Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,254)

Search Parameters:
Keywords = long-chain base

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2156 KiB  
Article
Low-Delay AES Key Expansion Units Based on DDBT Structure
by Xinxing Zheng, Han Yan, Zhiwei Peng and Xiaoqiang Zhang
Electronics 2025, 14(2), 384; https://doi.org/10.3390/electronics14020384 (registering DOI) - 19 Jan 2025
Abstract
Advanced Encryption Standard (AES) key expansion unit is usually implemented by chain structure with a long critical path length. That makes key expansion unit become the bottleneck of high-speed AES implementations. In this paper, a design method of low-delay AES key expansion unit [...] Read more.
Advanced Encryption Standard (AES) key expansion unit is usually implemented by chain structure with a long critical path length. That makes key expansion unit become the bottleneck of high-speed AES implementations. In this paper, a design method of low-delay AES key expansion unit is proposed. The proposed design method is based on a delay-drive binary tree (DDBT) structure, which has been proven that it has the shortest critical path length. Based on the proposed design method, a low-delay AES encryption key expansion unit and a low-delay AES encryption/decryption unified key expansion unit are designed in this paper. Both hardware complexity analysis and integrated circuit synthesis indicate that our DDBT-structure-based designs can reduce the delay greatly compared to traditional chain structures. Furthermore, compared to previous works, our designs can achieve the largest throughput. Full article
Show Figures

Figure 1

17 pages, 2764 KiB  
Article
Passive Radar-Based Parameter Estimation of Low Earth Orbit Debris Targets
by Justin K. A. Henry and Ram M. Narayanan
Viewed by 335
Abstract
Major space agencies such as NASA and the ESA have long reported the growing dangers caused by resident space objects orbiting our planet. These objects continue to grow in number as satellites are imploded and space debris impacts each other, causing fragmentation. As [...] Read more.
Major space agencies such as NASA and the ESA have long reported the growing dangers caused by resident space objects orbiting our planet. These objects continue to grow in number as satellites are imploded and space debris impacts each other, causing fragmentation. As a result, significant efforts by both the public and private sectors are geared towards enhancing space domain awareness capabilities to protect future satellites and astronauts from impact by these orbiting debris. Current approaches and standards implement very large radar arrays, telescopes, and laser ranging systems to detect and track such objects. These systems are very expensive, may take significant amounts of time to develop, and are still only sparingly able to efficiently track debris targets less than 10 cm in diameter. This work proposes a theoretical passive-radar-based method using illuminators of opportunity for detecting space debris while estimating motion direction and Doppler. We show that by using a signal processing chain based on the self-mixing technique and digital filters, Doppler information can be extracted and continuously tracked by a uniform linear receiver array. This can be achieved by a passive sensor system, which has the advantage of lower cost without the need to emit signals that constrain the spectrum sharing issues. Full article
(This article belongs to the Special Issue Advances in Avionics and Astrionics Systems)
Show Figures

Figure 1

16 pages, 401 KiB  
Article
Predicting Convergence of Per Capita Income in Spain: A Markov and Cluster Approach
by José F. Gálvez-Rodríguez, Miguel Manzano-Hidalgo and Amelia V. García-Luengo
Viewed by 333
Abstract
In this work we analyze the evolution of productivity, in terms of the convergence of per capita income, of all the Spanish provinces, based on data from the previous decade. On the one hand, a cluster analysis allows us to group the Spanish [...] Read more.
In this work we analyze the evolution of productivity, in terms of the convergence of per capita income, of all the Spanish provinces, based on data from the previous decade. On the one hand, a cluster analysis allows us to group the Spanish provinces according to four income levels (low, medium-low, medium-high and high), which can be determined from the quartiles of the distribution, and, on the other hand, Markov chains make it possible to study the long-term evolution of productivity and convergence between the provinces, as well as the speed of convergence towards the equilibrium situation. Moreover, we can obtain the average time to return to an income level in which a province was previously. With the above, predictions of future income levels are made for the provinces, both in the current situation, and if the pandemic caused by COVID-19 had not existed, which leads us to evaluate the impact of the health emergency. Full article
Show Figures

Figure 1

23 pages, 1137 KiB  
Review
Exploring Future Pandemic Preparedness Through the Development of Preventive Vaccine Platforms and the Key Roles of International Organizations in a Global Health Crisis
by Jihee Jeon and Eunyoung Kim
Viewed by 835
Abstract
Background: The emergence of more than 40 new infectious diseases since the 1980s has emerged as a serious global health concern, many of which are zoonotic. In response, many international organizations, including the US Centers for Disease Control and Prevention (CDC), the World [...] Read more.
Background: The emergence of more than 40 new infectious diseases since the 1980s has emerged as a serious global health concern, many of which are zoonotic. In response, many international organizations, including the US Centers for Disease Control and Prevention (CDC), the World Health Organization (WHO), and the European Center for Disease Prevention and Control (ECDC), have developed strategies to combat these health threats. The need for rapid vaccine development has been highlighted by Coronavirus disease 2019 (COVID-19), and mRNA technology has shown promise as a platform. While the acceleration of vaccine development has been successful, concerns have been raised about the technical limits, safety, supply, and distribution of vaccines. Objective: This study analyzes the status of vaccine platform development in global pandemics and explores ways to respond to future pandemic crises through an overview of the roles of international organizations and their support programs. It examines the key roles and partnerships of international organizations such as the World Health Organization (WHO), vaccine research and development expertise of the Coalition for Epidemic Preparedness Innovations (CEPI), control of the vaccine supply chain and distribution by the Global Alliance for Vaccines and Immunization (GAVI), and technology transfer capabilities of the International Vaccine Institute (IVI) in supporting the development, production, and supply of vaccine platform technologies for pandemic priority diseases announced by WHO and CEPI and analyzes their vaccine support programs and policies to identify effective ways to rapidly respond to future pandemics caused by emerging infectious diseases. Methods: This study focused on vaccine platform technology and the key roles of international organizations in the pandemic crisis. Literature data on vaccine platform development was collected, compared, and analyzed through national and international literature data search sites, referring to articles, journals, research reports, publications, books, guidelines, clinical trial data, and related reports. In addition, the websites of international vaccine support organizations, such as WHO, CEPI, GAVI, and IVI, were used to examine vaccine support projects, initiatives, and collaborations through literature reviews and case study methods. Results: The COVID-19 pandemic brought focus on the necessity for developing innovative vaccine platforms. Despite initial concerns, the swift integration of cutting-edge development technologies, mass production capabilities, and global collaboration have made messenger RNA (mRNA) vaccines a game-changing technology. As a result of the successful application of novel vaccine platforms, it is important to address the remaining challenges, including technical limits, safety concerns, and equitable global distribution. To achieve this, it is essential to review the regulatory, policy, and support initiatives that have been implemented in response to the COVID-19 pandemic, with particular emphasis on the key stages of vaccine development, production, and distribution, to prepare for future pandemics. An analysis of the status of vaccine development for priority pandemic diseases implies the need for balanced vaccine platform development. Also, international organizations such as WHO, CEPI, GAVI, and IVI play key roles in pandemic preparedness and the development and distribution of preventive vaccines. These organizations collaborated to improve accessibility to vaccines, strengthen the global response to infectious diseases, and address global health issues. The COVID-19 pandemic response demonstrates how the synergistic collaboration of WHO’s standardized guidelines, CEPI’s vaccine research and development expertise, GAVI’s control of the vaccine supply chain and distribution, and IVI’s technology transfer capabilities can be united to create a successful process for vaccine development and distribution. Conclusions: In preparation for future pandemics, a balanced vaccine platform development is essential. It should include a balanced investment in both novel technologies such as mRNA and viral vector-based vaccines and traditional platforms. The goal is to develop vaccine platform technologies that can be applied to emerging infectious diseases efficiently and increase manufacturing and distribution capabilities for future pandemics. Moreover, international vaccine support organizations should play key roles in setting the direction of global networking and preparing for international vaccine support programs to address the limitations of previous pandemic responses. As a result, by transforming future pandemic threats from unpredictable crises to surmountable challenges, it is expected to strengthen global health systems and reduce the social and economic burden of emerging infectious diseases in the long term. Full article
Show Figures

Figure 1

40 pages, 979 KiB  
Review
Is It Time to Assess T Cell Clonality by Next-Generation Sequencing in Mature T Cell Lymphoid Neoplasms? A Scoping Review
by Rina Kansal
J. Mol. Pathol. 2025, 6(1), 2; https://doi.org/10.3390/jmp6010002 - 8 Jan 2025
Viewed by 854
Abstract
Background: T cell clonality is commonly assessed in the diagnostic work-up of mature T cell lymphoid neoplasms. Although fragment-length polymerase chain reaction (FL-PCR) assays are most widely used, next-generation sequencing (NGS) of the TRG and TRB genes is increasingly being used to assess [...] Read more.
Background: T cell clonality is commonly assessed in the diagnostic work-up of mature T cell lymphoid neoplasms. Although fragment-length polymerase chain reaction (FL-PCR) assays are most widely used, next-generation sequencing (NGS) of the TRG and TRB genes is increasingly being used to assess T cell clonality. Objective: The present work is a scoping review of studies that assessed T cell clonality by NGS for diagnostic purposes, including only studies that provided integrated clinicopathologic diagnoses in comparing FL-PCR and NGS assays to evaluate if it is preferable to use NGS-based assays for T cell clonality evaluation in diagnostic pathology. Methods: Papers published from 1992 to 3 August 2024 were searched in PubMed. Twenty-nine cohort studies and five instructive case reports, published from 2013–2024 from the USA, UK, Europe, and Australia that provided integrated clinicopathologic diagnoses and used NGS to evaluate T cell clonality in clinical specimens from patients with mature T cell neoplasms and related non-neoplastic and neoplastic diseases were included, with additional relevant studies. Results: Ten (34.4%) of the 29 cohorts included clinical samples from patients having various cutaneous and non-cutaneous T cell malignancies, related neoplasms, and reactive conditions; 2 (6.8%) studies focused on T cell prolymphocytic leukemia, 16 (55%) on cutaneous T cell lymphoma, and one on pediatric pityriasis lichenoides. Eleven (38%) of the 29 cohort studies compared NGS with FL-PCR assays in 908 clinical samples. Eight (72.7%) of the 11 studies compared TRG FL-PCR with TRG NGS (n = 5), TRB NGS (n = 2), and TRG NGS and TRB NGS (n = 1); the remaining three compared EuroClonality/BIOMED-2 FL-PCR (TRG and TRB) with TRG NGS (n = 1), TRB NGS (n = 1), and the EuroClonality-NGS DNA capture assay (n = 1). TRB NGS was used in 16 (55%) of 29, TRG NGS in 6 (20.6%) of 29, and both TRG and TRB NGS in 7 (24%) of 29. Two (6.8%) of the 29 studies compared TRB NGS with flow cytometric immunophenotyping assays for Vβ and T cell receptor β constant region 1. One additional study compared long-read sequencing with NGS for TRG and TRB rearrangements. Conclusions: NGS is highly specific and sensitive for assessing T cell clonality. NGS precisely tracks unique rearranged sequences, which FL-PCR cannot. NGS findings for clonality must be interpreted in the context of all clinicopathologic and immunophenotypic findings, like FL-PCR. With such interpretations, NGS is much preferable to FL-PCR for evaluating T cell clonality for diagnostic purposes. It is necessary to reduce costs, increase accessibility, and educate providers about NGS for clonality evaluation. TRB NGS has been primarily assessed in the peripheral blood and skin, whereas TRG NGS has also been evaluated in formalin-fixed and non-cutaneous fresh lymphoid tissues. TRG NGS performed better than TRB NGS in comparative studies. Full article
Show Figures

Figure 1

15 pages, 2149 KiB  
Article
Effects of Insulin-like Growth Factor 1 on the Maintenance of Cell Viability and Osteogenic Differentiation of Gingiva-Derived Mesenchymal Stem Cell Spheroids
by Somyeong Hwa, Hyun-Jin Lee, Youngkyung Ko and Jun-Beom Park
Viewed by 474
Abstract
Background and Objectives: Insulin-like growth factor-1 (IGF-1) plays a vital role in various cellular processes, including those involving stem cells. This study evaluated the effects of IGF-1 on cell survival, osteogenic differentiation, and mRNA expression in gingiva-derived mesenchymal stem cell spheroids. Materials and [...] Read more.
Background and Objectives: Insulin-like growth factor-1 (IGF-1) plays a vital role in various cellular processes, including those involving stem cells. This study evaluated the effects of IGF-1 on cell survival, osteogenic differentiation, and mRNA expression in gingiva-derived mesenchymal stem cell spheroids. Materials and Methods: Using concave microwells, spheroids were generated in the presence of IGF-1 at concentrations of 0, 10, and 100 ng/mL. Cellular vitality was qualitatively assessed using microscopy, while a water-soluble tetrazolium salt–based assay kit quantified cellular viability. Osteogenic differentiation was evaluated via alkaline phosphatase activity and an anthraquinone dye test to measure calcium deposition. Additionally, quantitative polymerase chain reaction (qPCR) analysis was performed to determine the expression of RUNX2 and COL1A1. Results: By day 1, the stem cell spheroids had successfully formed, and their morphology remained stable over the following 7 days. The IGF-1 concentrations tested showed no significant differences in cell viability. Similarly, alkaline phosphatase activity on day 7 revealed no observable changes. However, on day 7, the incorporation of IGF-1 led to an increase in Alizarin Red staining, indicative of enhanced calcium deposition. Notably, an IGF-1 concentration of 100 ng/mL significantly upregulated the expression of COL1A1. Conclusions: These findings suggest that IGF-1 supports the maintenance of cell viability and promotes the expression of COL1A1 in gingiva-derived mesenchymal stem cell spheroids, highlighting its potential role in enhancing osteogenic differentiation. Future research should include long-term studies to evaluate the sustainability of IGF-1-induced effects on stem cell spheroids. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

20 pages, 5958 KiB  
Article
Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar–Thermal Energy Management
by Yang Meng, Jiangyu Zhang, Yuchan Li, Hui Jiang and Delong Xie
Viewed by 509
Abstract
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. [...] Read more.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry. The scaffold undergoes selective delignification, followed by a simple, room-temperature polydopamine (PDA) modification to deposit Ag nanoparticles (Ag NPs) and graft octadecyl chains, resulting in a superhydrophobic hierarchical structure. This superhydrophobicity plays a critical role in preventing PCM leakage and enhancing environmental adaptability, ensuring long-term stability under diverse conditions. Encapsulating stearic acid (SA) as the PCM, the CPCM exhibits exceptional stability, achieving a high latent heat of 175.5 J g−1 and an energy storage efficiency of 87.7%. In addition, the thermal conductivity of the CPCM is significantly enhanced along the longitudinal direction, a 2.1-fold increase compared to pure SA, due to the integration of Ag NPs and the unidirectional wood architecture. This synergy also drives efficient photothermal conversion via π-π stacking interactions of PDA and the surface plasmon effects of Ag NPs, enabling rapid solar-to-thermal energy conversion. Moreover, the CPCM demonstrates remarkable water resistance, self-cleaning ability, and long-term thermal reliability, retaining its functionality through 100 heating–cooling cycles. This multifunctional balsa-based CPCM represents a breakthrough in integrating phase-change behavior with advanced environmental adaptability, offering promising applications in solar–thermal energy systems. Full article
(This article belongs to the Special Issue Recent Advances in Superhydrophobic Materials and Their Application)
Show Figures

Graphical abstract

32 pages, 5618 KiB  
Article
Multi-Objective Optimization for Green BTS Site Selection in Telecommunication Networks Using NSGA-II and MOPSO
by Salar Babaei, Mehran Khalaj, Mehdi Keramatpour and Ramin Enayati
Algorithms 2025, 18(1), 9; https://doi.org/10.3390/a18010009 - 2 Jan 2025
Viewed by 444
Abstract
Today, facility location planning primarily pertains to the long-term strategic and operational decision-making of large public and private organizations, and the significant costs associated with facility location, construction, and operation have turned location research into long-term decision-making. Presenting a hub location model for [...] Read more.
Today, facility location planning primarily pertains to the long-term strategic and operational decision-making of large public and private organizations, and the significant costs associated with facility location, construction, and operation have turned location research into long-term decision-making. Presenting a hub location model for the green supply chain can address the current status of facilities and significantly improve demand coverage at an acceptable cost. Therefore, in this study, a network of facilities for hub location in the service site domain, considering existing and potential facilities under probable scenarios, has been proposed. After presenting the mathematical model, validation was performed on a small scale, followed by sensitivity analysis of the main parameters of the model. Furthermore, a metaheuristic algorithm was employed to analyze the NP-Hardness of the model. Additionally, two metaheuristic algorithms, NSGAII and MOPSO, were developed to demonstrate the efficiency of the model. Based on the conducted analysis, it can be observed that the computational time increases exponentially with the size of sample problems, indicating the NP-Hardness of the problem. However, the NSGAII algorithm performs better in terms of computational time for medium-sized problems compared to the MOPSO algorithm. These algorithms were chosen due to their proven efficiency in handling NP-hard optimization problems and their ability to balance exploration and exploitation in search spaces. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Graphical abstract

20 pages, 870 KiB  
Article
Measuring the Inferential Values of Relations in Knowledge Graphs
by Xu Zhang, Xiaojun Kang, Hong Yao and Lijun Dong
Algorithms 2025, 18(1), 6; https://doi.org/10.3390/a18010006 - 31 Dec 2024
Viewed by 385
Abstract
Knowledge graphs, as an important research direction in artificial intelligence, have been widely applied in many fields and tasks. The relations in knowledge graphs have explicit semantics and play a crucial role in knowledge completion and reasoning. Correctly measuring the inferential value of [...] Read more.
Knowledge graphs, as an important research direction in artificial intelligence, have been widely applied in many fields and tasks. The relations in knowledge graphs have explicit semantics and play a crucial role in knowledge completion and reasoning. Correctly measuring the inferential value of relations and identifying important relations in a knowledge graph can effectively improve the effectiveness of knowledge graphs in reasoning tasks. However, the existing methods primarily consider the connectivity and structural characteristics of relations, but neglect the semantics and the mutual influence of relations in reasoning tasks. This leads to truly valuable relations being difficult to fully utilize in long-chain reasoning. To address this problem, this work, inspired by information entropy and uncertainty-measurement methods in knowledge bases, proposes a method called Relation Importance Measurement based on Information Entropy (RIMIE) to measure the inferential value of relations in knowledge graphs. RIMIE considers the semantics of relations and the role of relations in reasoning. Specifically, based on the values of relations in logical chains, RIMIE partitions the logical sample set into multiple equivalence classes, and generates a knowledge structure for each relation. Correspondingly, to effectively measure the inferential values of relations in knowledge graphs, the concept of relation entropy is proposed, and it is calculated according to the knowledge structures. Finally, to objectively assess the effectiveness of RIMIE, a group of experiments are conducted, which compare the influences of the relations selected according to RIMIE and other patterns on the triple classifications by knowledge graph representation learning. The experimental results confirm what is claimed above. Full article
(This article belongs to the Section Analysis of Algorithms and Complexity Theory)
Show Figures

Figure 1

20 pages, 1363 KiB  
Article
Time Series Methods and Business Intelligent Tools for Budget Planning—Case Study
by Katarzyna Grobler-Dębska, Rafał Mularczyk, Bartłomiej Gawęda and Edyta Kucharska
Appl. Sci. 2025, 15(1), 287; https://doi.org/10.3390/app15010287 - 31 Dec 2024
Viewed by 487
Abstract
Corporate budget planning involves forecasting expenses and revenues to support strategic goals, resource allocation, and supply chain coordination. Regular updates to forecasts and collaboration across organizational levels ensure adaptability to changing business conditions. Long-term sales forecasts form the foundation for budgeting, guiding resource [...] Read more.
Corporate budget planning involves forecasting expenses and revenues to support strategic goals, resource allocation, and supply chain coordination. Regular updates to forecasts and collaboration across organizational levels ensure adaptability to changing business conditions. Long-term sales forecasts form the foundation for budgeting, guiding resource allocation and enhancing financial efficiency. The budgeting process in organizations is complex and requires data from various operational areas, which is collected over a representative period. Key inputs include quantitative sales data, direct costs indirect costs, and historical revenues and profitability, which are often sourced from ERP systems. While ERP systems typically provide tools for basic budgeting, they lack advanced capabilities for forecasting and simulation. We proposed a solution, which includes dynamic demand forecasting based on time series methods such as Build-in method in Power BI (which is ETS—exponential smoothing), linear regression, XGBoost, ARIMA and flexible product groupings, which are simulations for cost changes. The case study concerns a manufacturing company in the mass customization industry. The solution is designed to be intuitive and easily implemented in the business. Full article
(This article belongs to the Special Issue Applications of Data Science and Artificial Intelligence)
Show Figures

Figure 1

24 pages, 10995 KiB  
Article
Using RES Surpluses to Remove Overburden from Lignite Mines Can Improve the Nation’s Energy Security
by Leszek Jurdziak, Witold Kawalec, Zbigniew Kasztelewicz and Pawel Parczyk
Energies 2025, 18(1), 104; https://doi.org/10.3390/en18010104 - 30 Dec 2024
Viewed by 450
Abstract
The increasing use of renewable energy sources, such as wind and solar energy, presents challenges to the stability and efficiency of other energy sources due to their intermittent and unpredictable surpluses. The unintended consequence of stabilizing the power supply system is an increase [...] Read more.
The increasing use of renewable energy sources, such as wind and solar energy, presents challenges to the stability and efficiency of other energy sources due to their intermittent and unpredictable surpluses. The unintended consequence of stabilizing the power supply system is an increase in emissions and external costs from the suboptimal use of coal power plants. The rising number of RES curtailments needs to be addressed by either the adjusting energy supply from fossil fuel or the flexible energy consumption. In Poland’s energy mix, coal-fired power plants are a critical component in ensuring energy security for the foreseeable future. Using domestic lignite to generate a total power of 8.5 GW can stabilize the national power supply, as it is currently done in Germany, where 15 GW of lignite-fueled power units provide the power supply base for the country. The leading Belchatów power plant comprises 10 retrofitted units and one new unit, with a total rating of 5.5 GW. Access to the new coal deposit, Zloczew, is necessary to ensure its longer operation. The other domestic lignite power plants are located in Central Poland at Patnów (0.47 GW from the new unit and 0.6 GW from its three retrofitted counterparts) and located in the Lusatian lignite basin at Turów (operating a brand new unit rated at 0.5 GW and retrofitted units with a total rating of 1.5 GW). The use of this fuel is currently being penalized as a result of increasing carbon costs. However, the continuous surface mining technology that is used in lignite mines is fully electrified, and large amounts of electric energy are required to remove and dump overburden and mining coal and its conveying to power units (the transport of coal from the new lignite mine Zloczew to the Belchatów power plant would be a long-distance operation). A possible solution to this problem is to focus on the lignite fuel supply operations of these power plants, with extensive simulations of the entire supply chain. A modern lignite mine is operated by one control room, and it can balance the dynamic consumption of surplus renewable energy sources (RESs) and reduce the need for reduction. When a lignite supply chain is operated this way, a high-capacity power bank can be created with energy storage in the form of an open brown coal seam. This would enable an almost emission-free supply of cheap and domestic fossil fuel, making it insensitive to changes in the world prices of energy resources for power units operating at the base of the system. Furthermore, extending the life of relatively new and efficient lignite-fired units in Poland would facilitate the decommissioning of older and exhausted hard coal-fired units. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

21 pages, 3671 KiB  
Review
Review of the Synthesis and Degradation Mechanisms of Some Biodegradable Polymers in Natural Environments
by Xiao Yao, Xue Yang, Yisang Lu, Yinyuan Qiu and Qinda Zeng
Polymers 2025, 17(1), 66; https://doi.org/10.3390/polym17010066 - 30 Dec 2024
Viewed by 579
Abstract
The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation. This review [...] Read more.
The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation. This review is centered around dissecting the degradation mechanisms of specific biodegradable polymers, namely PLA, starch-based polymers, and plant fiber-based polymers. Recent investigations have unveiled that PLA exhibits augmented biocompatibility when combined with HA, and its degradation is subject to the influence of enzymatic and abiotic determinants. In the case of starch-based polymers, chemical or physical modifications can modulate their degradation kinetics, as evidenced by Wang et al.’s superhydrophobic starch-based nanocomposite cryogel. For plant fiber-based polymers, the effects of temperature, humidity, and cellulose degradation on their properties, along with the implications of various treatments and additives, are probed, as exemplified by Liu et al.’s study on jute/SiO2/PP composites. Specifically, with respect to PLA, the polymerization process and the role of catalysts such as SnCl2 in governing the structure and biodegradability are expounded in detail. The degradation of PLA in SBF and its interaction with β-TCP particles constitute crucial aspects. For starch-based polymers, the enzymatic degradation catalyzed by amylase and glucosidase and the environmental impacts of temperature and humidity, in addition to the structural ramifications of amylose and amylopectin, are further elucidated. In plant fiber-based polymers, the biodegradation of cellulose and the effects of plasma treatment, electron beam irradiation, nanoparticles, and crosslinking agents on water resistance and stability are explicated with experimental substantiation. This manuscript also delineates technological accomplishments. PLA incorporated with HA demonstrates enhanced biocompatibility and finds utility in drug delivery systems. Starch-based polymers can be engineered for tailored degradation. Plant fiber-based polymers acquire water resistance and durability through specific treatments or the addition of nanoparticles, thereby widening their application spectrum. Synthetic and surface modification methodologies can be harnessed to optimize these materials. This paper also consolidates reaction conditions, research techniques, their merits, and demerits and delves into the biodegradation reaction mechanisms of these polymers. A comprehensive understanding of these degradation mechanisms is conducive to their application and progression in the context of sustainable development and environmental conservation. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 2325 KiB  
Article
Structural Investigation of Chloride Ion-Containing Acrylate-Based Imidazolium Poly(Ionic Liquid) Homopolymers and Crosslinked Networks: Effect of Alkyl Spacer and N-Alkyl Substituents
by Mahmoud Al-Hussein, Lisa Ehrlich, Doris Pospiech and Petra Uhlmann
Nanomaterials 2025, 15(1), 40; https://doi.org/10.3390/nano15010040 - 29 Dec 2024
Viewed by 393
Abstract
Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed [...] Read more.
Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed structural characterization of a recently synthesized series of acrylate-based PIL homopolymers and networks with imidazolium cations and chloride anions with varying alkyl spacer and terminal group lengths designed for organic solid-state batteries based on X-ray scattering. The impact of the concentrations of both the crosslinker and added tetrabutylammonium chloride (TBACl) conducting salt on the structural characteristics is also investigated. The results reveal that the length of both the spacer and terminal group influence the chain packing and, in turn, the nanophase segregation of the polar domains. Long spacers and terminal groups seem to induce denser polar aggregates sandwiched between more compact alkyl spacer and terminal group domains. However, the large inter-backbone spacing achieved seems to limit the ionic conductivity of these PILs. More importantly, our findings show that the previously reported general relationships between the ionic conductivity and the structural parameters of the nanostructure of PILs are not always attainable for different molecular structures of the IL side group. Full article
Show Figures

Figure 1

16 pages, 2523 KiB  
Review
Recent Progress in Polyolefin Plastic: Polyethylene and Polypropylene Transformation and Depolymerization Techniques
by Acácio Silva de Souza, Patricia Garcia Ferreira, Iva Souza de Jesus, Rafael Portugal Rizzo Franco de Oliveira, Alcione Silva de Carvalho, Debora Omena Futuro and Vitor Francisco Ferreira
Viewed by 736
Abstract
This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility—from flexible to rigid and hydrophilic [...] Read more.
This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility—from flexible to rigid and hydrophilic to hydrophobic—has fueled an ever-growing demand. However, their versatility has also contributed to a massive global waste problem as plastics pervade virtually every ecosystem, from the depths of oceans to the most remote terrestrial landscapes. Plastic pollution manifests not just as visible waste—such as fishing nets, bottles, and garbage bags—but also as microplastics, infiltrating food chains and freshwater sources. This crisis is exacerbated by the unsustainable linear model of plastic production and consumption, which prioritizes convenience over long-term environmental health. The mismanagement of plastic waste not only pollutes ecosystems but also releases greenhouse gases like carbon dioxide during degradation and incineration, thereby complicating efforts to achieve global climate and sustainability goals. Given that mechanical recycling only addresses a fraction of macroplastics, innovative approaches are needed to improve this process. Methods like pyrolysis and hydrogenolysis offer promising solutions by enabling the chemical transformation and depolymerization of plastics into reusable materials or valuable chemical feedstocks. These advanced recycling methods can support a circular economy by reducing waste and creating high-value products. In this article, the focus on pyrolysis and hydrogenolysis underscores the need to move beyond traditional recycling. These methods exemplify the potential for science and technology to mitigate plastic pollution while aligning with sustainability objectives. Recent advances in the pyrolysis and hydrogenolysis of polyolefins focus on their potential for advanced recycling, breaking down plastics at a molecular level to create feedstocks for new products or fuels. Pyrolysis produces pyrolysis oil and syngas, with applications in renewable energy and chemicals. However, some challenges of this process include scalability, feedstock variety, and standardization, as well as environmental concerns about emissions. Companies like Shell and ExxonMobil are investing heavily to overcome these barriers and improve recycling efficiencies. By leveraging these transformative strategies, we can reimagine the lifecycle of plastics and address one of the most pressing environmental challenges of our time. This review updates the knowledge of the fields of pyrolysis and hydrogenolysis of plastics derived from polyolefins based on the most recent works available in the literature, highlighting the techniques used, the types of products obtained, and the highest yields. Full article
Show Figures

Figure 1

13 pages, 2554 KiB  
Article
RF Fingerprinting Using Transient-Based Identification Signals at Sampling Rates Close to the Nyquist Limit
by Selçuk Taşcıoğlu, Aykut Kalaycıoğlu, Memduh Köse and Gokhan Soysal
Viewed by 450
Abstract
Radio frequency (RF) fingerprinting is regarded as a promising solution to improve wireless security, especially in applications where resource-limited devices are employed. Unlike steady-state signals, such as preambles or data, the use of short-duration transient signals for RF fingerprinting offers distinct advantages for [...] Read more.
Radio frequency (RF) fingerprinting is regarded as a promising solution to improve wireless security, especially in applications where resource-limited devices are employed. Unlike steady-state signals, such as preambles or data, the use of short-duration transient signals for RF fingerprinting offers distinct advantages for systems with low latency and low complexity requirements. One of the challenges associated with transient-based methods in practice is achieving high performance while utilizing low-cost receivers. In this study, we demonstrate for the first time that the performance of transient-based RF fingerprinting can be enhanced by designing the filter chain in a software defined radio (SDR) receiver, taking into account the relevant signal characteristics. The performance analysis is conducted using transient-based identification signals captured by the SDR receiver, focusing on the sampling rate and duration of the identification signal. In the experiments, signals collected from twenty IEEE 802.11 transmitters are used. Experimental results indicate that so long as the receiver filter parameters and the duration of the identification signal are properly determined, a high classification performance exceeding 92% can be achieved for transient-based RF fingerprinting, even at sampling rates approaching the Nyquist limit. Full article
(This article belongs to the Special Issue Physical Layer Security for Future Wireless Systems)
Show Figures

Figure 1

Back to TopTop