Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = ice/air mixture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 789 KiB  
Proceeding Paper
Optimization of Performance, Emissions, and Vibrations of a Port Fuel Injection Spark Ignition Engine Operated with Gasoline Ethanol Methanol Blends Using Response Surface Methodology
by Sekhar Chinthamreddy, Domakonda Vinay Kumar and Shaik Subani
Eng. Proc. 2024, 66(1), 40; https://doi.org/10.3390/engproc2024066040 - 24 Jul 2024
Viewed by 545
Abstract
IC Engines have played a vital role in past years and will in future years too. The only way that engines are made popular is the power they produce, which is useful in the transportation sector, with which humans’ daily lives become easier [...] Read more.
IC Engines have played a vital role in past years and will in future years too. The only way that engines are made popular is the power they produce, which is useful in the transportation sector, with which humans’ daily lives become easier concerning time and effort. The only issues with these engines are the depletion of fossil fuels and harmful emissions. To regulate these threats, in the current study an SI engine is modified to duel fuel mode in such a way that the engine runs with hydrogen gas at different flow rates along with air. Engine speed is varied from 1800 to 3400 rpm under constant load by letting an ethanol, methanol, and gasoline mixture enter into the cylinder. Performance parameters like brake thermal efficiency, HC emissions, and vibrations produced from the engine are in agreement with the blended fuels used in this study. Full article
Show Figures

Figure 1

13 pages, 1927 KiB  
Article
Experimental and Theoretical Investigation of Thermal Parameters Influencing the Freezing Process of Ice Cream
by Ömer Alp Atici and Derya Burcu Özkan
Appl. Sci. 2024, 14(14), 6194; https://doi.org/10.3390/app14146194 - 16 Jul 2024
Viewed by 1018
Abstract
Freezing time stands out as the most critical parameter in ice cream production, significantly influencing the final product’s quality and production efficiency. Therefore, it is essential to accurately estimate the freezing time based on ice cream recipes. This research paper focuses on determining [...] Read more.
Freezing time stands out as the most critical parameter in ice cream production, significantly influencing the final product’s quality and production efficiency. Therefore, it is essential to accurately estimate the freezing time based on ice cream recipes. This research paper focuses on determining the thermal properties of ice cream samples by leveraging insights from previous studies. Moreover, a new specific heat correlation is proposed to account for the latent heat effect of water during the freezing process. The results demonstrated that the new specific heat correlation aligns well with established formulas from previous research as well as experimental results with maximum 2.5% deviation. To validate the accuracy of the proposed numerical model, experimental studies were compared with numerical results for the first time in the context of ice cream freezing inside a mold. Additionally, a parametric analysis was conducted using numerical modelling to discern the relative importance of various production process parameters. Notably, the glycol–water mixture temperature emerged as the most influential parameter affecting freezing time, while the amount of air inside the ice cream was identified as the least significant factor. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

14 pages, 7848 KiB  
Article
Performance Research of Cement Concrete Pavements with a Lower Carbon Footprint
by Tomasz Rudnicki and Przemysław Stałowski
Materials 2024, 17(13), 3162; https://doi.org/10.3390/ma17133162 - 27 Jun 2024
Viewed by 771
Abstract
The growing interest in the use of building materials with a reduced carbon footprint was the aim of this research assessing the impact of four different types of low-emission cements on the properties of cement concretes used for the construction of local roads. [...] Read more.
The growing interest in the use of building materials with a reduced carbon footprint was the aim of this research assessing the impact of four different types of low-emission cements on the properties of cement concretes used for the construction of local roads. This research work attempted to verify the strength characteristics and assess the durability of such solutions, which used the commonly used CEM I 42.5 R pure clinker cement and three multi-component cements: CEM II/A-V 42.5 R, CEM III/A 42.5 N-LH/HSR/NA, and CEM V/A S-V 42.5 N-LH/HSR/NA. Cement was used in a constant amount of 360 kg/m3, sand of 0/2 mm, and granite aggregate fractions of 2/8 and 8/16 mm. This research was carried out in two areas: the first concerned strength tests and the second focused on the area of assessing the durability of concrete in terms of frost resistance F150, resistance to de-icing agents, water penetration under pressure, and an analysis of the air entrainment structure in concrete according to the PN EN 480-11 standard. Analyzing the obtained test results, it can be concluded that the highest compressive strength of more than 70 MPa was obtained for CEM III concrete, 68 MPa for CEM V concrete, and the lowest for CEM I cement after 90 days. After the durability tests, it was found that the smallest decrease in compressive strength after 150 freezing and thawing cycles was obtained for CEM III (−0.9%) and CEM V (−1.4%) concretes. The high durability of concrete is confirmed by water penetration tests under pressure, because for newly designed recipes using CEM II, CEM III, and CEM V, water penetration from 17 mm to 18 mm was achieved, which proves the very high tightness of the concrete. The assessment of the durability of low-emission cements was confirmed by tests of resistance to de-icing agents and the aeration structure performed under a microscope in accordance with the requirements of the PN-EN 480-11 standard. The obtained analysis results indicate the correct structure and minimal spacing of air bubbles in the concrete, which confirms and guarantees the durability of concrete intended for road construction. Concretes designed using CEM V cement are characterized by a carbon footprint reduction of 36%, and for the mixture based on CEM III, we even observed a decrease of 39% compared to traditional concrete. Concrete using CEM II, CEM III, and CEM V cements can be successfully used for the construction of local roads. Therefore, it is necessary to consider changing the requirements of the technical specifications recommended for roads in Poland. Full article
(This article belongs to the Special Issue Functional Cement-Based Composites for Civil Engineering (Volume II))
Show Figures

Figure 1

16 pages, 3873 KiB  
Article
Effect of Water Injection on Combustion and Emissions Parameters of SI Engine Fuelled by Hydrogen–Natural Gas Blends
by Saugirdas Pukalskas, Vidas Korsakas, Tomas Stankevičius, Donatas Kriaučiūnas and Šarūnas Mikaliūnas
Energies 2024, 17(9), 2132; https://doi.org/10.3390/en17092132 - 30 Apr 2024
Cited by 1 | Viewed by 1423
Abstract
Technologies used in the transport sector have a substantial impact on air pollution and global warming. Due to the immense impact of air pollution on Earth, it is crucial to investigate novel ways to reduce emissions. One way to reduce pollution from ICE [...] Read more.
Technologies used in the transport sector have a substantial impact on air pollution and global warming. Due to the immense impact of air pollution on Earth, it is crucial to investigate novel ways to reduce emissions. One way to reduce pollution from ICE is to use alternative fuels. However, blends of alternative fuels in different proportions are known to improve some emissions’ parameters, while others remain unchanged or even worsen. It is therefore necessary to find ways of reducing all the main pollutants. For SI engines, mixtures of hydrogen and natural gas can be used as alternative fuels. The use of such fuel mixtures makes it possible to reduce CO, HC, and CO2 emissions from the engine, but the unique properties of hydrogen tend to increase NOx emissions. One way to address this challenge is to use port water injection (PWI). This paper describes studies carried out under laboratory conditions on an SI engine fuelled with CNG and CNG + H2 mixtures (H2 = 5, 10, 15% by volume) and injected with 60 and 120 mL/min of water into the engine. The tests showed that the additional water injection reduced CO and NOx emissions by about 20% and 4–5 times, respectively. But, the results also show that water injection at the rate of 120 mL/min increases fuel consumption by between 2.5% and 7% in all cases. Full article
(This article belongs to the Special Issue Internal Combustion Engine: Research and Application—2nd Edition)
Show Figures

Figure 1

39 pages, 5515 KiB  
Article
Extension of a Monolayer Energy-Budget Degree-Day Model to a Multilayer One
by Julien Augas, Etienne Foulon, Alain N. Rousseau and Michel Baraër
Water 2024, 16(8), 1089; https://doi.org/10.3390/w16081089 - 10 Apr 2024
Viewed by 1327
Abstract
This paper presents the extension of the monolayer snow model of a semi-distributed hydrological model (HYDROTEL) to a multilayer model that considers snow to be a combination of ice and air, while accounting for freezing rain. For two stations in Yukon and one [...] Read more.
This paper presents the extension of the monolayer snow model of a semi-distributed hydrological model (HYDROTEL) to a multilayer model that considers snow to be a combination of ice and air, while accounting for freezing rain. For two stations in Yukon and one station in northern Quebec, Canada, the multilayer model achieves high performances during calibration periods yet similar to the those of the monolayer model, with KGEs of up to 0.9. However, it increases the KGE values by up to 0.2 during the validation periods. The multilayer model provides more accurate estimations of maximum SWE and total spring snowmelt dates. This is due to its increased sensitivity to thermal atmospheric conditions. Although the multilayer model improves the estimation of snow heights overall, it exhibits excessive snow densities during spring snowmelt. Future research should aim to refine the representation of snow densities to enhance the accuracy of the multilayer model. Nevertheless, this model has the potential to improve the simulation of spring snowmelt, addressing a common limitation of the monolayer model. Full article
Show Figures

Figure 1

18 pages, 3970 KiB  
Article
Experimental Study of a Homogeneous Charge Compression Ignition Engine Using Hydrogen at High-Altitude Conditions
by Andrés David Morales Rojas, Sebastián Heredia Quintana and Iván Darío Bedoya Caro
Sustainability 2024, 16(5), 2026; https://doi.org/10.3390/su16052026 - 29 Feb 2024
Cited by 1 | Viewed by 1824
Abstract
One of the key factors of the current energy transition is the use of hydrogen (H2) as fuel in energy transformation technologies. This fuel has the advantage of being produced from the most primary forms of energy and has the potential [...] Read more.
One of the key factors of the current energy transition is the use of hydrogen (H2) as fuel in energy transformation technologies. This fuel has the advantage of being produced from the most primary forms of energy and has the potential to reduce carbon dioxide (CO2) emissions. In recent years, hydrogen or hydrogen-rich mixtures in internal combustion engines (ICEs) have gained popularity, with numerous reports documenting their use in spark ignition (SI) and compression ignition (CI) engines. Homogeneous charge compression ignition (HCCI) engines have the potential for substantial reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions, and the use of hydrogen along with this kind of combustion could substantially reduce CO2 emissions. However, there have been few reports using hydrogen in HCCI engines, with most studies limited to evaluating technical feasibility, combustion characteristics, engine performance, and emissions in laboratory settings at sea level. This paper presents a study of HCCI combustion using hydrogen in a stationary air-cooled Lombardini 25 LD 425-2 modified diesel engine located at 1495 m above sea level. An experimental phase was conducted to determine the intake temperature requirements and equivalence ratios for stable HCCI combustion. These results were compared with previous research carried out at sea level. To the best knowledge of the authors, this is the first report on the combustion and operational limits for an HCCI engine fueled with hydrogen under the mentioned specific conditions. Equivalence ratios between 0.21 and 0.28 and intake temperatures between 188 °C and 235 °C effectively achieved the HCCI combustion. These temperature values were, on average, 100 °C higher than those reported in previous studies. The maximum value for the indicated mean effective pressure (IMEPn) was 1.75 bar, and the maximum thermal efficiency (ITEn) was 34.5%. The achieved results are important for the design and implementation of HCCI engines running solely on hydrogen in developing countries located at high altitudes above sea level. Full article
(This article belongs to the Topic Advanced Engines Technologies)
Show Figures

Figure 1

21 pages, 7298 KiB  
Article
Design of an Optimum Compact EGR Cooler in a Heavy-Duty Diesel Engine towards Meeting Euro 7 Emission Regulations
by Emrah Gumus and Murat Otkur
Sustainability 2023, 15(16), 12361; https://doi.org/10.3390/su151612361 - 14 Aug 2023
Cited by 2 | Viewed by 1590
Abstract
Exhaust gas recirculation (EGR) has been an efficient emission treatment strategy employed in internal combustion engines (ICEs) to cope with NOx emission limits since the introduction of Euro 4 regulations for heavy-duty commercial vehicles. A portion of the exhaust gas is fed [...] Read more.
Exhaust gas recirculation (EGR) has been an efficient emission treatment strategy employed in internal combustion engines (ICEs) to cope with NOx emission limits since the introduction of Euro 4 regulations for heavy-duty commercial vehicles. A portion of the exhaust gas is fed back into the intake port, replacing O2 in the fresh air with inert CO2 from the exhaust gas, resulting in a reduction in the combustion temperature and, hence, a reduction in NOx emissions. Considering the high exhaust temperature, this process increases the charge mixture temperature and degrades the volumetric efficiency of the engine. EGR coolers have been introduced as vital parts of EGR exhaust treatment systems with the aim of reducing the intake port temperature to increase volumetric efficiency and further reduce combustion temperatures. EGR coolers are heat exchangers (HXs) that generally employ engine coolant to reduce the EGR temperature with effectiveness values around 0.7~0.85 and downgrade with engine usage owing to soot deposition. Increasing the effectiveness of the EGR cooler has a positive effect on engine volumetric efficiency and reduces NOx, particulate matter (PM), and fuel consumption. The current study involved the design of a microchannel HX for a 500 PS heavy-duty Euro 6 diesel engine EGR cooler. The mechanical and thermal-hydraulic design calculations of the proposed HX were performed using Mathematica software. The optimum HX dimensions for the required boundary conditions were determined, and the performance of the EGR cooler was analyzed for the current and proposed options. Furthermore, Diesel-RK software was used to model the engine performance with NOx, PM, CO2 emissions, and fuel consumption predictions. The results show that the newly proposed microchannel HX design improves NOx, PM, and specific fuel consumption by 6.75%, 11.30%, and 0.65%, respectively. Full article
Show Figures

Figure 1

18 pages, 4359 KiB  
Article
Optical and Numerical Investigations on Combustion and OH Radical Behavior Inside an Optical Engine Operating in LTC Combustion Mode
by Fadila Maroteaux, Ezio Mancaruso and Bianca Maria Vaglieco
Energies 2023, 16(8), 3459; https://doi.org/10.3390/en16083459 - 14 Apr 2023
Cited by 5 | Viewed by 1263
Abstract
Low Temperature Combustion (LTC) is a relevant process for internal combustion engines (ICE). This combustion mode is based on premixed fuel/air and fuel lean in-cylinder mixture allowing reduction in NOx and PM emissions while maintaining higher thermal efficiency. In order to investigate the [...] Read more.
Low Temperature Combustion (LTC) is a relevant process for internal combustion engines (ICE). This combustion mode is based on premixed fuel/air and fuel lean in-cylinder mixture allowing reduction in NOx and PM emissions while maintaining higher thermal efficiency. In order to investigate the effect of engine operating conditions on the behavior of LTC mode, including OH radical evolution, optical measurements and numerical simulations were performed on a transparent CR diesel engine. The homogeneity of the engine charge was obtained by using very early injection timings. In this study, varying injection strategies were investigated for different engine speeds. In parallel to the experimentation, simulations of LTC mode for the same experimental operations were carried out. The model used in this study is based on a stochastic reactor model. This model includes a turbulence (k-ε) model based on a zero-dimensional energy cascade to calculate the turbulent time scale during the cycle. On the other hand, due to the stochastic approach and to reduce initial heterogeneities of the mixture, a confidence parameter was introduced in the global model to consider the real variation ranges of engine. This latter was modeled as a function of the Reynolds number allowing to initiate heterogeneities of temperature and of species mass. OH radicals were estimated with high spatial and temporal resolution using chemiluminescence measurements. Simulated in-cylinder pressure and the OH radical rate were compared to the experimental data. A good agreement was observed in terms of in-cylinder pressure trace and ignition delay times, meaning that the confidence coefficient model is accurate to describe the initial heterogeneities of the mixture. The simulated OH rate profile has the same shape as the measured OH trace and the main ignition occurs at the same time. This study corroborates that the OH radical is an appropriate tool to identify combustion stages. Full article
(This article belongs to the Collection Women in Fuel)
Show Figures

Figure 1

19 pages, 8271 KiB  
Article
Experimental and CFD Investigation of Fuel Mixing in an Optical-Access Direct-Injection NG Engine and Correlation with Test Rig Combustion and Performance Data
by Daniela Misul, Mirko Baratta, Jiajie Xu, Alois Fuerhapter and Rene Heindl
Energies 2023, 16(7), 3004; https://doi.org/10.3390/en16073004 - 25 Mar 2023
Cited by 3 | Viewed by 1771
Abstract
The present paper is the result of a cooperation between Politecnico di Torino and AVL List Gmbh within a recent collaborative research project funded by the EC. The research work was focused on the experimental and numerical characterization of mixture formation, combustion, and [...] Read more.
The present paper is the result of a cooperation between Politecnico di Torino and AVL List Gmbh within a recent collaborative research project funded by the EC. The research work was focused on the experimental and numerical characterization of mixture formation, combustion, and emissions in direct-injection NG engines, to draw useful indication for the design of innovative, high-performance engine concepts. As a matter of fact, direct-injection IC engines running on NG are believed to be a competitive transition solution towards a sustainable mobility scenario, given their maturity, technological readiness, and flexibility with respect to the fuel quality. Moreover, gaseous-fuel engines can further decrease their carbon footprint if blending of natural gas with hydrogen is considered. Provided that mixture formation represents a key aspect for the design of direct-injection engines, the activity presented in this paper is focused on the characterization of NG injection and on the mixing process, as well as the impact these latter hold on the combustion process as well as on engine-out emissions. The mixture formation process was analyzed by means of combined CFD and optical investigations. Furthermore, a full version of the engine was tested on a dynamic test rig, providing quantitative information on the engine performance and emission characteristics. The CFD results highlighted the correlation between the mixture homogeneity and the combustion stability and hinted at a relevant impact of the jet characteristics on the air charge tumble and turbulence characteristics. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process)
Show Figures

Figure 1

32 pages, 451 KiB  
Article
Thermodynamics of Evaporation from the Ocean Surface
by Rainer Feistel and Olaf Hellmuth
Atmosphere 2023, 14(3), 560; https://doi.org/10.3390/atmos14030560 - 15 Mar 2023
Cited by 4 | Viewed by 8647
Abstract
Adopted by the Intergovernmental Oceanographic Commission (IOC) of UNESCO in 2010 and the International Union of Geodesy and Geophysics (IUGG) in 2011, the Thermodynamic Equation of Seawater 2010 (TEOS-10) is the current geophysical standard for the thermodynamic properties of humid air, seawater and [...] Read more.
Adopted by the Intergovernmental Oceanographic Commission (IOC) of UNESCO in 2010 and the International Union of Geodesy and Geophysics (IUGG) in 2011, the Thermodynamic Equation of Seawater 2010 (TEOS-10) is the current geophysical standard for the thermodynamic properties of humid air, seawater and ice. TEOS-10 equations for evaporation and sublimation enthalpies are derived mathematically from the thermodynamic potential of a »sea air« model, denoting a multi-phase equilibrium composite of the geophysical aqueous mixtures. To estimating evaporation rates from the ocean, Dalton equations in various versions are implemented in numerical climate models. Some of those equations appear to be biased on climatic time scales if compared with proper thermodynamic driving forces. Such equations may lead to a spurious amplification of the hydrological cycle and an implied effect of cooling oceans. As an unbiased alternative, Dalton equations are proposed in terms of TEOS-10 relative fugacity (RF) or its conventional relative humidity (RH) approximations. With respect to RH uncertainties or trends, the substantial sensitivity of the evaporation flux may be estimated to be as much as 5 W m−2 per 1 %rh. Within a maximum error of only 0.04 %rh, sea-surface RF may be approximated in terms of dew-point or frost-point temperatures using a simple formula. Full article
(This article belongs to the Special Issue Satellite Observations of Ocean–Atmosphere Interaction)
13 pages, 1381 KiB  
Perspective
Hydrogen Application as a Fuel in Internal Combustion Engines
by Stefania Falfari, Giulio Cazzoli, Valerio Mariani and Gian Marco Bianchi
Energies 2023, 16(6), 2545; https://doi.org/10.3390/en16062545 - 8 Mar 2023
Cited by 23 | Viewed by 6775
Abstract
Hydrogen is the energy vector that will lead us toward a more sustainable future. It could be the fuel of both fuel cells and internal combustion engines. Internal combustion engines are today the only motors characterized by high reliability, duration and specific power, [...] Read more.
Hydrogen is the energy vector that will lead us toward a more sustainable future. It could be the fuel of both fuel cells and internal combustion engines. Internal combustion engines are today the only motors characterized by high reliability, duration and specific power, and low cost per power unit. The most immediate solution for the near future could be the application of hydrogen as a fuel in modern internal combustion engines. This solution has advantages and disadvantages: specific physical, chemical and operational properties of hydrogen require attention. Hydrogen is the only fuel that could potentially produce no carbon, carbon monoxide and carbon dioxide emissions. It also allows high engine efficiency and low nitrogen oxide emissions. Hydrogen has wide flammability limits and a high flame propagation rate, which provide a stable combustion process for lean and very lean mixtures. Near the stoichiometric air–fuel ratio, hydrogen-fueled engines exhibit abnormal combustions (backfire, pre-ignition, detonation), the suppression of which has proven to be quite challenging. Pre-ignition due to hot spots in or around the spark plug can be avoided by adopting a cooled or unconventional ignition system (such as corona discharge): the latter also ensures the ignition of highly diluted hydrogen–air mixtures. It is worth noting that to correctly reproduce the hydrogen ignition and combustion processes in an ICE with the risks related to abnormal combustion, 3D CFD simulations can be of great help. It is necessary to model the injection process correctly, and then the formation of the mixture, and therefore, the combustion process. It is very complex to model hydrogen gas injection due to the high velocity of the gas in such jets. Experimental tests on hydrogen gas injection are many but never conclusive. It is necessary to have a deep knowledge of the gas injection phenomenon to correctly design the right injector for a specific engine. Furthermore, correlations are needed in the CFD code to predict the laminar flame velocity of hydrogen–air mixtures and the autoignition time. In the literature, experimental data are scarce on air–hydrogen mixtures, particularly for engine-type conditions, because they are complicated by flame instability at pressures similar to those of an engine. The flame velocity exhibits a non-monotonous behavior with respect to the equivalence ratio, increases with a higher unburnt gas temperature and decreases at high pressures. This makes it difficult to develop the correlation required for robust and predictive CFD models. In this work, the authors briefly describe the research path and the main challenges listed above. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

21 pages, 9140 KiB  
Article
Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach
by Hammam Aljabri, Mickael Silva, Moez Ben Houidi, Xinlei Liu, Moaz Allehaibi, Fahad Almatrafi, Abdullah S. AlRamadan, Balaji Mohan, Emre Cenker and Hong G. Im
Energies 2022, 15(23), 8951; https://doi.org/10.3390/en15238951 - 26 Nov 2022
Cited by 15 | Viewed by 3034
Abstract
Hydrogen is a promising future fuel to enable the transition of transportation sector toward carbon neutrality. The direct utilization of H2 in internal combustion engines (ICEs) faces three major challenges: high NOx emissions, severe pressure rise rates, and pre-ignition at mid [...] Read more.
Hydrogen is a promising future fuel to enable the transition of transportation sector toward carbon neutrality. The direct utilization of H2 in internal combustion engines (ICEs) faces three major challenges: high NOx emissions, severe pressure rise rates, and pre-ignition at mid to high loads. In this study, the potential of H2 combustion in a truck-size engine operated in spark ignition (SI) and pre-chamber (PC) mode was investigated. To mitigate the high pressure rise rate with the SI configuration, the effects of three primary parameters on the engine combustion performance and NOx emissions were evaluated, including the compression ratio (CR), the air–fuel ratio, and the spark timing. In the simulations, the severity of the pressure rise was evaluated based on the maximum pressure rise rate (MPRR). Lower compression ratios were assessed as a means to mitigate the auto-ignition while enabling a wider range of engine operation. The study showed that by lowering CR from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved at 9.4 bar indicated mean effective pressure (IMEP) conditions. Aiming to restrain the auto-ignition while maintaining good efficiency, growth in λ was examined under different CRs. The simulated data suggested that higher CRs require a higher λ, and due to practical limitations of the boosting system, λ at 4.0 was set as the limit. At a fixed spark timing, using a CR of 13.5 combined with λ at 3.33 resulted in an indicated thermal efficiency of 48.6%. It was found that under such lean conditions, the exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time where an indicated thermal efficiency exceeding 50% was achieved while maintaining a very low NOx level. Finally, the optimized case in the SI mode was used to investigate the effect of using the PC. For the current design of the PC, the results indicated that even though the mixture is lean, the flame speed of H2 is sufficiently high to burn the lean charge without using a PC. In addition, the PC design used in the current work induced a high MPRR inside the PC and MC, leading to an increased tendency to engine knock. The operation with PC also increased the heat transfer losses in the MC, leading to lower thermal efficiency compared to the SI mode. Consequently, the PC combustion mode needs further optimizations to be employed in hydrogen engine applications. Full article
Show Figures

Figure 1

17 pages, 4766 KiB  
Article
Assessment of the Operation of an SI Engine Fueled with Ammonia
by Davide Lanni, Enzo Galloni, Gustavo Fontana and Gabriele D’Antuono
Energies 2022, 15(22), 8583; https://doi.org/10.3390/en15228583 - 16 Nov 2022
Cited by 15 | Viewed by 2007
Abstract
Recently, the research interest regarding ammonia applications in energy systems has been increasing. Ammonia is an important hydrogen carrier that can also be obtained starting from renewable energy sources. Furthermore, ammonia can be used as a carbon-free fuel in combustion systems. In particular, [...] Read more.
Recently, the research interest regarding ammonia applications in energy systems has been increasing. Ammonia is an important hydrogen carrier that can also be obtained starting from renewable energy sources. Furthermore, ammonia can be used as a carbon-free fuel in combustion systems. In particular, the behavior of internal combustion engines (ICEs), fueled by ammonia, needs to be further investigated. The main disadvantage of this kind of fuel is its low laminar flame speed when it is oxidized with air. On the other hand, considering a spark-ignition (SI) engine, the absence of knock phenomena could allow a performance improvement. In this work, a 1D numerical approach was used in order to assess the performance and the operating limits of a downsized PFI SI engine fueled with pure ammonia. Furthermore, the reliability of the 1D model was verified by means of a 3D approach. Both throttled and unthrottled engine operation was investigated. In particular, different boost levels were analyzed under WOT (wide-open throttle) conditions. The potential of the 1D approach was also exploited to evaluate the effect of different geometrical compression ratio on the ammonia engine behavior. The results show that the low laminar flame speed of ammonia–air mixtures leads to increased combustion durations and optimal spark timings more advanced than the typical ones of SI engines. On the other hand, knock phenomena are always avoided. Due to the engine operating limits, the maximum rotational speed guaranteeing proper engine operation is 3000 rpm, except for at the highest boost level. At this regime, the load regulation can be critical in terms of unburned fuel emissions. Considering increased compression ratios and no boost conditions, even the 4000 rpm operating point guarantees proper engine operation. Full article
Show Figures

Figure 1

13 pages, 5327 KiB  
Article
Recovery of Rare Earth Elements from Spent NdFeB-Magnets: Separation of Iron through Reductive Smelting of the Oxidized Material (Second Part)
by Hanwen Chung, Srecko Stopic, Elif Emil-Kaya, Sebahattin Gürmen and Bernd Friedrich
Metals 2022, 12(10), 1615; https://doi.org/10.3390/met12101615 - 27 Sep 2022
Cited by 11 | Viewed by 3250
Abstract
This paper proposes a pyrometallurgical recycling method for end-of-life NdFeB magnets by oxidizing them in air and subsequently smelting them. The smelting process enabled the recovery of rare earth elements (REEs), producing a new reach concentrate separating the iron as a metallic phase. [...] Read more.
This paper proposes a pyrometallurgical recycling method for end-of-life NdFeB magnets by oxidizing them in air and subsequently smelting them. The smelting process enabled the recovery of rare earth elements (REEs), producing a new reach concentrate separating the iron as a metallic phase. From the products of smelting, the metallic phase showed a maximum Fe content of 92.3 wt.%, while the slag phase showed a maximum total REE (Nd, Pr, and Dy) content of 47.47 wt.%, both at a smelting temperature of 1500 °C. ICE-OES and XRD analysis were conducted on both phases, and results showed that the metal phase consists mainly of Fe and Fe3C while the slag phase consists of the RE-oxides, leftover Fe2O3, and a mixture of Fe6Nd4. The obtained slag concentrate based on the oxides of rare earth elements is suitable for further pyrometallurgical or hydrometallurgical treatment in order to obtain rare earth elements. Full article
Show Figures

Figure 1

18 pages, 7004 KiB  
Article
Numerical Simulation of an Air-Bubble System for Ice Resistance Reduction
by Bao-Yu Ni, Hongyu Wei, Zhiyuan Li, Bin Fang and Yanzhuo Xue
J. Mar. Sci. Eng. 2022, 10(9), 1201; https://doi.org/10.3390/jmse10091201 - 27 Aug 2022
Cited by 3 | Viewed by 2083
Abstract
Ships sailing through cold regions frequently encounter floe ice fields. An air-bubble system that reduces friction between the hull and ice floes is thus considered useful for the reduction of ice-induced resistance. In this study, a numerical analysis procedure based on coupled finite [...] Read more.
Ships sailing through cold regions frequently encounter floe ice fields. An air-bubble system that reduces friction between the hull and ice floes is thus considered useful for the reduction of ice-induced resistance. In this study, a numerical analysis procedure based on coupled finite volume method (FVM) and discrete element method (DEM) is proposed to simulate complicated hull-water-gas-ice interactions for ice-going ships installed with air-bubble systems. The simulations reveal that after turning on the air-bubble system ice floes in contact with the hull side wall are pushed away from the hull by the gas-water mixture, resulting in an ice-free zone close to the side hull. It is found that the drag reduction rate increases with the increase of ventilation, while the bow ventilation plays a deciding role in the overall ice-resistance reduction. The proposed procedure is expected to facilitate design of new generations of ice-going ships. Full article
(This article belongs to the Special Issue Fluid/Structure Interactions II)
Show Figures

Figure 1

Back to TopTop