Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,622)

Search Parameters:
Keywords = mass spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5328 KiB  
Article
In Vitro Inhibition of Enzymes and Antioxidant and Chemical Fingerprinting Characteristics of Azara serrata Ruiz & Pav. Fruits, an Endemic Plant of the Valdivian Forest of Chile
by Philipp Hopfstock, Javier Romero-Parra, Peter Winterhalter, Recep Gök and Mario Simirgiotis
Plants 2024, 13(19), 2756; https://doi.org/10.3390/plants13192756 (registering DOI) - 30 Sep 2024
Abstract
The World Health Organization has emphasized the importance of consuming small fruits for the prevention of chronic health problems, including diabetes, cardiovascular diseases, cancer, and obesity, which are named chronic non-communicable diseases (NCDs). Azara serrata Ruiz & Pav., commonly called “aroma de Castilla”, [...] Read more.
The World Health Organization has emphasized the importance of consuming small fruits for the prevention of chronic health problems, including diabetes, cardiovascular diseases, cancer, and obesity, which are named chronic non-communicable diseases (NCDs). Azara serrata Ruiz & Pav., commonly called “aroma de Castilla”, is a shrub endemic to Chile from the Salicaceae family that produces an underutilized blue-grey berry that grows wild in southern Chile. The species is widely used as a medicinal plant by the Andean communities of southern Chile. In this work, a high-resolution mass spectrometric analysis of the methanolic extract revealed several phenolic compounds for the first time in the edible berry of this endemic species. Furthermore, several glycosylated anthocyanins were detected and quantified using UHPLC coupled with UV/Vis detection and trapped ion mobility mass spectrometry (UHPLC-DAD-TIMS-TOF) for the anthocyanin-rich extract, which was prepared using an optimized anthocyanin extraction protocol. The extract proved to be active in the inhibition of several enzymes linked to NCDs, such as acetylcholinesterase, tyrosinase, amylase, lipase, and glucosidase (IC50 = 3.92 ± 0.23, 12.24 ± 0.03, 11.12 ± 0.10, 32.43 ± 0.0, and 371.6 ± 0.0 μg/mL, respectively). Furthermore, the extract concentrated in anthocyanins showed good antioxidant activity evidenced by the bleaching of the radicals DPPH and ABTS, ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC). The results show that these neglected endemic small berries can be a source of healthy phytochemicals. These Chilean berries can be used as functional food and their extracts are candidates for use as functional ingredients in naturally healthy products. Full article
11 pages, 1733 KiB  
Article
Methods for a Non-Targeted Qualitative Analysis and Quantification of Benzene, Toluene, and Xylenes by Gas Chromatography-Mass Spectrometry of E-Liquids and Aerosols in Commercially Available Electronic Cigarettes in Mexico
by Alejandro Svarch-Pérez, María Vanessa Paz-González, Carlota Ruiz-Juárez, Juan C. Olvera-Chacón, Angelina Larios-Solís, Santiago Castro-Gaytán, Eugenia Aldeco-Pérez and Jorge Carlos Alcocer-Varela
Int. J. Environ. Res. Public Health 2024, 21(10), 1308; https://doi.org/10.3390/ijerph21101308 - 30 Sep 2024
Abstract
The chemical components of the e-liquids and aerosols contained in electronic nicotine delivery systems (ENDSs), better known as vapes, were evaluated. The analytical technique used was gas chromatography–mass spectrometry, where the extraction and injection methods were established in this study. The work consisted [...] Read more.
The chemical components of the e-liquids and aerosols contained in electronic nicotine delivery systems (ENDSs), better known as vapes, were evaluated. The analytical technique used was gas chromatography–mass spectrometry, where the extraction and injection methods were established in this study. The work consisted of the analysis of twenty samples of disposable electronic cigarettes prefilled with new e-liquid, of a known brand, flavor, volume, and, in some of them, the percentage of nicotine and the number of puffs per device were indicated on the label. We detected the presence of many substances (at a qualitative and semi-quantitative level), and we achieved the quantification of benzene, toluene, and xylenes (BTX), dangerous substances that cause severe damage to health. Several of the e-liquids and aerosols present BTX concentrations above the permissible exposure limit (PEL), recommended by the Occupational Safety and Health Administration (OSHA): benzene in aerosol samples 80% > PEL, and toluene in aerosol samples 45% > PEL. The number of chemical compounds found in the samples increases from 13 to 167, the average being 52 compounds for the water extraction method, 42 compounds for the methanol extraction method of e-liquids, and 107 compounds for the direct aerosol analysis. It is a fact that many of those compounds, especially BTX, can cause serious effects on human health, affecting the respiratory, digestive, cardiovascular, pulmonary, and immune systems, as well as the brain. Therefore, the use of these devices should be considered with caution, since the substances and their chemical nature may pose significant health risks to both users and those exposed to secondhand emissions. Full article
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Analysis of the Distribution and Influencing Factors of Antibiotic Partition Coefficients in the Fenhe River Basin
by Jing Zhao, Hailong Yin and Linfang Wang
Water 2024, 16(19), 2793; https://doi.org/10.3390/w16192793 - 30 Sep 2024
Abstract
Affected by point and non-point source pollution, the Fenhe River Basin faces significant environmental challenges. This study aimed to analyze the distribution characteristics and influencing factors of antibiotics in the water and sediments of the Fenhe River Basin. Samples were collected from 23 [...] Read more.
Affected by point and non-point source pollution, the Fenhe River Basin faces significant environmental challenges. This study aimed to analyze the distribution characteristics and influencing factors of antibiotics in the water and sediments of the Fenhe River Basin. Samples were collected from 23 sites within the basin, and 26 antibiotics from five different classes were detected and analyzed using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). The water–sediment partition coefficient (Kp) was calculated, and spatial analysis was conducted using geographic information system (GIS) technology. The results showed that 25 antibiotics were detected in the water, with concentrations ranging from 130 to 1615 ng/L, and 17 antibiotics were detected in the sediments, with concentrations ranging from 121 to 426 μg/kg. For quinolones (QNs), except for ofloxacin, all others could be calculated with overall high values of Kp ranging from 692 to 16,106 L/kg. The Kp values for QNs were generally higher in the midstream, with considerable point source pollution from industries and non-point source pollution from developed agriculture. The distribution of Kp is closely associated with risk. This study found that the Kp values of the antibiotics were influenced by various factors such as temperature, water flow, and the physicochemical properties of sediments. Correlation analysis revealed significant relationships between Kp and parameters such as river width, water depth, water quality (total nitrogen, total phosphorus, and chemical oxygen demand), and sediment pH and clay content. Full article
(This article belongs to the Special Issue Basin Non-point Source Pollution)
Show Figures

Figure 1

13 pages, 4507 KiB  
Article
Chemotaxonomy of Southeast Asian Peperomia (Piperaceae) Using High-Performance Thin-Layer Chromatography Colour Scale Fingerprint Imaging and Gas Chromatography–Mass Spectrometry
by Yutthana Banchong, Theerachart Leepasert, Pakawat Jarupund, Trevor R. Hodkinson, Fabio Boylan and Chalermpol Suwanphakdee
Plants 2024, 13(19), 2751; https://doi.org/10.3390/plants13192751 - 30 Sep 2024
Abstract
The morphological characters of Southeast Asia’s indigenous Peperomia species are very similar, especially in their flower structures. The flowers are simple, hermaphrodite and lack a perianth. Therefore, many species are hard to distinguish using morphological characters alone. Here, we apply chemometric data for [...] Read more.
The morphological characters of Southeast Asia’s indigenous Peperomia species are very similar, especially in their flower structures. The flowers are simple, hermaphrodite and lack a perianth. Therefore, many species are hard to distinguish using morphological characters alone. Here, we apply chemometric data for species identification and classification, gathered using multiwavelength detection combined with the colour scale High-Performance Thin-Layer Chromatography (HPTLC) fingerprinting procedure and chemical compounds determined by Gas Chromatography–Mass Spectrometry (GC-MS). Fourteen taxa were investigated using hexane, ethyl acetate and ethanol solvent extractions. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used with the colour scale fingerprints to classify the Peperomia species. The PCA and HCA using the chromatogram profile from hexane divided the taxa into six groups compared to the profile from ethyl acetate and ethanol, which each detected seven groups. The chromatogram from the combined dataset of all three solvents can differentiate all the species. The GC-MS data detected a total of 40 compounds from the hexane extract, and these differed among Peperomia species. This approach based on HPTLC fingerprinting and GC-MS analysis can therefore be used as a tool for authentication and identification studies of Peperomia species. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

11 pages, 590 KiB  
Article
Pentacyclic Triterpenoid Content in Cranberry Raw Materials and Products
by Liang Xue, Bianca Carreiro, Md Sagir Sagir Mia, Inke Paetau-Robinson, Christina Khoo and Catherine Neto
Foods 2024, 13(19), 3136; https://doi.org/10.3390/foods13193136 - 30 Sep 2024
Abstract
Cranberry fruit extracts have been shown to inhibit expression of pro-inflammatory cytokines in THP-1 cells and reduce colonic tumor burden and tissue inflammation in a mouse model of colitis. These activities are attributed to both the triterpenoid and polyphenol constituents of the fruit. [...] Read more.
Cranberry fruit extracts have been shown to inhibit expression of pro-inflammatory cytokines in THP-1 cells and reduce colonic tumor burden and tissue inflammation in a mouse model of colitis. These activities are attributed to both the triterpenoid and polyphenol constituents of the fruit. The pentacyclic triterpenoids ursolic acid (UA), oleanolic acid (OA), corosolic acid (CA), maslinic acid (MA), and esters of UA and OA occur in the waxy layer of cranberry peel, and their content in cranberry products is likely to vary with the fruit source and processing methods. UPLC-MS (ultra performance liquid chromatography-mass spectrometry) was applied to determine the four triterpenoid acids and their esters in cranberry products and raw materials. Cranberry pomace, a side stream in juice production, was a rich source at 64,090 µg total triterpenoids/g DW. Cranberry juice beverages ranged from 0.018 to 0.26 µg/g of product, fruit samples ranged from 6542 to 17,070 µg/g DW, and whole berry products contained up to 2665 µg/g DW. Free UA was the most plentiful triterpenoid in all samples. These analyses illustrate the potential value of an underutilized side stream in cranberry juice production and highlight potential benefits of whole fruit products. Full article
(This article belongs to the Section Food Quality and Safety)
18 pages, 610 KiB  
Article
Functional Properties and Sensory Quality of Kombucha Analogs Based on Herbal Infusions
by Marta Czarnowska-Kujawska, Joanna Klepacka, Małgorzata Starowicz and Patrycja Lesińska
Antioxidants 2024, 13(10), 1191; https://doi.org/10.3390/antiox13101191 - 30 Sep 2024
Abstract
Traditionally, kombucha is produced by the fermentation of black or green tea infusions with the use of SCOBY (Symbiotic Culture of Bacteria and Yeasts). However, SCOBY exhibits the ability to ferment other substrates as well, which can be used to create novel products [...] Read more.
Traditionally, kombucha is produced by the fermentation of black or green tea infusions with the use of SCOBY (Symbiotic Culture of Bacteria and Yeasts). However, SCOBY exhibits the ability to ferment other substrates as well, which can be used to create novel products with new sensory and health-promoting properties. This paper investigates the antioxidant activity, chemical composition, and sensory properties of mint, nettle, and blackcurrant leaf-based kombucha analogs. It has been demonstrated that the fermentation process with SCOBY significantly influenced (p ≤ 0.05) sugar, organic acids, and mineral contents, with the increase in iron, magnesium, and calcium amounts in all tested herbal kombucha. The study shows that the type of herb infusion has a significant influence on the parameters associated with antioxidant potential. The fermentation with SCOBY resulted in an increase in antioxidant activity as measured by the superoxide anion radical (O2•−) inhibition of all three tested herbal infusions, with the greatest changes observed in nettle kombucha. Herbal kombucha was characterized by significantly increased total phenolic content as determined by Folin’s reagent and a changed phenolic compound profile by LC-MS/MS (liquid chromatography with tandem mass spectrometry) in comparison to nonfermented infusions. Very high sensory scores were achieved for fermented mint and blackcurrant-based kombucha. Full article
(This article belongs to the Special Issue The Antioxidants in Fermented Foods)
34 pages, 8347 KiB  
Article
Lentil Waste Extracts for Inflammatory Bowel Disease (IBD) Symptoms Control: Anti-Inflammatory and Spasmolytic Effects
by Maria Antonietta Panaro, Roberta Budriesi, Rosa Calvello, Antonia Cianciulli, Laura Beatrice Mattioli, Ivan Corazza, Natalie Paola Rotondo, Chiara Porro, Antonella Lamonaca, Valeria Ferraro, Marilena Muraglia, Filomena Corbo, Maria Lisa Clodoveo, Linda Monaci, Maria Maddalena Cavalluzzi and Giovanni Lentini
Nutrients 2024, 16(19), 3327; https://doi.org/10.3390/nu16193327 - 30 Sep 2024
Abstract
Background/Objectives: In the contest of agro-industrial waste valorization, we focused our attention on lentil seed coats as a source of health-promoting phytochemicals possibly useful in managing inflammatory bowel diseases (IBDs), usually characterized by inflammation and altered intestinal motility. Methods: Both traditional (maceration) and [...] Read more.
Background/Objectives: In the contest of agro-industrial waste valorization, we focused our attention on lentil seed coats as a source of health-promoting phytochemicals possibly useful in managing inflammatory bowel diseases (IBDs), usually characterized by inflammation and altered intestinal motility. Methods: Both traditional (maceration) and innovative microwave-assisted extractions were performed using green solvents, and the anti-inflammatory and spasmolytic activities of the so-obtained extracts were determined through in vitro and ex vivo assays, respectively. Results: The extract obtained through the microwave-assisted procedure using ethyl acetate as the extraction solvent (BEVa) proved to be the most useful in inflammation and intestinal motility management. In LPS-activated Caco-2 cells, BEVa down-regulated TLR4 expression, reduced iNOS expression and the pro-inflammatory cytokine IL-1 production, and upregulated the anti-inflammatory cytokine IL-10 production, thus positively affecting cell inflammatory responses. Moreover, a significant decrease in the longitudinal and circular tones of the guinea pig ileum, with a reduction of transit speed and pain at the ileum level, together with reduced transit speed, pain, and muscular tone at the colon level, was observed with BEVa. HPLC separation combined with an Orbitrap-based high-resolution mass spectrometry (HRMS) technique indicated that 7% of all the identified metabolites were endowed with proven anti-inflammatory and antispasmodic activities, among which niacinamide, apocynin, and p-coumaric acid were the most abundant. Conclusions: Our results suggest that lentil hull extract consumption could contribute to overall intestinal health maintenance, with BEVa possibly representing a dietary supplementation and a promising approach to treating intestinal barrier dysfunction. Full article
(This article belongs to the Section Nutritional Immunology)
23 pages, 1368 KiB  
Article
Chromatographic Comparison of Commercially Available Columns for Liquid Chromatography in Polar Pesticide Detection and Quantification Using a Score-Based Methodology
by Emanuela Verdini, Tommaso Pacini, Serenella Orsini, Stefano Sdogati and Ivan Pecorelli
Foods 2024, 13(19), 3131; https://doi.org/10.3390/foods13193131 - 30 Sep 2024
Abstract
The detection and quantification of polar pesticides in liquid chromatography coupled with mass spectrometry present significant analytical challenges. This study compares the performance of three LC columns (Hypercarb™, Raptor Polar X™, and Anionic Polar Pesticide™) in separating and quantifying eleven polar pesticides in [...] Read more.
The detection and quantification of polar pesticides in liquid chromatography coupled with mass spectrometry present significant analytical challenges. This study compares the performance of three LC columns (Hypercarb™, Raptor Polar X™, and Anionic Polar Pesticide™) in separating and quantifying eleven polar pesticides in chicken eggs using a score-based methodology. Analytes include glyphosate, its metabolites, and other high-polarity pesticides like Ethephon, Glufosinate, and Fosetyl aluminum, included in the EU’s official control plan. Polar pesticides, characterized by high polarity and hydrophilicity, lead to analytical issues such as poor retention and unconventional peak shapes with traditional reversed-phase methods. Their weak interaction with hydrophobic stationary phases complicates separation, necessitating specific stationary phases to enhance retention and selectivity. This study evaluates these columns’ efficacy in complex matrices like chicken eggs and other food samples. Chromatographic separation was performed using a UPLC system coupled with a Q-TOF mass spectrometer; extraction and purification involved freeze-out, centrifugation, and filtration steps. The study highlights the critical role of column selection in achieving accurate and reliable separation and quantification of highly polar analytes in matrices of animal origin, offering in the meantime an easy-to-apply methodology of selection for the right determination of the best chromatographic column for different purposes. Full article
14 pages, 2384 KiB  
Article
Effects of Cryptorchidism on the Semen Quality of Giant Pandas from the Perspective of Seminal Plasma Proteomics
by Yicheng Qian, Yuliang Liu, Tao Wang, Shenfei Wang, Jiasong Chen, Feiping Li, Mengshi Zhang, Xianbiao Hu, Juan Wang, Yan Li, Ayala James, Rong Hou and Kailai Cai
Genes 2024, 15(10), 1288; https://doi.org/10.3390/genes15101288 - 30 Sep 2024
Abstract
Giant pandas are an endangered species with low reproductive rates. Cryptorchidism, which can negatively affect reproduction, is also often found in pandas. Seminal plasma plays a crucial role in sperm–environment interactions, and its properties are closely linked to conception potential in both natural [...] Read more.
Giant pandas are an endangered species with low reproductive rates. Cryptorchidism, which can negatively affect reproduction, is also often found in pandas. Seminal plasma plays a crucial role in sperm–environment interactions, and its properties are closely linked to conception potential in both natural and assisted reproduction. The research sought to identify seminal fluid protein content variations between normal and cryptorchid giant pandas. Methods: Using a label-free MS-based method, the semen proteomes of one panda with cryptorchidism and three normal pandas were studied, and the identified proteins were compared and functionally analyzed. Results: Mass spectrometry identified 2059 seminal plasma proteins, with 361 differentially expressed proteins (DEPs). Gene ontology (GO) analysis revealed that these DEPs are mainly involved in the phosphate-containing compound metabolic, hydrolase activity, and kinase activity areas (p ≤ 0.05). The KEGG functional enrichment analysis revealed that the top 20 pathways were notably concentrated in the adipocyte lipolysis and insulin metabolism pathway, with a significance level of p ≤ 0.05. Further analysis through a protein–protein interaction (PPI) network identified nine key proteins that may play crucial roles, including D2GXH8 (hexokinase Fragment), D2HSQ6 (protein tyrosine phosphatase), and G1LHZ6 (Calmodulin 2). Conclusions: We suspect that the high abundance of D2HSQ6 in cryptorchid individuals is associated with metabolic pathways, especially the insulin signal pathway, as a typical proteomic feature related to its pathological features. These findings offer insight into the ex situ breeding conditions of this threatened species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 5798 KiB  
Article
Effects of Wildfire Smoke on Volatile Organic Compound (VOC) and PM2.5 Composition in a United States Intermountain Western Valley and Estimation of Human Health Risk
by Damien T. Ketcherside, Dylan D. Miller, Dalynn R. Kenerson, Phillip S. Scott, John P. Andrew, Melanie A. Y. Bakker, Brandi A. Bundy, Brian K. Grimm, Jiahong Li, Laurel A. Nuñez, Dorian L. Pittman, Reece P. Uhlorn and Nancy A. C. Johnston
Atmosphere 2024, 15(10), 1172; https://doi.org/10.3390/atmos15101172 - 30 Sep 2024
Abstract
With a warmer and drier climate, there has been an increase in wildfire events in the Northwest US, posing a potential health risk to downwind communities. The Lewis–Clark Valley (LCV), a small metropolitan area on the Washington/Idaho border in the United States Intermountain [...] Read more.
With a warmer and drier climate, there has been an increase in wildfire events in the Northwest US, posing a potential health risk to downwind communities. The Lewis–Clark Valley (LCV), a small metropolitan area on the Washington/Idaho border in the United States Intermountain West region, was studied over the time period of 2017–2018. The main objective was to determine the community’s exposure to particulate matter (PM2.5) and volatile organic compounds (VOCs) during wildfire smoke events and to estimate the associated health risk. VOCs were analyzed previously in the LCV using sorbent tube sampling and thermal-desorption gas-chromatography mass-spectrometry (TD-GC-MS) during several local smoke events in the 2017–2018 fire seasons. PM2.5 measurements were obtained from nearby agency monitors. PM2.5 reached up to 200 µg/m3 in 2017 and over 100 µg/m3 in 2018 in the LCV, and has been observed to be increasing at a rate of 0.10 µg m−3/yr over the past two decades. Benzene, a carcinogen and air toxic, was measured with concentrations up to 11 µg/m3, over ten times the normal level in some instances, in the LCV. The health risk in the LCV from benzene was calculated at seven extra cancers per million for lifetime exposure and thirteen extra cancers per million considering all air toxics measured. The other cities monitored showed similar lifetime cancer risk, due to benzene of about 6–7 extra cancers per million. This work is important, as it measures ground-level exposures of VOCs and demonstrates decreases in PM2.5 air quality over time in the region. Full article
(This article belongs to the Special Issue Outdoor Air Pollution and Human Health (3rd Edition))
Show Figures

Figure 1

15 pages, 2821 KiB  
Article
Proteomic Analysis of Thermus thermophilus Cells after Treatment with Antimicrobial Peptide
by Alexey K. Surin, Anna I. Malykhina, Michail V. Slizen, Alexey P. Kochetov, Mariya Yu. Suvorina, Vadim E. Biryulyov, Sergei Y. Grishin and Oxana V. Galzitskaya
Bacteria 2024, 3(4), 299-313; https://doi.org/10.3390/bacteria3040020 - 30 Sep 2024
Abstract
In recent years, the study of antimicrobial peptides (AMPs) has garnered considerable attention due to their potential in combating antibiotic-resistant pathogens. Mass spectrometry-based proteomics provides valuable information on microbial stress responses induced by AMPs. This work aims to unravel the proteomic alterations induced [...] Read more.
In recent years, the study of antimicrobial peptides (AMPs) has garnered considerable attention due to their potential in combating antibiotic-resistant pathogens. Mass spectrometry-based proteomics provides valuable information on microbial stress responses induced by AMPs. This work aims to unravel the proteomic alterations induced by the amyloidogenic antimicrobial peptide R23I, encompassing both inhibitory and non-inhibitory concentrations. This study investigates the effects of the R23I peptide on the protein abundance of Thermus thermophilus (T. thermophilus) at different concentrations (20, 50, and 100 μg/mL). We found 82 differentially expressed proteins, including 15 upregulated and 67 downregulated proteins. We also compared the protein identification results between the PEAKS and IdentiPy programs. Our proteomic analysis revealed distinct patterns of protein expression, suggesting compensatory mechanisms in response to the R23I peptide. Notably, the alterations predominantly affected membrane and cytoplasmic proteins that play a central role in critical cellular processes such as transcription, translation, and energy conversion. This study sheds light on the complex interactions between antimicrobial peptides and bacterial responses, offering insights into microbial adaptability and potential implications for antimicrobial strategies and the understanding of microbial physiology. Full article
Show Figures

Figure 1

23 pages, 2564 KiB  
Article
Bioactive Compounds and Valorization of Coffee By-Products from the Origin: A Circular Economy Model from Local Practices in Zongolica, Mexico
by Emanuel Bojórquez-Quintal, Damián Xotlanihua-Flores, Loretta Bacchetta, Gianfranco Diretto, Oliviero Maccioni, Sarah Frusciante, Luis M. Rojas-Abarca and Esteban Sánchez-Rodríguez
Plants 2024, 13(19), 2741; https://doi.org/10.3390/plants13192741 - 30 Sep 2024
Abstract
The by-products of green coffee processing are rich in compounds that can be recycled for their possible use in the production of beverages, fertilizers and weed control in production areas. The objective of this work was to identify the organic and inorganic bioactive [...] Read more.
The by-products of green coffee processing are rich in compounds that can be recycled for their possible use in the production of beverages, fertilizers and weed control in production areas. The objective of this work was to identify the organic and inorganic bioactive compounds of green coffee and the coffee by-products related to the production of origin, such as dried cascara (skin-pulp), parchment and silverskin (unroasted), in order to investigate the role their biomolecules may have in reuse through practices and local knowledge, not yet valued. The metabolomic profile by HPLC-ESI-HRMS of the aqueous extract of the dried cascara highlighted 93 non-volatile molecules, the highest number reported for dried cascara. They belong to groups of organic acids (12), alkaloids (5), sugars (5), fatty acids (2), diglycerides (1), amino acids (18), phospholipids (7), vitamins (5), phenolic acids (11), flavonoids (8), chlorogenic acids (17), flavones (1) and terpenes (1). For the first time, we report the use of direct analysis in real-time mass spectrometry (DART-MS) for the identification of metabolites in aqueous extracts of dried cascara, parchment, silverskin and green coffee. The DART analysis mainly showed the presence of caffeine and chlorogenic acids in all the extracts; additionally, sugar adducts and antioxidant compounds such as polyphenols were detected. The mineral content (K, Ca, P, S, Mg and Cl) by EDS spectrometry in the by-products and green coffee showed a relatively high content of K in the dried cascara and green coffee, while Ca was detected in double quantity in the silverskin. These metabolomic and mineral profile data allow enhancement of the link between the quality of green coffee and its by-products and the traditional local practices in the crop-growing area. This consolidates the community’s experience in reusing by-products, thereby minimizing the impact on the environment and generating additional income for coffee growers’ work, in accordance with the principles of circular economy and bioeconomy. Full article
Show Figures

Graphical abstract

15 pages, 1364 KiB  
Article
Impact of Microencapsulation on Ocimum gratissimum L. Essential Oil: Antimicrobial, Antioxidant Activities, and Chemical Composition
by Angela Del Pilar Flores Granados, Marta Cristina Teixeira Duarte, Nathan Hargreaves Noguera, Dyana Carla Lima and Rodney Alexandre Ferreira Rodrigues
Foods 2024, 13(19), 3122; https://doi.org/10.3390/foods13193122 - 30 Sep 2024
Abstract
Ocimum gratissimum (OG) is a species rich in essential oils (EO), which is known for its antimicrobial and antioxidant properties. This study aimed to encapsulate the essential oil of Ocimum gratissimum (OGE), determine its chemical composition, and evaluate its antioxidant and antimicrobial activities [...] Read more.
Ocimum gratissimum (OG) is a species rich in essential oils (EO), which is known for its antimicrobial and antioxidant properties. This study aimed to encapsulate the essential oil of Ocimum gratissimum (OGE), determine its chemical composition, and evaluate its antioxidant and antimicrobial activities against six pathogenic bacteria, comparing it with the free essential oil (OGF). The EO was extracted by hydrodistillation using a Clevenger-type apparatus, and an oil-in-water emulsion was prepared using a combination of biopolymers: maltodextrin (MA), cashew gum (CG), and inulin (IN). The chemical profile was identified using gas chromatography–mass spectrometry (GC–MS). Antioxidant activity was assessed using the Oxygen Radical Absorbance Capacity with fluorescein (ORAC-FL) method, while the Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC) were determined by the microdilution method. Microparticles were formed using the spray-drying method, achieving an encapsulation efficiency of 45.2%. The analysis identified eugenol as the main compound both before and after microencapsulation. The OGE microparticles demonstrated high inhibitory and bactericidal effects against S. aureus, S. choleraesuis, and E. coli, with MIC values of 500 µg·mL−1 and MBC values of 1000 µg·mL−1, as well as antioxidant activity of 1914.0 µmol-TE·g−1. Therefore, it can be inferred that the EO of OG maintained its antimicrobial and antioxidant effects even after microencapsulation by spray-drying, making it a promising natural ingredient. Full article
Show Figures

Graphical abstract

11 pages, 860 KiB  
Brief Report
Treatment of Refractory Mucosal Leishmaniasis Is Associated with Parasite Overexpression of HSP70 and ATPase and Reduced Host Hydrogen Peroxide Production (Brief Report)
by Ada Amália Ayala Urdapilleta, Adriana de Oliveira Santos Alfani, Daniel Holanda Barroso, Felipe Vinecky, Suzana da Glória Amaral Vaz Bandeira, Alan Carvalho Andrade, Jorge Alex Taquita, Izabela Marques Dourado Bastos and Raimunda Nonata Ribeiro Sampaio
Biomedicines 2024, 12(10), 2227; https://doi.org/10.3390/biomedicines12102227 - 30 Sep 2024
Abstract
Background: Mucosal leishmaniasis (ML) is a deforming type of American Tegumentary Leishmaniasis caused by Leishmania (Viannia) braziliensis that frequently does not respond to treatment. Despite its relapsing clinical course, few parasites are usually found in mucosal lesions. Host and parasite factors [...] Read more.
Background: Mucosal leishmaniasis (ML) is a deforming type of American Tegumentary Leishmaniasis caused by Leishmania (Viannia) braziliensis that frequently does not respond to treatment. Despite its relapsing clinical course, few parasites are usually found in mucosal lesions. Host and parasite factors may be responsible for this paradox in the pathogenesis of the disease, allowing for both a low parasite burden and the inability of the host to clear and eliminate the disease. Methods and results: In this work, we present a clinical case of relapsing ML that was treated for 25 years without success with SbV, N-methyl glucamine, sodium stibogluconate, amphotericin B deoxycholate, gabromycin, antimonial plus thalidomide, liposomal amphotericin B, Leishvacin (a vaccine made in Brazil) and miltefosine. In a comparative analysis using nanoscale liquid chromatography coupled with tandem mass spectrometry of protein extracts of L. (V.) braziliensis promastigotes isolated from the patient and from the reference strain (MHOM/BR/94/M15176), we observed increases in ATPase and HSP70 protein levels in the parasite. We also observed an impairment in the production of hydrogen peroxide by peripheral mononuclear blood monocytes (PBMCs), as assessed by the horseradish peroxidase-dependent oxidation of phenol red. Conclusions: We hypothesise that these parasite molecules may be linked to the impairment of host parasiticidal responses, resulting in Leishmania persistence in ML patients. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

16 pages, 1048 KiB  
Review
Analytical Insights into Methods for Measuring Ischemia-Modified Albumin
by Stefano Zoroddu, Angelo Zinellu, Ciriaco Carru and Salvatore Sotgia
Molecules 2024, 29(19), 4636; https://doi.org/10.3390/molecules29194636 - 29 Sep 2024
Abstract
Ischemia-modified albumin (IMA) has emerged as a pivotal biomarker for the early detection of ischemic conditions, particularly myocardial ischemia, where timely diagnosis is crucial for effective intervention. This review provides an overview of the analytical methods for assessment of IMA, including Albumin Cobalt [...] Read more.
Ischemia-modified albumin (IMA) has emerged as a pivotal biomarker for the early detection of ischemic conditions, particularly myocardial ischemia, where timely diagnosis is crucial for effective intervention. This review provides an overview of the analytical methods for assessment of IMA, including Albumin Cobalt Binding (ACB), Albumin Copper Binding (ACuB), Enzyme-Linked Immunosorbent Assay (ELISA), new techniques such as liquid crystal biosensors (LCB), quantum dot coupled X-ray fluorescence spectroscopy (Q-XRF), mass spectrometry (MS), and electron paramagnetic resonance (EPR) spectroscopy. Each method was thoroughly examined for its analytical performance in terms of sensitivity, specificity, and feasibility. The ACB assay is the most readily implementable method in clinical laboratories for its cost-effectiveness and operational simplicity. On the other hand, the ACuB assay exhibits enhanced sensitivity and specificity, driven by the superior binding affinity of copper to IMA. Furthermore, nanoparticle-enhanced immunoassays and liquid crystal biosensors, while more resource-intensive, significantly improve the analytical sensitivity and specificity of IMA detection, enabling earlier and more accurate identification of ischemic events. Additionally, different biological matrices, such as serum, saliva, and urine, were reviewed to identify the most suitable for accurate measurements in clinical application. Although serum was considered the gold standard, non-invasive matrices such as saliva and urine are becoming increasingly feasible due to advances in technology. This review underscores the role of IMA in clinical diagnostics and suggests how advanced analytical techniques have the potential to significantly enhance patient outcomes in ischemic disease management. Full article
(This article belongs to the Special Issue Review Papers in Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop