-based MEMS fabrication processes. Additionally, it enables the use of such material in flexible substrates, thereby expanding the potential for various device applications. This work demonstrates, for the first time, the fabrication of [...] Read more.
The development of low-temperature piezoresistive materials provides compatibility with standard silicon-based MEMS fabrication processes. Additionally, it enables the use of such material in flexible substrates, thereby expanding the potential for various device applications. This work demonstrates, for the first time, the fabrication of a 200 nm polycrystalline silicon thin film through a metal-induced crystallization process mediated by an AlSiCu alloy at temperatures as low as 450 °C on top of silicon and polyimide (PI) substrates. The resulting polycrystalline film structure exhibits crystallites with a size of approximately 58 nm, forming polysilicon (poly-Si) grains with diameters between 1–3 µm for Si substrates and 3–7 µm for flexible PI substrates. The mechanical and electrical properties of the poly-Si were experimentally conducted using microfabricated test structures containing piezoresistors formed by poly-Si with different dimensions. The poly-Si material reveals a longitudinal gauge factor (GF) of 12.31 and a transversal GF of −4.90, evaluated using a four-point bending setup. Additionally, the material has a linear temperature coefficient of resistance (TCR) of −2471 ppm/°C. These results illustrate the potential of using this low-temperature film for pressure, force, or temperature sensors. The developed film also demonstrated sensitivity to light, indicating that the developed material can also be explored in photo-sensitive applications. Full article
13 pages, 2744 KiB  
Article
Growth of MoS2 Nanosheets on Brush-Shaped PI–ZnO Hybrid Nanofibers and Study of the Photocatalytic Performance
by Zhenjun Chang, Zhengzheng Liao, Jie Han, Qiang Liu and Xiaoling Sun
Nanomaterials 2025, 15(1), 44; https://doi.org/10.3390/nano15010044 - 30 Dec 2024
Viewed by 259
Abstract
The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide–molybdenum [...] Read more.
The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide–molybdenum disulfide (ZnO–MoS2) grown on polyimide (PI) nanofibers by combining electrospinning, a high-pressure hydrothermal process, and in situ growth. Unlike simple composite nanoparticles, the structure is shown in PI–ZnO to be like the skeleton of a tree for the growth of MoS2 “leaves” as macro-materials with controlled microstructures. The surface morphology, structure, composition, and photocatalytic properties of these structures were characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV–vis spectroscopy. The ultra high-volume fraction of MoS2 can be grown on the brush-shaped PI–ZnO. Decorating ZnO with nanosheets of MoS2 (a transition metal dichalcogenide with a relatively narrow band gap) is a promising way to increase the photocatalytic activity of ZnO. The hybrid nanofibers exhibited high photocatalytic properties, which decomposed about 92% of the methylene blue in 90 min under visible light irradiation. The combination of MoS2 and ZnO with more abundant surface-active sites significantly increases the spectral absorption range, promotes the separation and migration of carriers, and improves the photocatalytic characteristics. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

21 pages, 17021 KiB  
Article
Impact of Particular Stages of the Manufacturing Process on the Reliability of Flexible Printed Circuits
by Andrzej Kiernich, Jerzy Kalenik, Wojciech Stęplewski, Marek Kościelski and Aneta Chołaj
Sensors 2025, 25(1), 140; https://doi.org/10.3390/s25010140 - 29 Dec 2024
Viewed by 239
Abstract
The purpose of the experiment was to indicate which element of the production process of flexible printed circuit boards is optimal in terms of the reliability of final products. According to the Taguchi method, in the experiment, five factors with two levels each [...] Read more.
The purpose of the experiment was to indicate which element of the production process of flexible printed circuit boards is optimal in terms of the reliability of final products. According to the Taguchi method, in the experiment, five factors with two levels each were chosen for the subsequent analysis. These included the number of conductive layers, the thickness of the laminate layer, the type of the laminate, the diameter of the plated holes, and the current density in the galvanic bath. The reliability of the PCBs in the produced variations was verified using the Interconnect Stress Test environmental test. The qualitatively best variant of the board construction was indicated using the signal-to-noise ratio and the analysis of variance method for each factor. The factors determined to be the most important in terms of reliability were the number of conductive layers and the current density in the galvanic bath. The optimal variant of the board construction was two conductive layers on a polyimide laminate, where the laminate layer was 100 μm thick, the hole diameter was equal to 0.4 mm, and current density was 2 A/dm2 in the galvanic bath. Therefore, the plated experiment indicated the factors needed to obtain a high-quality product with a low failure rate. Full article
(This article belongs to the Special Issue RFID-Enabled Sensor Design and Applications)
Show Figures

Figure 1

17 pages, 4791 KiB  
Article
Photoreconfigurable Metasurface for Independent Full-Space Control of Terahertz Waves
by Zhengxuan Jiang, Guowen Ding, Xinyao Luo and Shenyun Wang
Sensors 2025, 25(1), 119; https://doi.org/10.3390/s25010119 - 27 Dec 2024
Viewed by 459
Abstract
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator [...] Read more.
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual C-shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes. Simulation results demonstrate that the metasurface achieves a cross-polarized transmission coefficient of 0.82 without laser illumination and a co-polarization reflection coefficient of 0.8 under laser illumination. Leveraging the geometric phase principle, adjustments to the rotational orientation of the reverse split ring and dual C-shaped perovskite structures enable independent control of transmission and reflection phases. Furthermore, the proposed metasurface induces a +1 order orbital angular momentum in transmission and +2 order in reflection, facilitating beam deflection through metasurface convolution principles. Imaging using metasurface digital imaging technology showcases patterns “NUIST” in reflection and “LOONG” in transmission, illustrating the metasurface design principles via the proposed metasurface. The proposed metasurface’s capability for full-space control and reconfigurability presents promising applications in advanced imaging systems, dynamic beam steering, and tunable terahertz devices, highlighting its potential for future technological advancements. Full article
Show Figures

Figure 1

18 pages, 7823 KiB  
Article
Goniopolarimetric Properties of Typical Satellite Material Surfaces: Intercomparison with Semi-Empirical pBRDF Modeled Results
by Min Yang, Hongxia Mao, Jun Wu, Chong Zheng and Li Wang
Viewed by 168
Abstract
Light reflected from satellite surfaces is polarized light, which plays a crucial role in space target identification and remote sensing. To deepen our understanding of the polarized reflectance property for satellite material surface, we present the experiments of polarimetric laboratory measurements from two [...] Read more.
Light reflected from satellite surfaces is polarized light, which plays a crucial role in space target identification and remote sensing. To deepen our understanding of the polarized reflectance property for satellite material surface, we present the experiments of polarimetric laboratory measurements from two typical satellite materials in the wavelength range of 400–1000 nm by using a goniometer instrument. The bidirectional polarized reflectance factor (BPRF) is used to describe the polarization characteristics of our samples. The polarized spectral reflectance and distribution of BPRF for our datasets are analyzed. Furthermore, five semi-empirical polarized bidirectional reflectance distribution functions (pBRDFs) models for polarized reflectance of typical satellite material surfaces (Preist–Germer model, Maxwell–Beard model, three-component model, Cook–Torrance model, and Kubelka–Munk model) are quantitatively intercompared using the measured BPRFs. The results suggest that the measured BPRFs of our samples are spectrally irrelevant, and the hemispherical distribution of BPRFs is obviously anisotropic. Except for the Preist–Germer model, the other semi-empirical models are in good agreement with the measured BPRF at the selected wavelengths, indicating that we can accurately simulate the polarized reflectance property of the satellite surface by using the existing polarimetric models. The Kubelka–Munk pBRDF model best fits the silver polyimide film and white coating surfaces with RMSE equal to 3.25% and 2.03%, and the correlation coefficient is 0.994 and 0.984, respectively. This study can be applied to provide an accurate pBRDF model for space object scene simulation and has great potential for polarization remote sensing. Full article
(This article belongs to the Special Issue Polarization Optics)
Show Figures

Figure 1

13 pages, 6926 KiB  
Article
Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices
by Zhenyu Wu, Honglong Ning, Han Li, Xiaoqin Wei, Dongxiang Luo, Dong Yuan, Zhihao Liang, Guoping Su, Rihui Yao and Junbiao Peng
Micromachines 2025, 16(1), 17; https://doi.org/10.3390/mi16010017 - 26 Dec 2024
Viewed by 460
Abstract
The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. [...] Read more.
The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. In this work, we first optimized the annealing-process parameters on the glass substrate. As the annealing temperature rises, the film tends to be denser and obtains a lower surface roughness, a narrower optical-band gap and less oxygen-vacancy content. However, the μ-PCD test shows the 250 °C-annealed film obtains the least defects. And the PrIZO TFT annealed at 250 °C exhibited a desired performance with a saturation mobility (μsat) of 14.26 cm2·V−1·s−1, a subthreshold swing (SS) of 0.14 V·dec−1, an interface trap density (Dit) of 3.17 × 1011, an Ion/Ioff ratio of 1.83 × 108 and a threshold voltage (Vth) of −1.15 V. The flexible devices were prepared using the optimized parameters on the Polyimide (PI) substrate and subjected to static bending tests. After bending at a radius of 5 mm, the mobility of devices decreases slightly from 12.48 to 10.87 cm2·V−1·s−1, demonstrating the great potential of PrIZO for flexible displays. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits)
Show Figures

Figure 1

16 pages, 22416 KiB  
Article
A Combinatory Therapy of Metformin and Dexamethasone Reduces the Foreign Body Reaction to Intraneural Electrodes
by Bruno Rodríguez-Meana, Jaume del Valle and Xavier Navarro
Cells 2024, 13(24), 2112; https://doi.org/10.3390/cells13242112 - 20 Dec 2024
Viewed by 309
Abstract
Neural electrodes used for bidirectional communication between the nervous system and external devices like prosthetic limbs have advanced in neuroprosthetic applications. However, their effectiveness is hindered by the foreign body reaction, a natural immune response causing inflammation and fibrosis around the implanted device. [...] Read more.
Neural electrodes used for bidirectional communication between the nervous system and external devices like prosthetic limbs have advanced in neuroprosthetic applications. However, their effectiveness is hindered by the foreign body reaction, a natural immune response causing inflammation and fibrosis around the implanted device. This process involves protein adsorption, immune cell recruitment, cytokine release, and fibroblast activation, leading to a fibrous capsule formation and a decrease in electrode functionality. Anti-inflammatory and antifibrotic strategies have the potential to diminish the impact of the foreign body response. In this work, we have evaluated long-term metformin administration and short-term dexamethasone administration as a combined therapy to modulate the foreign body reaction induced by a polyimide intraneural implant in the sciatic nerve of rats. After a 12-week implant, the foreign body reaction was significantly reduced only in the group administered both drugs. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

15 pages, 2114 KiB  
Article
Laser-Induced Graphene Electrodes for Flexible pH Sensors
by Giulia Massaglia, Giacomo Spisni, Tommaso Serra and Marzia Quaglio
Nanomaterials 2024, 14(24), 2008; https://doi.org/10.3390/nano14242008 - 14 Dec 2024
Viewed by 404
Abstract
In the growing field of personalized medicine, non-invasive wearable devices and sensors are valuable diagnostic tools for the real-time monitoring of physiological and biokinetic signals. Among all the possible multiple (bio)-entities, pH is important in defining health-related biological information, since its variations or [...] Read more.
In the growing field of personalized medicine, non-invasive wearable devices and sensors are valuable diagnostic tools for the real-time monitoring of physiological and biokinetic signals. Among all the possible multiple (bio)-entities, pH is important in defining health-related biological information, since its variations or alterations can be considered the cause or the effect of disease and disfunction within a biological system. In this work, an innovative (bio)-electrochemical flexible pH sensor was proposed by realizing three electrodes (working, reference, and counter) directly on a polyimide (Kapton) sheet through the implementation of CO2 laser writing, which locally converts the polymeric sheet into a laser-induced graphene material (LIG electrodes), preserving inherent mechanical flexibility of Kapton. A uniform distribution of nanostructured PEDOT:PSS was deposited via ultrasonic spray coating onto an LIG working electrode as the active material for pH sensing. With a pH-sensitive PEDOT coating, this flexible sensor showed good sensitivity defined through a linear Nernstian slope of (75.6 ± 9.1) mV/pH, across a pH range from 1 to 7. We demonstrated the capability to use this flexible pH sensor during dynamic experiments, and thus concluded that this device was suitable to guarantee an immediate response and good repeatability by measuring the same OCP values in correspondence with the same pH applied. Full article
Show Figures

Figure 1

14 pages, 4193 KiB  
Article
Simultaneous Temperature and Relative Humidity Measurement Using Machine Learning in Rayleigh-Based Optical Frequency Domain Reflectometry
by Mateusz Mądry, Bogusław Szczupak, Mateusz Śmigielski and Bartosz Matysiak
Sensors 2024, 24(24), 7913; https://doi.org/10.3390/s24247913 - 11 Dec 2024
Viewed by 472
Abstract
This paper presents, for the first time to the best of our knowledge, simultaneous temperature and relative humidity (RH) measurement using a machine learning (ML) model in Rayleigh-based Optical Frequency Domain Reflectometry (OFDR). The sensor unit consists of two segments: bare and polyimide-coated [...] Read more.
This paper presents, for the first time to the best of our knowledge, simultaneous temperature and relative humidity (RH) measurement using a machine learning (ML) model in Rayleigh-based Optical Frequency Domain Reflectometry (OFDR). The sensor unit consists of two segments: bare and polyimide-coated fibers, each with different sensitivities to temperature. The polyimide-coated fiber is RH-sensitive, unlike the bare fiber. We propose the ML approach to avoid manual post-processing data and maintain relatively high accuracy of the sensor. The root mean square error (RMSE) values for the 3 cm length of the sensor unit were 0.36 °C and 1.73% RH for temperature and RH, respectively. Furthermore, we investigated the impact of sensor unit lengths and number of data points on RMSE values. This approach eliminates the need for manual data processing, reduces analysis time, and enables accurate, simultaneous measurement of temperature and RH in Rayleigh-based OFDR. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Graphical abstract

14 pages, 2881 KiB  
Article
Preparation and Characterization of a Novel Self-Healing Transparent Polyimide Film Based on Dynamic Disulfide Bonds
by Xin Li, Yan Zhai, Kai Yang, Jingjing Bai, Yu Qiu and Yulong Wang
Polymers 2024, 16(24), 3461; https://doi.org/10.3390/polym16243461 - 11 Dec 2024
Viewed by 421
Abstract
Self-healing optically transparent polyimides have potential applications in optoelectronic device fabrication. In this study, for the first time, we successfully prepared a novel self-healing polyimide film containing reversible disulfide bonds through chemical imidization by introducing cystamine as a self-healing functional monomer into the [...] Read more.
Self-healing optically transparent polyimides have potential applications in optoelectronic device fabrication. In this study, for the first time, we successfully prepared a novel self-healing polyimide film containing reversible disulfide bonds through chemical imidization by introducing cystamine as a self-healing functional monomer into the molecular structure of conventional polyimides. The incorporation of cystamine enabled the films to maintain high transmittance (>87%) and tensile strength (>99 MPa). Meanwhile, tensile tests showed that the prepared film with a cystamine content of 50% achieved an excellent self-healing efficiency of up to 91.8%. Stress relaxation tests further revealed that disulfide bonds were rapidly cleaved upon thermal stimulation and the network topology was rearranged to complete the self-healing process. These results suggest that the dynamic covalent polymer network made of aliphatic disulfide bonds presents a new strategy for the development of optically transparent polyimides with excellent self-healing properties. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

15 pages, 6123 KiB  
Article
Impact of Moisture Absorption on Optical Fiber Sensors: New Bragg Law Formulation for Monitoring Composite Structures
by Pietro Aceti and Giuseppe Sala
J. Compos. Sci. 2024, 8(12), 518; https://doi.org/10.3390/jcs8120518 - 9 Dec 2024
Viewed by 533
Abstract
In recent decades, the aviation industry has increasingly adopted composite materials for various aircraft components, due to their high strength-to-weight ratio and durability. To ensure the safety and reliability of these structures, Health and Usage Monitoring Systems (HUMSs) based on fiber optics (FO), [...] Read more.
In recent decades, the aviation industry has increasingly adopted composite materials for various aircraft components, due to their high strength-to-weight ratio and durability. To ensure the safety and reliability of these structures, Health and Usage Monitoring Systems (HUMSs) based on fiber optics (FO), particularly Fiber Bragg Grating (FBG) sensors, have been developed. However, both composite materials and optical fibers are susceptible to environmental factors such as moisture, in addition to the well-known effects of mechanical stress and thermal loads. Moisture absorption can lead to the degradation of mechanical properties, posing a risk to the structural integrity of aircraft components. This research aims to quantify and monitor the impact of moisture on composite materials. A new formulation of the Bragg equation is introduced, incorporating mechanical strain, thermal expansion, and hygroscopic swelling to accurately measure Bragg wavelength variations. Experimental validation was performed using both uncoated and polyimide-coated optical fibers subjected to controlled hygrothermal conditions in a climate chamber. The results demonstrate that uncoated fibers are insensitive to humidity, whereas coated fibers exhibit measurable wavelength shifts due to moisture absorption. The proposed model effectively predicts these shifts, with errors consistently below 2.6%. This approach is crucial for improving the performance and reliability of HUMSs in monitoring composite structures, ensuring long-term safety in extreme environmental conditions. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

18 pages, 6783 KiB  
Review
Polyimide-Based Dielectric Materials for High-Temperature Capacitive Energy Storage
by Lingling Liu, Li Li, Shixian Zhang, Wenhan Xu and Qing Wang
Electron. Mater. 2024, 5(4), 303-320; https://doi.org/10.3390/electronicmat5040019 - 8 Dec 2024
Viewed by 739
Abstract
Polyimide (PI) has received great attention for high-temperature capacitive energy storage materials due to its remarkable thermal stability, relatively high breakdown strength, strong mechanical properties, and ease of synthesis and modification. In this review, several key parameters for evaluating capacitive energy storage performance [...] Read more.
Polyimide (PI) has received great attention for high-temperature capacitive energy storage materials due to its remarkable thermal stability, relatively high breakdown strength, strong mechanical properties, and ease of synthesis and modification. In this review, several key parameters for evaluating capacitive energy storage performance are introduced. Subsequently, the properties of the commercially available PIs are presented. Then, the recent development of designing and tailoring all-organic PI-based polymers is discussed in detail, focusing on molecular composition and spatial configuration to enhance dielectric constant, breakdown strength, discharged energy density, and charge-discharge efficiency. Finally, we outline the current challenges and future development directions of PI-based high-temperature energy storage dielectric materials. Full article
Show Figures

Figure 1

14 pages, 3042 KiB  
Article
Enhanced Interfacial Properties of Carbon Fiber/Polymerization of Monomers Reactants Method Polyimide Composite by Polyimide Sizing
by Chengyu Huang, Jinsong Sun, Zhiwei Liu, Bo Li, Mingchen Sun, Hansong Liu, Yan Zhao, Peng Zhang and Jianwen Bao
Materials 2024, 17(23), 5962; https://doi.org/10.3390/ma17235962 - 5 Dec 2024
Viewed by 452
Abstract
Carbon fiber (CF)-reinforced polyimide (PI) resin matrix composites have great application potential in areas such as rail transport, medical devices, and aerospace due to their excellent thermal stability, dielectric properties, solvent resistance, and mechanical properties. However, the epoxy sizing agent used for traditional [...] Read more.
Carbon fiber (CF)-reinforced polyimide (PI) resin matrix composites have great application potential in areas such as rail transport, medical devices, and aerospace due to their excellent thermal stability, dielectric properties, solvent resistance, and mechanical properties. However, the epoxy sizing agent used for traditional carbon fiber cannot withstand the processing temperature of polyimide resin, of up to 350 °C, resulting in the formation of pores or defects at the interface between the fiber and the resin matrix, leading to the degradation of the overall composite properties. To overcome this problem, in this study, a low-molecular-weight thermosetting polyimide sizing agent was prepared and the processability of the sized carbon fiber was optimized by a thermoplastic polyimide. Compared with the unsized carbon fiber polyimide composites, the interfacial properties of the composites after the polyimide sizing treatment were significantly improved, with the interfacial shear strength (IFSS) increasing from 82.08 MPa to 136.27 MPa, the interlaminar shear strength (ILSS) increasing from 103.7 to 124.9 MPa, and the bending strength increasing from 2262.2 MPa to 2562.1 MPa. The sizing agent acts as a bridge between the carbon fiber and polyimide resin, with anchorage and bonding at the interface between the fiber and resin, which are beneficial for enhancing the interface performance of composites. Full article
(This article belongs to the Special Issue Research on Properties of Polymers and Their Engineering Applications)
Show Figures

Graphical abstract

15 pages, 3394 KiB  
Article
Synthesis and Characterization of Polyimide with High Blackness and Low Thermal Expansion by Introducing 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole-Based Chromophores
by Yiwu Liu, Xueyuan Liu, Jinghua Tan, Jie Huang, Jiazhen Yuan, Huipeng Li, Jieping Guo, Penghao Yu and Yue Chen
Polymers 2024, 16(23), 3365; https://doi.org/10.3390/polym16233365 - 29 Nov 2024
Viewed by 463
Abstract
The market demand for black polyimide (BPI) has grown hugely in the field of flexible copper-clad laminates (FCCLs) as a replacement for transparent yellow polyimide. The 3,6-bis(thiophen-2-yl)diketopyrrolopyrroles (TDPP) derivative is recognized for its high molar extinction coefficient. In this research, we have synthesized [...] Read more.
The market demand for black polyimide (BPI) has grown hugely in the field of flexible copper-clad laminates (FCCLs) as a replacement for transparent yellow polyimide. The 3,6-bis(thiophen-2-yl)diketopyrrolopyrroles (TDPP) derivative is recognized for its high molar extinction coefficient. In this research, we have synthesized a diamine monomer named 3,6-bis[5-(4-amino-3-fluorophenyl)thiophen-2-yl]-2,5-bis(2-ethylhexyl)pyrrolo[4,3-c]pyrrole-1,4-dione (DPPTENFPDA), featuring a TDPP unit attached by fluorinated benzene rings. The subsequent reaction of DPPTENFPDA with pyromellitic dianhydride (PMDA) yielded an inherent BPI (DPPTENFPPI). By introducing chromophores derived from TDPP, the light absorption spectrum of DPPTENFPPI was broadened and red-shifted, thereby achieving full absorption within the visible spectrum and producing a highly black color that has a cut-off wavelength (λcut) of 717 nm and a CIE-Lab coordinate L* of 0.86. Additionally, DPPTENFPPI exhibited a low coefficient of thermal expansion (CTE) and remarkable thermal and electrical performance. Density functional theory calculations were conducted to explore the electronic nature of DPPTENFPPI. The outcomes revealed that the excellent light absorption of DPPTENFPPI predominantly originates from the transition from HOMO to LUMO + 1 within the chromophore moiety. The FCCL made from DPPTENFPPI films has high solder heat resistance and peel strength. This research contributes valuable insights into the structure and design of high-performance intrinsically black PIs for microelectronics applications. Full article
Show Figures

Graphical abstract

17 pages, 4964 KiB  
Article
Laser-Induced Graphene Decorated with MOF-Derived NiCo-LDH for Highly Sensitive Non-Enzymatic Glucose Sensor
by Longxiao Li, Yufei Han, Yuzhe Zhang, Weijia Wu, Wei Du, Guojun Wen and Siyi Cheng
Molecules 2024, 29(23), 5662; https://doi.org/10.3390/molecules29235662 - 29 Nov 2024
Viewed by 489
Abstract
Designing and fabricating a highly sensitive non-enzymatic glucose sensor is crucial for the early detection and management of diabetes. Meanwhile, the development of innovative electrode substrates has become a key focus for addressing the growing demand for constructing flexible sensors. Here, a simple [...] Read more.
Designing and fabricating a highly sensitive non-enzymatic glucose sensor is crucial for the early detection and management of diabetes. Meanwhile, the development of innovative electrode substrates has become a key focus for addressing the growing demand for constructing flexible sensors. Here, a simple one-step laser engraving method is applied for preparing laser-induced graphene (LIG) on polyimide (PI) film, which serves as the sensor substrate. NiCo-layered double hydroxides (NiCo-LDH) are synthesized on LIG as a precursor, utilizing the zeolitic imidazolate framework (ZIF-67), and then reacted with Ni(NO3)2 via solvent-thermal methods. The sensitivity of the non-enzymatic electrochemical glucose sensor is significantly improved by employing NiCo-LDH/LIG as the sensing material. The porous and interconnected structure of NiCo-LDH, derived from ZIF-67, enhances the accessibility of electrochemically active sites, while the incorporation of LIG ensures exceptional conductivity. The combination of NiCo-LDH with LIG enables efficient electron transport, leading to an increased electrochemically active surface area and enhanced catalytic efficiency. The fabricated electrode achieves a low glucose detection limit of 0.437 μM and demonstrates a high sensitivity of 1141.2 and 631.1 μA mM−2 cm−2 within the linear ranges of 0–770 μM and 770–1970 μM, respectively. Furthermore, the NiCo-LDH/LIG glucose sensor demonstrates superior reliability and little impact from other substances. A flexible integrated LIG-based non-enzymatic glucose sensor has been developed, demonstrating high sensitivity and suggesting a promising application for LIG-based chemical sensors. Full article
Show Figures

Graphical abstract

Back to TopTop