Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = pile-up

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8281 KiB  
Article
Deformation and Fracture Behaviour of Heterostructure Mn8/SS400 Bimetal Composite
by Shengnan Yuan, Cunlong Zhou, Haibo Xie, Mengyuan Ren, Fei Lin, Xiaojun Liang, Xing Zhao, Hongbin Li, Sihai Jiao and Zhengyi Jiang
Materials 2025, 18(4), 758; https://doi.org/10.3390/ma18040758 (registering DOI) - 8 Feb 2025
Viewed by 333
Abstract
This study examines the deformation behaviour and fracture mechanisms of bimetal composites (BCs) composed of high-carbon medium-manganese steel (Mn8) and low-carbon steel (SS400), fabricated through hot roll bonding. The research highlights the effect of varying thickness ratios on the mechanical properties of Mn8/SS400 [...] Read more.
This study examines the deformation behaviour and fracture mechanisms of bimetal composites (BCs) composed of high-carbon medium-manganese steel (Mn8) and low-carbon steel (SS400), fabricated through hot roll bonding. The research highlights the effect of varying thickness ratios on the mechanical properties of Mn8/SS400 BCs. The microstructure and interfacial characteristics were analysed using scanning electron microscopy (SEM), revealing a well-bonded and defect-free interface with distinct elemental distributions. Tensile and bending tests were conducted to evaluate the composites’ mechanical performance, highlighting the synergistic effects of Mn8’s high strain hardening capacity and SS400’s ductility. Mathematical models, including the rule of mixtures (ROM) and the long-wavelength approach (LWA), were employed to predict the tensile strength and plastic instability strain (PIS), with experimental results showing deviations due to interfacial strengthening mechanisms and dislocation pile-ups. The findings provide insights into the interplay between layer thickness ratios, interfacial properties, and strain hardening, offering valuable guidance for optimising the design and industrial-scale production of Mn8/SS400 BCs. Full article
Show Figures

Figure 1

9 pages, 8181 KiB  
Communication
Forming Rate Dependence of Novel Austenitising Bending Process for a High-Strength Quenched Micro-Alloyed Steel: Experiments and Simulation
by Yao Lu, Jun Wang, Zhou Li, Fei Lin, Di Pan, Fanghui Jia, Jingtao Han and Zhengyi Jiang
Processes 2025, 13(2), 441; https://doi.org/10.3390/pr13020441 - 6 Feb 2025
Viewed by 459
Abstract
This austenitising bending investigation was carried out in a vacuum environment with the forming rates of 1, 10, and 100 mm/min under a certain bending temperature of 900 °C by a thermomechanical simulator. The enhanced strength at the accelerated forming rate and on [...] Read more.
This austenitising bending investigation was carried out in a vacuum environment with the forming rates of 1, 10, and 100 mm/min under a certain bending temperature of 900 °C by a thermomechanical simulator. The enhanced strength at the accelerated forming rate and on the compression/tension zones throughout the thickness of the bent plates was discussed in detail in terms of dislocation pile-up, smaller prior austenite grain size, dynamic recrystallisation, smaller martensite packet, and stress-neutral layer. Since the simulation results were validated to match the experimental trend, this investigation could be applied as a valuable reference to simulate the practical manufacturing process of railway fasteners. Full article
(This article belongs to the Special Issue Processing, Manufacturing and Properties of Metal and Alloys)
Show Figures

Figure 1

18 pages, 5567 KiB  
Article
Effects of Pre-Deformation in Corrosion Fatigue Crack Growth of Al-Mg-Zn Alloy
by Hui Jiang, Junjun Jin, Yu Fang, Guoqing Gou, Wei Lu, Zhiyi Zhang, Hongmei Zhou, Hairong Sun, Jikui Feng, Jia Chen and Zhenghong Fu
Materials 2025, 18(2), 365; https://doi.org/10.3390/ma18020365 - 15 Jan 2025
Viewed by 509
Abstract
This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a [...] Read more.
This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a 3.5% NaCl solution at room temperature, and crack propagation morphology was characterized using electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that tensile strength increased by 2.63% and 10.00% for 5% and 10% pre-deformation, respectively. The crack propagation threshold values were L2 (6.36 MPa·m1/2) > L0 (6.05 MPa·m1/2) > L1 (5.13 MPa·m1/2), attributed to increased dislocation density and material strength. At 5% pre-deformation, dislocation pile-ups created stress concentrations that facilitated crack propagation. In contrast, the non-uniform dislocation distribution at 10% pre-deformation enhanced both material strength and resistance to crack growth. Full article
Show Figures

Figure 1

7 pages, 473 KiB  
Article
An Overview of the CMS High Granularity Calorimeter
by Bora Akgün
Viewed by 333
Abstract
Calorimetry at the High Luminosity LHC (HL-LHC) faces many challenges, particularly in the forward direction, such as radiation tolerance and large in-time event pileup. To meet these challenges, the CMS Collaboration is preparing to replace its current endcap calorimeters from the HL-LHC era [...] Read more.
Calorimetry at the High Luminosity LHC (HL-LHC) faces many challenges, particularly in the forward direction, such as radiation tolerance and large in-time event pileup. To meet these challenges, the CMS Collaboration is preparing to replace its current endcap calorimeters from the HL-LHC era with a high-granularity calorimeter (HGCAL), featuring an unprecedented transverse and longitudinal segmentation, for both the electromagnetic and hadronic compartments, with 5D information (space–time–energy) read out. The proposed design uses silicon sensors for the electromagnetic section (with fluences above 1016 neq/cm2) and high-irradiation regions (with fluences above 1014 neq/cm2) of the hadronic section, while in the low-irradiation regions of the hadronic section, plastic scintillator tiles equipped with on-tile silicon photomultipliers (SiPMs) are used. Full HGCAL will have approximately 6 million silicon sensor channels and about 280 thousand channels of scintillator tiles. This will allow for particle-flow-type calorimetry, where the fine structure of showers can be measured and used to enhance particle identification, energy resolution and pileup rejection. In this overview we present the ideas behind HGCAL, the current status of the project, results of the beam tests and the challenges that lie ahead. Full article
Show Figures

Figure 1

18 pages, 5813 KiB  
Article
Wind, Wave, and Ice Impacts on the Coastal Zone of the Sea of Azov
by Natalia Yaitskaya and Anastasiia Magaeva
Water 2025, 17(1), 36; https://doi.org/10.3390/w17010036 - 26 Dec 2024
Viewed by 521
Abstract
The coastal zone of the Sea of Azov is a dynamic environment influenced by various natural and anthropogenic factors, including wind, wave action, beach material removal, and cultivation on cliff edges. The coastal zone of freezing seas is also influenced by ice cover [...] Read more.
The coastal zone of the Sea of Azov is a dynamic environment influenced by various natural and anthropogenic factors, including wind, wave action, beach material removal, and cultivation on cliff edges. The coastal zone of freezing seas is also influenced by ice cover during winter. This study investigates the dynamics of the Sea of Azov’s coastal zone during winter (2014–2023), focusing on the impacts of waves and ice, to identify the most vulnerable coastal areas. We analyzed high-resolution satellite imagery and employed mathematical modeling to obtain data on ice pile-up, fast ice formation, wind patterns, and storm wave dynamics within the shallow coastal zone. Long-term wind data revealed an increase in maximum wind speeds in December and January, while February and March showed a decrease or no significant trend across most coastal observation stations. Storm waves (significant wave height) during the cold season can reach heights of 3.26 m, contributing to coastal erosion and instability. While the overall ice cover in the Sea of Azov is decreasing, with fast ice rarely exceeding 0.85% of the total sea area, ice pile-up still occurs almost annually, with the eastern part of Taganrog Bay exhibiting the highest probability of these events. Our analysis identified the primary impacts affecting the shallow coastal zone of the Sea of Azov between 2014 and 2023. A map was generated to illustrate these impacts, revealing that nearly the entire coastline is subject to varying degrees of wave and ice impact. Exceptions include the eastern coast, which experiences minimal fast ice and ice pile-up, with average or lower dynamic loads, and the southern coast, where wind–wave action is the dominant factor. Full article
(This article belongs to the Special Issue Hydroclimate Extremes: Causes, Impacts, and Mitigation Plans)
Show Figures

Figure 1

14 pages, 5863 KiB  
Technical Note
Magnetosphere-Ground Responses and Energy Spectra Analysis of Solar Proton Event on 28 October 2021
by Fang Zhang, Zhenxia Zhang, Dali Zhang, Xinqiao Li, Zhiqiang Ding, Lu Wang, Shujie Li, Zhenghua An and Jilong Zhang
Remote Sens. 2025, 17(1), 15; https://doi.org/10.3390/rs17010015 - 25 Dec 2024
Viewed by 429
Abstract
Among the coronal mass ejections (CMEs) and solar proton events (SPEs) frequently observed by near-Earth spacecraft, the SPE that occurred on 28 October 2021 stands out as a remarkable research event. This is due to the infrequency of reported ground-level enhancements it induced. [...] Read more.
Among the coronal mass ejections (CMEs) and solar proton events (SPEs) frequently observed by near-Earth spacecraft, the SPE that occurred on 28 October 2021 stands out as a remarkable research event. This is due to the infrequency of reported ground-level enhancements it induced. The CSES (China seismo-electromagnetic satellite) is equipped with high-energy particle detectors, namely, HEPP and HEPD, capable of measuring protons within an energy range of 2 MeV to 143 MeV. These detectors provide valuable opportunities for studying solar activity. By utilizing the Monte Carlo method to simulate the pile-up effect and accounting for the detector’s dead time, with the assistance of real-time incident counting rates, we successfully corrected the spectra in the 10–50 MeV range. The energy spectrum is important for understanding solar proton events. We used the data from the HEPP (high-energy particle package) and HEPD (high-energy particle detector) to obtain the total event-integrated spectrum, which possessed good continuity. Additionally, we compared the observations from the CSES with those from the NOAA satellite and achieved reasonable agreement. We also searched for ground-based responses to this solar activity in China and discovered Forbush decreases detected by the Yang Ba Jing Muon Telescope experiment. In conclusion, the HEPP and HEPD can effectively combine to study solar activity and obtain a smooth and consistent energy spectrum of protons across a very wide energy range. Full article
Show Figures

Graphical abstract

16 pages, 2045 KiB  
Article
An Optimized SVR Algorithm for Pulse Pile-Up Correction in Pulse Shape Discrimination
by Xianghe Liu, Bingqi Liu, Mingzhe Liu, Yufeng Tang, Haonan Li and Yao Huang
Sensors 2024, 24(23), 7545; https://doi.org/10.3390/s24237545 - 26 Nov 2024
Viewed by 611
Abstract
Pulse pile-up presents a significant challenge in nuclear radiation measurements, particularly in neutron-gamma pulse shape discrimination, as it causes pulse distortion and diminishes identification accuracy. To address this, we propose an optimized Support Vector Regression (SVR) algorithm for correcting pulse pile-up. Initially, the [...] Read more.
Pulse pile-up presents a significant challenge in nuclear radiation measurements, particularly in neutron-gamma pulse shape discrimination, as it causes pulse distortion and diminishes identification accuracy. To address this, we propose an optimized Support Vector Regression (SVR) algorithm for correcting pulse pile-up. Initially, the Dung Beetle Optimizer (DBO) and Whale Optimization Algorithm (WOA) are integrated to refine the correction process, with performance evaluated using charge comparison methods (CCM) for pulse shape discrimination. Leveraging prior knowledge from simulated data, we further analyze the relationships between various types of pulse pile-ups, including their combinations, inter-peak distances, and the accuracy of corrections. Extensive experiments conducted in a mixed neutron-gamma radiation field using plastic scintillators demonstrate that the proposed method effectively corrects pulse pile-up and accurately discriminates between neutron and gamma. Moreover, our approach significantly improves the fidelity of pulse shape discrimination and enhances the overall reliability of radiation detection systems in high-interference environments. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 13479 KiB  
Article
New Insights in the Nanomechanical Study of Carbon-Containing Nanocomposite Materials Based on High-Density Polyethylene
by Todor Batakliev, Evgeni Ivanov, Vladimir Georgiev, Verislav Angelov, Juan Ignacio Ahuir-Torres, David Mark Harvey and Rumiana Kotsilkova
Appl. Sci. 2024, 14(21), 9961; https://doi.org/10.3390/app14219961 - 31 Oct 2024
Viewed by 1090
Abstract
The investigation of new composite materials possessing low weight but not at the expense of their mechanical performance is of great interest in terms of reducing energy consumption in many industrial applications. This study is focused on the nanomechanical characterization of high-density polyethylene [...] Read more.
The investigation of new composite materials possessing low weight but not at the expense of their mechanical performance is of great interest in terms of reducing energy consumption in many industrial applications. This study is focused on the nanomechanical characterization of high-density polyethylene (HDPE)-based composite specimens modified with equal loadings of graphene nanoplatelets (GNPs) and/or multiwall carbon nanotubes (MWCNTs). Quasi-static nanoindentation analysis revealed the impact of the carbon nanofillers on the receiving of nanocomposites with higher nanohardness and reduced modulus of elasticity, reaching values of 0.146 GPa and 3.57 GPa, respectively. The role of the indentation size effect in elastic polymer matrix was assessed by applying three distinct peak forces. Nanoscratch experiments depicted the tribological behavior of the composite samples and inferred the influence of the carbon nanofillers on the values of the coefficient of friction (COF). It seems that the incorporation of 4 wt% GNPs in the polymer structure improves the scratch resistance of the material, resulting in a higher value of the exerted lateral force and therefore leading to the detection of a higher coefficient of friction at scratch of 0.401. A considerable pile-up response of the scratched polymer specimens was observed by means of in-situ SPM imaging of the tested surface sample area. The sway of the carbon nanoparticles on the composite pile-up behavior and the effect of the pile-up on the measured friction coefficients have been explored. Full article
Show Figures

Figure 1

11 pages, 7117 KiB  
Article
Analysis of Influence of Ultrasonic Shot Peening on Surface Plastic Behavior of Superalloy
by Xihui Shi, Jin Cai, Liwen Zhang, Yuliang Pan and Hao Wu
Coatings 2024, 14(11), 1382; https://doi.org/10.3390/coatings14111382 - 30 Oct 2024
Viewed by 932
Abstract
This work focuses on the effects of ultrasonic shot peening (USP) on grain refinement and orientation behavior in the surface region of GH4151 superalloy. The microstructure evolution of the alloy under USP durations were studied. The effects of USP-induced grain refinement, orientation, and [...] Read more.
This work focuses on the effects of ultrasonic shot peening (USP) on grain refinement and orientation behavior in the surface region of GH4151 superalloy. The microstructure evolution of the alloy under USP durations were studied. The effects of USP-induced grain refinement, orientation, and dislocation motion behavior were analyzed. The results indicated that during the USP process, the plastic deformation of the surface layer of superalloys is accompanied by changes in grain size and orientation. The random impact of the spheres on the surface area promotes grain refinement and grain rotation, enhancing the randomness of grain orientations and reducing the texture strength and the proportion of “soft” orientation distribution. Over a long period of treatment, a large number of spheres cause the slip planes and slip directions of each grain to rotate due to the additional shear stress from the impact, resulting in relatively consistent plastic deformation on the surface and the enhanced randomness of grain orientations, thus reducing the high texture strength introduced by previous machining processes. The understanding of dislocation pile-up behavior and the relationship between externally applied shear stress, pile-up characteristics, and grain refinement is essential for optimizing the USP process and achieving the desired material properties. Full article
Show Figures

Figure 1

18 pages, 5813 KiB  
Article
Micromechanical Characterization of AlCu Films for MEMS Using Instrumented Indentation Method
by Dongyang Hou, Yuhang Ouyang, Zhen Zhou, Fang Dong and Sheng Liu
Materials 2024, 17(19), 4891; https://doi.org/10.3390/ma17194891 - 5 Oct 2024
Viewed by 3082
Abstract
The micromechanical properties (i.e., hardness, elastic modulus, and stress–strain curve) of AlCu films were determined by an instrumented indentation test in this work. For three AlCu films with different thicknesses (i.e., 1 µm, 1.5 µm, and 2 µm), the same critical ratio ( [...] Read more.
The micromechanical properties (i.e., hardness, elastic modulus, and stress–strain curve) of AlCu films were determined by an instrumented indentation test in this work. For three AlCu films with different thicknesses (i.e., 1 µm, 1.5 µm, and 2 µm), the same critical ratio (hmax/t) of 0.15 and relative indentation depth range of 0.15–0.5 existed, within which the elastic modulus (i.e., 59 GPa) and nanoindentation hardness (i.e., 0.75 GPa, 0.64 GPa and 0.63 GPa for 1 µm, 1.5 µm and 2 µm films) without pile-up and substrate influence can be determined. The yield strength (i.e., 0.754 GPa, 0.549 GPa and 0.471 GPa for 1 µm, 1.5 µm and 2 µm films) and hardening exponent (i.e., 0.073, 0.131 and 0.150 for 1 µm, 1.5 µm and 2 µm films) of Al-(4 wt.%)Cu films for MEMS were successfully reported for the first time using a nanoindentation reverse method. In dimensional analysis, the ideal representative strain εr was determined to be 0.038. The errors of residual depth hr between the simulations and the nanoindentation experiments was less than 5% when the stress–strain curve obtained by the nanoindentation reverse method was used for simulation. Full article
(This article belongs to the Special Issue Advances of Indentation Technology in Materials)
Show Figures

Figure 1

17 pages, 6914 KiB  
Article
Effects of Thermal Exposure Temperature on Room-Temperature Tensile Properties of Ti65 Alloy
by Yuan-Chen Wang, Jian-Yang Liu, Jian-Rong Liu, Wen-Yuan Li, Bin Zhang and Guang-Ping Zhang
Materials 2024, 17(17), 4424; https://doi.org/10.3390/ma17174424 - 9 Sep 2024
Viewed by 783
Abstract
As a critical material for high-temperature components of aero-engines, the mechanical properties of Ti65 alloy, subjected to high-temperature and long-term thermal exposure, directly affect its service safety. The room-temperature tensile properties of the Ti65 alloy after thermal exposure to temperatures ranging from 450 [...] Read more.
As a critical material for high-temperature components of aero-engines, the mechanical properties of Ti65 alloy, subjected to high-temperature and long-term thermal exposure, directly affect its service safety. The room-temperature tensile properties of the Ti65 alloy after thermal exposure to temperatures ranging from 450 °C to 650 °C for 100 h were investigated. The results indicate that as the thermal exposure temperature increases, the strength of Ti65 alloy initially increases and then decreases, while ductility exhibits a decreasing trend. The strength of the thermally exposed alloy positively correlates with the size and content of the α2 phase. The ductility of the thermally exposed alloy is comprehensively influenced by the surface oxidation behavior, α2 phase, and silicides. After the prolonged thermal exposure, stress concentration at the crack tips within the oxide layer was enhanced with the increased thickness of the surface TiO2 oxide layer, leading to premature fracture due to reduced alloy ductility. Furthermore, the α2 phase in the matrix promotes the planar slip of dislocations, while silicides at the α/β phase boundaries hinder dislocation motion, causing dislocation pile-ups. Both behaviors facilitate crack nucleation and deteriorate alloy ductility. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 3615 KiB  
Article
Properties of Zirconia, Lithium Disilicate Glass Ceramics, and VITA ENAMIC® Hybrid Ceramic Dental Materials Following Ultra-Short Femtosecond (30 fs) Laser Irradiation
by Victor L. Lagunov, Bakhtiar Ali, Laurence J. Walsh, Andrew B. Cameron, Igor V. Litvinyuk, Maksym Rybachuk and Roy George
Appl. Sci. 2024, 14(17), 7641; https://doi.org/10.3390/app14177641 - 29 Aug 2024
Cited by 1 | Viewed by 1361
Abstract
This study investigated the dose-dependent changes in the chemical composition of three dental ceramic materials—zirconia, lithium disilicate (LD), and VITA ENAMIC® hybrid composite (VITA En)—following irradiation with an ultra-short femtosecond (fs) laser (800 nm, 30 fs, 1 kHz) [...] Read more.
This study investigated the dose-dependent changes in the chemical composition of three dental ceramic materials—zirconia, lithium disilicate (LD), and VITA ENAMIC® hybrid composite (VITA En)—following irradiation with an ultra-short femtosecond (fs) laser (800 nm, 30 fs, 1 kHz) in an ambient air environment using average laser power (76 mW) and scanning speeds (50, 100, and 200 mm/s), simulating dental treatment processes. The chemical composition of the ablated regions was analyzed using energy dispersive spectroscopy. All irradiated samples showed increased carbon content (by up to 42%) and reduced oxygen (by up to 33%). The observed increase in C content is likely attributed to a combination of surface reactions, adsorption of carbon from the ambient environment, and carbon deposition from the laser-induced plasma, all facilitated by the high-energy conditions created by fs-laser pulses. Scanning electron microscopy revealed ablation with progressive controlled melting and recrystallization, with an absence of pile-up features typically associated with significant thermal damage. These findings demonstrate that ultra-short fs-laser irradiation induces highly controlled, dose-dependent changes in the chemical composition and surface morphology of dental ceramic materials. Full article
(This article belongs to the Special Issue New Advances in Laser Dental Science and Biophotonics)
Show Figures

Figure 1

20 pages, 4201 KiB  
Article
To Reconstruct or Discard: A Comparison of Additive and Subtractive Charge Sharing Correction Algorithms at High and Low X-ray Fluxes
by Oliver L. P. Pickford Scienti and Dimitra G. Darambara
Sensors 2024, 24(15), 4946; https://doi.org/10.3390/s24154946 - 30 Jul 2024
Viewed by 812
Abstract
Effective X-ray photon-counting spectral imaging (x-CSI) detector design involves the optimisation of a wide range of parameters both regarding the sensor (e.g., material, thickness and pixel pitch) and electronics (e.g., signal-processing chain and count-triggering scheme). Our previous publications have looked at the role [...] Read more.
Effective X-ray photon-counting spectral imaging (x-CSI) detector design involves the optimisation of a wide range of parameters both regarding the sensor (e.g., material, thickness and pixel pitch) and electronics (e.g., signal-processing chain and count-triggering scheme). Our previous publications have looked at the role of pixel pitch, sensor thickness and a range of additive charge sharing correction algorithms (CSCAs), and in this work, we compare additive and subtractive CSCAs to identify the advantages and disadvantages. These CSCAs differ in their approach to dealing with charge sharing: additive approaches attempt to reconstruct the original event, whilst subtractive approaches discard the shared events. Each approach was simulated on data from a wide range of x-CSI detector designs (pixel pitches 100–600 µm, sensor thickness 1.5 mm) and X-ray fluxes (106–109 photons mm−2 s−1), and their performance was characterised in terms of absolute detection efficiency (ADE), absolute photopeak efficiency (APE), relative coincidence counts (RCC) and binned spectral efficiency (BSE). Differences between the two approaches were explained mechanistically in terms of the CSCA’s effect on both charge sharing and pule pileup. At low X-ray fluxes, the two approaches perform similarly, but at higher fluxes, they differ in complex ways. Generally, additive CSCAs perform better on absolute metrics (ADE and APE), and subtractive CSCAs perform better on relative metrics (RCC and BSE). Which approach to use will, thus, depend on the expected operating flux and whether dose efficiency or spectral efficiency is more important for the application in mind. Full article
(This article belongs to the Special Issue Advances in Particle Detectors and Radiation Detectors)
Show Figures

Figure 1

28 pages, 13227 KiB  
Review
Nanoindentation Test of Ion-Irradiated Materials: Issues, Modeling and Challenges
by Hailiang Ma, Ping Fan, Qiuyu Qian, Qiaoli Zhang, Ke Li, Shengyun Zhu and Daqing Yuan
Materials 2024, 17(13), 3286; https://doi.org/10.3390/ma17133286 - 3 Jul 2024
Cited by 2 | Viewed by 1464
Abstract
Exposure of metals to neutron irradiation results in an increase in the yield strength and a significant loss of ductility. Irradiation hardening is also closely related to the fracture toughness temperature shift or the ductile-to-brittle transition temperature (DBTT) shift in alloys with a [...] Read more.
Exposure of metals to neutron irradiation results in an increase in the yield strength and a significant loss of ductility. Irradiation hardening is also closely related to the fracture toughness temperature shift or the ductile-to-brittle transition temperature (DBTT) shift in alloys with a body-centered cubic (bcc) crystal structure. Ion irradiation is an indispensable tool in the study of the radiation effects of materials for nuclear energy systems. Due to the shallow damage depth in ion-irradiated materials, the nanoindentation test is the most commonly used method for characterizing the changes in mechanical properties after ion irradiation. Issues that affect the analysis of irradiation hardening may arise due to changes in the surface morphology and mechanical properties, as well as the inherent complexities in nanoscale indentation. These issues, including changes in surface roughness, carbon contamination, the pile-up effect, and the indentation size effect, with corresponding measures, were reviewed. Modeling using the crystal plasticity finite element method of the nanoindentation of ion-irradiated materials was also reviewed. The challenges in extending the nanoindentation test to high temperatures and to multiscale simulation were addressed. Full article
Show Figures

Figure 1

14 pages, 28186 KiB  
Article
Low-Cycle Corrosion Fatigue Deformation Mechanism for an α+β Ti-6Al-4V-0.55Fe Alloy
by Yangyang Sun, Shenwei Qian, Hui Chang, Liang Feng, Feng Li and Lian Zhou
Metals 2024, 14(6), 720; https://doi.org/10.3390/met14060720 - 17 Jun 2024
Cited by 1 | Viewed by 1154
Abstract
Titanium alloys with high strength and good corrosion resistance have become one of the critical bearing structural materials in marine engineering. But in service, corrosion fatigue would occur under the synergetic action of cyclic external load and corrosion environment, threatening the safety of [...] Read more.
Titanium alloys with high strength and good corrosion resistance have become one of the critical bearing structural materials in marine engineering. But in service, corrosion fatigue would occur under the synergetic action of cyclic external load and corrosion environment, threatening the safety of components. In this study, compared with low-cycle fatigue in laboratory air, the low-cycle corrosion fatigue deformation mechanism and fracture characteristic of the Ti-6Al-4V-0.55Fe alloy were investigated in 3.5% NaCl corrosion solution under selected stress amplitudes. The results showed that under low stress amplitude, corrosion fatigue was determined by fatigue damage and corrosion damage, causing a reduction in fatigue life. The local stress concentration caused by corrosion pits and dislocations pile-up accelerated the initiation of fatigue cracks, and other corrosion behavior including crevice corrosion promoted fatigue crack propagation; the corrosion solution increased the surface damage. While under high stress amplitude, due to the short contact time between the sample and solution and higher applied stress, the fatigue life is determined by fatigue damage caused by multiple slips. Full article
Show Figures

Figure 1

Back to TopTop