Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = overtopping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7837 KiB  
Technical Note
Fluid Force Reduction and Flow Structure at a Coastal Building with Different Outer Frame Openings Following Primary Defensive Alternatives: An Experiment-Based Review
by Kannangara Dissanayakalage Charitha Rangana Dissanayaka and Norio Tanaka
Geosciences 2024, 14(11), 287; https://doi.org/10.3390/geosciences14110287 - 26 Oct 2024
Viewed by 492
Abstract
A well-constructed tsunami evacuation facility can be crucial in a disaster. Understanding a tsunami’s force and the flow structure variation across various building configurations are essential to engineering designs. Hence, this study assessed the steady-state flow structure at building models (BM) incorporating outer [...] Read more.
A well-constructed tsunami evacuation facility can be crucial in a disaster. Understanding a tsunami’s force and the flow structure variation across various building configurations are essential to engineering designs. Hence, this study assessed the steady-state flow structure at building models (BM) incorporating outer frame openings, including piloti-type designs with a different width-to-spacing ratio of piloti-type columns following an embankment model (EM) with a vegetation model (VM). The experiments also demonstrated the outer frame opening percentage’s impact and orientation toward the overtopping tsunami flow at the BM. The results show that the arrangement of an opening on the outer frame and the piloti-type columns are critical in reducing the tsunami force concerning the experimental setup. Moreover, allowing a free surface flow beneath the BM implies that the correct piloti-pillar arrangement is crucial for resilient structure design. In addition, the three-dimensional numerical simulation was utilized to explain the turbulence intensity of the overtopping flow around the critical BM type. The derived resistance coefficient (CR) defined the drag and the hydrostatic characteristics at the BM due to the overtopping tsunami flow. Furthermore, for the impervious BM, the value CR was consistent with the previous studies, while the CR value for the BMs with an outer frame opening was directly coincident with the percentage of porosity. Full article
Show Figures

Figure 1

31 pages, 14974 KiB  
Article
Defining and Mitigating Flow Instabilities in Open Channels Subjected to Hydropower Operation: Formulations and Experiments
by Miguel Tavares, Modesto Pérez-Sánchez, Oscar E. Coronado-Hernández, Alban Kuriqi and Helena M. Ramos
Water 2024, 16(21), 3069; https://doi.org/10.3390/w16213069 - 26 Oct 2024
Viewed by 500
Abstract
A thorough literature review was conducted on the effects of free surface oscillation in open channels, highlighting the risks of the occurrence of positive and negative surge waves that can lead to overtopping. Experimental analyses were developed to focus on the instability of [...] Read more.
A thorough literature review was conducted on the effects of free surface oscillation in open channels, highlighting the risks of the occurrence of positive and negative surge waves that can lead to overtopping. Experimental analyses were developed to focus on the instability of the flow due to constrictions, gate blockages, and the start-up and shutdown of hydropower plants. A forebay at the downstream end of a tunnel or canal provides the right conditions for the penstock inlet and regulates the temporary demand of the turbines. In tests with a flow of 60 to 100 m3/h, the effects of a gradually and rapidly varying flow in the free surface profile were analyzed. The specific energy and total momentum are used in the mathematical characterization of the boundaries along the free surface water profile. A sudden turbine stoppage or a sudden gate or valve closure can lead to hydraulic drilling and overtopping of the infrastructure wall. At the same time, a PID controller, if programmed appropriately, can reduce flooding by 20–40%. Flooding is limited to 0.8 m from an initial amplitude of 2 m, with a dissipation wave time of between 25 and 5 s, depending on the flow conditions and the parameters of the PID characteristics. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

22 pages, 4886 KiB  
Article
Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models
by Paul Kent, Soroush Abolfathi, Hannah Al Ali, Tabassom Sedighi, Omid Chatrabgoun and Alireza Daneshkhah
Sustainability 2024, 16(20), 9110; https://doi.org/10.3390/su16209110 - 21 Oct 2024
Viewed by 617
Abstract
This paper presents a novel mathematical framework for assessing and predicting the resilience of critical coastal infrastructures against wave overtopping hazards and extreme climatic events. A probabilistic sensitivity analysis model is developed to evaluate the relative influence of hydrodynamic, geomorphological, and structural factors [...] Read more.
This paper presents a novel mathematical framework for assessing and predicting the resilience of critical coastal infrastructures against wave overtopping hazards and extreme climatic events. A probabilistic sensitivity analysis model is developed to evaluate the relative influence of hydrodynamic, geomorphological, and structural factors contributing to wave overtopping dynamics. Additionally, a stochastic Gaussian process (GP) model is introduced to predict the mean overtopping discharge from coastal defences. Both the sensitivity analysis and the predictive models are validated using a large homogeneous dataset comprising 163 laboratory and field-scale tests. Statistical evaluations demonstrate the superior performance of the GPs in identifying key parameters driving wave overtopping and predicting mean discharge rates, outperforming existing regression-based formulae. The proposed model offers a robust predictive tool for assessing the performance of critical coastal protection infrastructures under various climate scenarios. Full article
(This article belongs to the Special Issue Operations Research: Optimization, Resilience and Sustainability)
Show Figures

Figure 1

18 pages, 16018 KiB  
Article
Case Study on the Adaptive Assessment of Floods Caused by Climate Change in Coastal Areas of the Republic of Korea
by Taeuk Kang and Jungmin Lee
Water 2024, 16(20), 2987; https://doi.org/10.3390/w16202987 - 19 Oct 2024
Viewed by 524
Abstract
This study aims to assess the adaptability of coastal areas in the Republic of Korea to future climate change-induced flooding. Coastal areas can be susceptible to complex external factors, including rainfall, tide levels, storm surge wave overtopping, etc. The study employs an integrated [...] Read more.
This study aims to assess the adaptability of coastal areas in the Republic of Korea to future climate change-induced flooding. Coastal areas can be susceptible to complex external factors, including rainfall, tide levels, storm surge wave overtopping, etc. The study employs an integrated approach to address this, connecting hydrological and marine engineering technologies. The models utilized in this study encompass XP-SWMM, ADCIRC, SWAN, and FLOW-3D. This study analyzed floods in 2050 and 2100, considering expected rainfall patterns, sea level rising, and an increase in typhoon intensity based on climate change scenarios for six coastal areas in the Republic of Korea. We reviewed the adaptability of flooding to climate change in each region. Full article
Show Figures

Figure 1

19 pages, 5814 KiB  
Article
Experimental Study on the Vibration Characteristics of a Wave-Induced Oscillation Heaving Plate Energy Capture Device
by Jijian Lian, Xiaowei Wang, Xiaoqun Wang, Yanjia Chen, Likun Liu, Xin Li and Lingyue Xu
J. Mar. Sci. Eng. 2024, 12(10), 1797; https://doi.org/10.3390/jmse12101797 - 9 Oct 2024
Viewed by 580
Abstract
In order to develop green energy, reduce carbon emissions, and alleviate global warming and the green energy crisis, many researchers focus on wave energy, using a device to convert wave energy into electricity. The three main types of wave energy converters are the [...] Read more.
In order to develop green energy, reduce carbon emissions, and alleviate global warming and the green energy crisis, many researchers focus on wave energy, using a device to convert wave energy into electricity. The three main types of wave energy converters are the overtopping type, the oscillating water column type, and the oscillating body type, and for most of them, the power generation efficiency is low. The research team in this paper proposed a wave energy converter for a wave-induced oscillation heave plate. The plate vibrates up and down under the action of waves, and the captured energy of the vibrating plate transfers the energy to the generator, so as to generate electricity. There is electricity only when there is vibration; therefore, the vibration characteristic of the converter is crucial to power generation. So, the vibration characteristics of the energy capture structure of the converter were studied experimentally. The test results show that the energy harvesting device can vibrate, and the vibration effect is good, which further indicates that the device can generate electricity. The effects of different wave conditions and system stiffnesses on amplitude and corresponding amplitude were studied, and the amplitude increases with the increase in wave height and period and decreases with the increase in system stiffness. The amplitude response decreases with the increase in wave height and system stiffness. Under the test conditions, the maximum amplitude of the system is 6.23 cm (when the wave period is 1.40 s, the wave height is 0.25 m, and the system stiffness is 1735.62 N/m), and the maximum amplitude ratio is 0.34 (when the wave period is 1.1 s, the wave height is 0.10 m, and the system stiffness is 1735.62 N/m). Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

20 pages, 7545 KiB  
Article
Numerical Evaluation of Wave Dissipation on a Breakwater Slope Covered by Precast Blocks with Different Geometrical Characteristics
by Bowen Jiao, Qingli Zhao, Fang Chen, Chunhui Liu and Qinghe Fang
J. Mar. Sci. Eng. 2024, 12(10), 1735; https://doi.org/10.3390/jmse12101735 - 2 Oct 2024
Viewed by 465
Abstract
Slopes suffer damage from waves in coastal environments. Precast blocks with well-designed geometrical characteristics can benefit the construction of revetments by mitigating the issue of wave overtopping and dissipating wave energy. In this study, we numerically studied the effect of the geometrical characteristics [...] Read more.
Slopes suffer damage from waves in coastal environments. Precast blocks with well-designed geometrical characteristics can benefit the construction of revetments by mitigating the issue of wave overtopping and dissipating wave energy. In this study, we numerically studied the effect of the geometrical characteristics of precast blocks on wave overtopping by carrying out a numerical simulation of wave overtopping on a slope covered with precast blocks. A total of three different types of blocks were considered in this study to determine the optimal geometric shape using a validated numerical model. Our numerical investigation demonstrated that the roughness of the precast block plays an important role in lessening the height of the wave run-up. Concave and embedded regular hexagons could reduce the wave run-up height by 44.6% compared with smooth slopes within a 2 s wave period. Herein, we evaluate and discuss the influence of the geometrical characteristics of a given precast block, such as thickness, aperture, and wave dissipation notch, on wave run-up. We also present an empirical formula for predicting wave run-up on a slope covered by a concave and embedded regular hexagon-type prefabricated block. This study provides valuable insights into the design of prefabricated revetment blocks. Full article
(This article belongs to the Special Issue Advanced Studies in Breakwaters and Coastal Protection)
Show Figures

Figure 1

22 pages, 3493 KiB  
Article
A Coupled River–Overland (1D-2D) Model for Fluvial Flooding Assessment with Cellular Automata
by Hsiang-Lin Yu, Tsang-Jung Chang, Chia-Ho Wang and Shyh-Yuan Maa
Water 2024, 16(18), 2703; https://doi.org/10.3390/w16182703 - 23 Sep 2024
Viewed by 797
Abstract
To provide accurate and efficient forecasting of fluvial flooding assessment in the river basin, the present study links the well-known CA-based urban inundation modeling (2D-OFM-CA) with a one-dimensional river flow model (1D-RFM) as a coupled 1D-2D river–overland modeling. Rules to delineate the geometric [...] Read more.
To provide accurate and efficient forecasting of fluvial flooding assessment in the river basin, the present study links the well-known CA-based urban inundation modeling (2D-OFM-CA) with a one-dimensional river flow model (1D-RFM) as a coupled 1D-2D river–overland modeling. Rules to delineate the geometric linking between the 1D-RFM and 2D-OFM-CA along embankments are developed. The corresponding exchanged water volume across an embankment is then computed by using the free and submerged weir flow formulas. The applicability of the proposed coupled model on fluvial flooding assessment is then assessed and compared with a well-recognized commercial software (HEC-RAS model) through an idealized fluvial case and an extensively studied real-scale fluvial case in the Severn River Basin. Based on the simulated results concerning the numerical accuracy, the coupled model is found to give similar results in the aspects of the river flow and overland flow modeling in both two study cases, which demonstrates the effectiveness of the linking methodology between the 1D-RFM and 2D-OFM-CA. From the viewpoint of numerical efficiency, the coupled model is 47% and 41% faster than the HEC-RAS model in the two cases, respectively. The above results indicate that the coupled model can reach almost the same accuracy as the HEC-RAS model with an obvious reduction in its computational time. Hence, it is concluded that the coupled model has considerable potential to be an effective alternative for fluvial flooding assessment in the river basin. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

18 pages, 1713 KiB  
Review
Empirical Predictions on Wave Overtopping for Overtopping Wave Energy Converters: A Systematic Review
by Deping Cao, Jie He and Hao Chen
Processes 2024, 12(9), 1940; https://doi.org/10.3390/pr12091940 - 10 Sep 2024
Viewed by 616
Abstract
Over the past three decades, the development and testing of various overtopping wave energy converters (OWECs) have highlighted the importance of accurate wave run-up and overtopping predictions on those devices. This study systematically reviews the empirical formulas traditionally used for predicting overtopping across [...] Read more.
Over the past three decades, the development and testing of various overtopping wave energy converters (OWECs) have highlighted the importance of accurate wave run-up and overtopping predictions on those devices. This study systematically reviews the empirical formulas traditionally used for predicting overtopping across different types of breakwaters by assessing their strengths, limitations, and applicability to OWECs. This provides a foundation for future research and development in OWECs. Key findings reveal that empirical formulas for conventional breakwaters can be categorized as mild or steep slopes and vertical structures based on the angle of the slope. For the same relative crest freeboards, the dimensionless average overtopping discharge of mild slopes is larger than that of vertical structures. However, the formula features predictions within a similar range for small relative crest freeboards. The empirical formulas for predicting overtopping in fixed and floating OWECs are modified from the predictors developed for conventional breakwaters with smooth, impermeable and linear slopes. Different correction coefficients are introduced to account for the effects of limited draft, inclination angle, and low relative freeboard. The empirical models for floating OWECs, particularly the Wave Dragon model, have been refined through prototype testing to account for the unique 3D structural reflector’s influence and dynamic wave interactions. Full article
(This article belongs to the Special Issue Design and Utilization of Wind Turbines/Wave Energy Convertors)
Show Figures

Figure 1

19 pages, 5887 KiB  
Article
Evaluating the Effectiveness of Seepage Countermeasures and Retrofitting Strategies for Mitigating Nappe Flow-Induced Reverse Flow and Erosion for Overtopping Flow from a Levee
by Liaqat Ali, Kento Sekine and Norio Tanaka
Geosciences 2024, 14(9), 233; https://doi.org/10.3390/geosciences14090233 - 29 Aug 2024
Viewed by 486
Abstract
Levee failure due to nappe flow and subsequent erosion presents a significant challenge to flood protection infrastructure. This study evaluates the effectiveness of horizontal drainage layers, a common seepage control method, in mitigating these risks. While many traditional solutions to mitigate overtopping are [...] Read more.
Levee failure due to nappe flow and subsequent erosion presents a significant challenge to flood protection infrastructure. This study evaluates the effectiveness of horizontal drainage layers, a common seepage control method, in mitigating these risks. While many traditional solutions to mitigate overtopping are costly and complex, horizontal drainage layers offer a promising and cost-effective alternative. These layers not only address seepage control but also manage nappe flow-induced erosion, potentially reducing construction and maintenance costs. Despite extensive research on their role in seepage control, a gap remains in understanding their effectiveness against overtopping-induced erosion, particularly in managing reverse flow. Existing studies often address seepage control or nappe flow erosion separately, overlooking the integrated impact of these layers. This study aims to address this gap by evaluating the performance of horizontal drainage layers under simulated overtopping conditions. The research involves two series of experiments, Series I: Focuses on newly built levees equipped with full (HD15L50 and HD25L50, where the thicknesses are 15 and 25 cm, respectively, with a horizontal drainage layer length of 50 cm and a crest length of 40 cm), partial length (HD15L40 and HD25L40), and short/reduced length (HD15L30 and HD25L30). The results showed that full-length layers reduce erosion inside the levee body and foundation by almost 100% and enhance levee stability due to their superior ability to dissipate hydraulic energy. Series II: Investigates practical solutions for retrofitting existing levees using shorter drainage layers with extended crests and gauzed sheets (HD15L15L30C60GH and HD25L30C60GH, where the thicknesses are 15 and 25 cm, the drainage length is 30 cm, and the crest is extended to 60 cm with gauzed sheets). Although shorter layers were less effective than full-length ones, extending the levee crest significantly improved their performance, achieving protection levels comparable to full-length layers, providing a valuable solution for upgrading existing levees. Overall, this study offers valuable insights by systematically evaluating and optimizing seepage control techniques. These findings can be directly applied to guide levee design, maintenance, and risk reduction strategies. This research contributes significantly to improving the resilience of levee systems against water pressure and ensuring their long-term stability. Full article
Show Figures

Figure 1

23 pages, 9057 KiB  
Article
Innovative Designs for Cotton Bionic Topping Manipulator
by Yang Xu, Changjie Han, Jing Zhang, Bin Hu, Xu Ma and Hanping Mao
Agriculture 2024, 14(9), 1469; https://doi.org/10.3390/agriculture14091469 - 28 Aug 2024
Viewed by 527
Abstract
Topping reduces the growing point at the top of cotton plants. This process enables the plant to allocate more energy and nutrients to fruit growth, thereby enhancing both the quantity and quality of the fruit. Current cotton-topping machinery often leads to over-topping, which [...] Read more.
Topping reduces the growing point at the top of cotton plants. This process enables the plant to allocate more energy and nutrients to fruit growth, thereby enhancing both the quantity and quality of the fruit. Current cotton-topping machinery often leads to over-topping, which can affect crop yield and quality. Manual topping is effective in controlling over-topping due to its adherence to agronomic requirements, but it is labor-intensive. This study integrated principles from biology (bionics) to design a manipulator that mimics the action of hand pinching during manual topping. Screening grids of different sizes were designed based on a statistical analysis of the biological parameters of cotton tops to optimize the topping process. A disc cam mechanism was developed to enable the automatic opening and closing of the manipulator. From the results, it was evident that the spring tension must exceed 81.5 N to properly cut the cotton stem near the top. The spacing of the screening grid (40 mm) and the position of the topping manipulator (less than 50 mm) were optimized based on experimental results. Performance testing showed promising results with a 100% topping rate. This study not only identified the challenges with current cotton-topping methods but also proposed a bionics-inspired solution; a bionic manipulator equipped with a screening grid was proposed to achieve high accuracy in cotton topping, which significantly reduced over-topping rates to 6.67%. These findings are crucial for advancing agricultural technology and improving efficiency in cotton cultivation. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 10464 KiB  
Article
Study on the Evolution Characteristics of Dam Failure Due to Flood Overtopping of Tailings Ponds
by Zhijie Duan, Jinglong Chen, Jing Xie, Quanming Li, Hong Zhang and Cheng Chen
Water 2024, 16(17), 2406; https://doi.org/10.3390/w16172406 - 27 Aug 2024
Viewed by 828
Abstract
There has been a frequent occurrence of tailing dam failures in recent years, leading to severe repercussions. Flood overtopping is an important element contributing to these failures. Nevertheless, there is a scarcity of studies about the evolutionary mechanisms of dam breaches resulting from [...] Read more.
There has been a frequent occurrence of tailing dam failures in recent years, leading to severe repercussions. Flood overtopping is an important element contributing to these failures. Nevertheless, there is a scarcity of studies about the evolutionary mechanisms of dam breaches resulting from flood overtopping. In order to fill this knowledge vacuum, this study focused on the evolutionary characteristics and triggering mechanisms of overtopping failures, utilizing the Heshangyu tailings pond as a prototype. The process of overtopping breach evolution was revealed by the conduction of small-scale model testing. A scaled-down replica of the tailings pond was constructed at a ratio of 1:150, and a controlled experiment was conducted to simulate a breach in the dam caused by water overflowing. Based on the results, the following conclusions were drawn: (1) The rise in water level in the pond caused the tailings to become saturated, leading to liquefaction flow and local slope sliding at the initial dam. If the sediment-carrying capacity of the overflowing water exceeded the shear strength of the tailings, water erosion would accelerate landslides on the slope, generating a sand-laden water flow. (2) The breach was primarily influenced by water erosion, which subsequently resulted in both laterally widened and longitudinally deepened breach. As the breach expanded, the sand-carrying capacity of the water flow increased, leading to a faster rate of failure. The breach process of overtopping can be categorized into four distinct stages: gully formation stage, lateral broadening stage of gully, cracks and collapse on the slope surface, and stable stage of collapse. (3) The tailings from the outflow spread downstream in a radial pattern, forming an alluvial fan. Additionally, the depth of the deposited mud first increased and subsequently declined as the distance from the breach grew. The findings of this research provide an important basis for the prevention and control of tailings dam breach disasters due to overtopping. Full article
Show Figures

Figure 1

23 pages, 16937 KiB  
Article
Study on the Characteristics of Flow over a Seawall and Its Impact on Pedestrians under Solitary Wave Action
by Yadong Hou, Xizeng Zhao, Gang Tao, Zhaoyuan Huang, Nanhui Xu and Zequan Leng
Water 2024, 16(16), 2357; https://doi.org/10.3390/w16162357 - 22 Aug 2024
Viewed by 788
Abstract
In response to the incident of tourists falling into the sea due to waves on the seawall berm at Macau Road, Qingdao, during the passage of Typhoon “Songda” in 2022, a combination of numerical simulations and physical model experiments was performed to investigate [...] Read more.
In response to the incident of tourists falling into the sea due to waves on the seawall berm at Macau Road, Qingdao, during the passage of Typhoon “Songda” in 2022, a combination of numerical simulations and physical model experiments was performed to investigate the mechanics of the event, with emphasis on the wave flow characteristics and the flow evolution process on the seawall berm as well as the force exerted on a human body-equivalent cylinder model. The study found that the thickness of the return flow was significantly greater than that of the overtopping flow on the landward part of the berm. The recoil forces applied to the model on the berm were larger than the impact forces, and the ratio tended towards 1 as the wave height increased. In addition, the stability of pedestrians on the seawall berm was analyzed. The instability conditions for pedestrians in cross-wave flows differed slightly from those in floods. Full article
(This article belongs to the Special Issue Wave–Structure Interaction in Coastal and Ocean Engineering)
Show Figures

Figure 1

22 pages, 7491 KiB  
Article
Computational Study of Overtopping Phenomenon over Cylindrical Structures Including Mitigation Structures
by Gustavo A. Esteban, Xabier Ezkurra, Iñigo Bidaguren, Iñigo Albaina and Urko Izquierdo
J. Mar. Sci. Eng. 2024, 12(8), 1441; https://doi.org/10.3390/jmse12081441 - 20 Aug 2024
Viewed by 573
Abstract
Wave overtopping occurring in offshore wind renewable energy structures such as tension leg platforms (TLPs) or semi-submersible platforms is a phenomenon that is worth studying and preventing in order to extend the remaining useful life of the corresponding facilities. The behaviour of this [...] Read more.
Wave overtopping occurring in offshore wind renewable energy structures such as tension leg platforms (TLPs) or semi-submersible platforms is a phenomenon that is worth studying and preventing in order to extend the remaining useful life of the corresponding facilities. The behaviour of this phenomenon has been extensively reported for linear coastal defences like seawalls. However, no referenced study has treated the case of cylindrical structures typical of these applications to a similar extent. The aim of the present study is to define an empirical expression that portrays the relative overtopping rate over a vertical cylinder including a variety of bull-nose type mitigation structures to reduce the overtopping rate in the same fashion as for the linear structures characteristic of shoreline defences. Hydrodynamic interaction was studied by means of an experimentally validated numerical model applied to a non-impulsive regular wave regime and the results were compared with the case of a plain cylinder to evaluate the expected improvement in the overtopping performance. Four different types of parapets were added to the crest of the base cylinder, with different parapet height and horizontal extension, to see the influence of the geometry on the mitigation efficiency. Computational results confirmed the effectivity of the proposed solution in the overtopping reduction, though the singularity of each parapet geometry did not lead to an outstanding difference between the analysed options. Consequently, the resulting overtopping decrease in all the proposed geometries could be modelled by a unique specific Weibull-type function of the relative freeboard, which governed the phenomenon, showing a net reduction in comparison with the cylinder without the geometric modifications. In addition, the relationship between the reduced relative overtopping rate and the mean flow thickness over the vertical cylinder crest was studied as an alternative methodology to assess the potential damage caused by overtopping in real structures without complex volumetric measurements. The collection of computational results was fitted to a useful function, allowing for the definition of the overtopping discharge once the mean flow thickness was known. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

35 pages, 11986 KiB  
Article
Modeling Ocean Swell and Overtopping Waves: Understanding Wave Shoaling with Varying Seafloor Topographies
by Chak-Nang Wong and Kwok-Wing Chow
J. Mar. Sci. Eng. 2024, 12(8), 1368; https://doi.org/10.3390/jmse12081368 - 11 Aug 2024
Viewed by 1220
Abstract
One risk posed by hurricanes and typhoons is local inundation as ocean swell and storm surge bring a tremendous amount of energy and water flux to the shore. Numerical wave tanks are developed to understand the dynamics computationally. The three-dimensional equations of motion [...] Read more.
One risk posed by hurricanes and typhoons is local inundation as ocean swell and storm surge bring a tremendous amount of energy and water flux to the shore. Numerical wave tanks are developed to understand the dynamics computationally. The three-dimensional equations of motion are solved by the software ‘Open Field Operation And Manipulation’ v2206. The ‘Large Eddy Simulation’ scheme is adopted as the turbulence model. A fifth-order Stokes wave is taken as the inlet condition. Breaking, ‘run-up’, and overtopping waves are studied for concave, convex, and straight-line seafloors for a fixed ocean depth. For small angles of inclination (<10°), a convex seafloor displays wave breaking sooner than a straight-line one and thus actually delivers a smaller volume flux to the shore. Physically, a convex floor exhibits a greater rate of depth reduction (on first encounter with the sloping seafloor) than a straight-line one. Long waves with a speed proportional to the square root of the depth thus experience a larger deceleration. Nonlinear (or ‘piling up’) effects occur earlier than in the straight-line case. All these scenarios and reasoning are reversed for a concave seafloor. For large angles of inclination (>30°), impingement, reflection, and deflection are the relevant processes. Empirical dependence for the setup and swash values for a convex seafloor is established. The reflection coefficient for waves reflected from the seafloor is explored through Fourier analysis, and a set of empirical formulas is developed for various seafloor topographies. Understanding these dynamical factors will help facilitate the more efficient designing and construction of coastal defense mechanisms against severe weather. Full article
(This article belongs to the Special Issue Hydrodynamic Research of Marine Structures)
Show Figures

Figure 1

18 pages, 3543 KiB  
Article
Multi-Objective Optimization of the Seawall Cross-Section by DYCORS Algorithm
by Yuanyuan Tao and Pengzhi Lin
Water 2024, 16(16), 2222; https://doi.org/10.3390/w16162222 - 6 Aug 2024
Viewed by 769
Abstract
The purpose of this research is to develop a new method for automatically optimizing the seawall cross-section with composite slopes and a berm, considering both overtopping discharge and construction cost. Minimizing these competing multi-objectives is highly challenging due to the intricate geometry of [...] Read more.
The purpose of this research is to develop a new method for automatically optimizing the seawall cross-section with composite slopes and a berm, considering both overtopping discharge and construction cost. Minimizing these competing multi-objectives is highly challenging due to the intricate geometry of seawalls. In this study, the surrogate model optimization algorithm DYCORS (Dynamic COordinate search using Response Surface models) is employed to search for the optimal seawall geometry, coupled with the ANN (Artificial Neural Network) model for determining the overtopping discharge. A total of 20 trials have been run to evaluate the performance of our methodology. Even the worst-performing Trial 7 among these 20 trials shows a satisfactory performance, with a reduction of 17.67% in overtopping discharge and a 12.1% decrease in cost compared to the original solution. Furthermore, compared to other optimization schemes using GAs (Genetic Algorithms) with the same decision vectors, constraints, and multi-objective functions, the methodology has been proven to be more effective and robust. Additionally, when facing different combinations of wave conditions and water levels, there was a 27.8% reduction in objective function value compared to the original solution. The optimal results indicate that this method can still be effectively applied for optimizing the seawall cross-section as it is a general method. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

Back to TopTop