Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = hybrid kernel SVM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7258 KiB  
Article
MSBKA: A Multi-Strategy Improved Black-Winged Kite Algorithm for Feature Selection of Natural Disaster Tweets Classification
by Guangyu Mu, Jiaxue Li, Zhanhui Liu, Jiaxiu Dai, Jiayi Qu and Xiurong Li
Viewed by 356
Abstract
With the advancement of the Internet, social media platforms have gradually become powerful in spreading crisis-related content. Identifying informative tweets associated with natural disasters is beneficial for the rescue operation. When faced with massive text data, choosing the pivotal features, reducing the calculation [...] Read more.
With the advancement of the Internet, social media platforms have gradually become powerful in spreading crisis-related content. Identifying informative tweets associated with natural disasters is beneficial for the rescue operation. When faced with massive text data, choosing the pivotal features, reducing the calculation expense, and increasing the model classification performance is a significant challenge. Therefore, this study proposes a multi-strategy improved black-winged kite algorithm (MSBKA) for feature selection of natural disaster tweets classification based on the wrapper method’s principle. Firstly, BKA is improved by utilizing the enhanced Circle mapping, integrating the hierarchical reverse learning, and introducing the Nelder–Mead method. Then, MSBKA is combined with the excellent classifier SVM (RBF kernel function) to construct a hybrid model. Finally, the MSBKA-SVM model performs feature selection and tweet classification tasks. The empirical analysis of the data from four natural disasters shows that the proposed model has achieved an accuracy of 0.8822. Compared with GA, PSO, SSA, and BKA, the accuracy is increased by 4.34%, 2.13%, 2.94%, and 6.35%, respectively. This research proves that the MSBKA-SVM model can play a supporting role in reducing disaster risk. Full article
Show Figures

Figure 1

20 pages, 3238 KiB  
Article
Enhanced Disc Herniation Classification Using Grey Wolf Optimization Based on Hybrid Feature Extraction and Deep Learning Methods
by Yasemin Sarı and Nesrin Aydın Atasoy
Viewed by 351
Abstract
Due to the increasing number of people working at computers in professional settings, the incidence of lumbar disc herniation is increasing. Background/Objectives: The early diagnosis and treatment of lumbar disc herniation is much more likely to yield favorable results, allowing the hernia to [...] Read more.
Due to the increasing number of people working at computers in professional settings, the incidence of lumbar disc herniation is increasing. Background/Objectives: The early diagnosis and treatment of lumbar disc herniation is much more likely to yield favorable results, allowing the hernia to be treated before it develops further. The aim of this study was to classify lumbar disc herniations in a computer-aided, fully automated manner using magnetic resonance images (MRIs). Methods: This study presents a hybrid method integrating residual network (ResNet50), grey wolf optimization (GWO), and machine learning classifiers such as multi-layer perceptron (MLP) and support vector machine (SVM) to improve classification performance. The proposed approach begins with feature extraction using ResNet50, a deep convolutional neural network known for its robust feature representation capabilities. ResNet50’s residual connections allow for effective training and high-quality feature extraction from input images. Following feature extraction, the GWO algorithm, inspired by the social hierarchy and hunting behavior of grey wolves, is employed to optimize the feature set by selecting the most relevant features. Finally, the optimized feature set is fed into machine learning classifiers (MLP and SVM) for classification. The use of various activation functions (e.g., ReLU, identity, logistic, and tanh) in MLP and various kernel functions (e.g., linear, rbf, sigmoid, and polynomial) in SVM allows for a thorough evaluation of the classifiers’ performance. Results: The proposed methodology demonstrates significant improvements in metrics such as accuracy, precision, recall, and F1 score, outperforming traditional approaches in several cases. These results highlight the effectiveness of combining deep learning-based feature extraction with optimization and machine learning classifiers. Conclusions: Compared to other methods, such as capsule networks (CapsNet), EfficientNetB6, and DenseNet169, the proposed ResNet50-GWO-SVM approach achieved superior performance across all metrics, including accuracy, precision, recall, and F1 score, demonstrating its robustness and effectiveness in classification tasks. Full article
Show Figures

Figure 1

27 pages, 2015 KiB  
Article
Developing Innovative Feature Extraction Techniques from the Emotion Recognition Field on Motor Imagery Using Brain–Computer Interface EEG Signals
by Amr F. Mohamed and Vacius Jusas
Appl. Sci. 2024, 14(23), 11323; https://doi.org/10.3390/app142311323 - 4 Dec 2024
Viewed by 713
Abstract
Research on brain–computer interfaces (BCIs) advances the way scientists understand how the human brain functions. The BCI system, which is based on the use of electroencephalography (EEG) signals to detect motor imagery (MI) tasks, enables opportunities for various applications in stroke rehabilitation, neuroprosthetic [...] Read more.
Research on brain–computer interfaces (BCIs) advances the way scientists understand how the human brain functions. The BCI system, which is based on the use of electroencephalography (EEG) signals to detect motor imagery (MI) tasks, enables opportunities for various applications in stroke rehabilitation, neuroprosthetic devices, and communication tools. BCIs can also be used in emotion recognition (ER) research to depict the sophistication of human emotions by improving mental health monitoring, human–computer interactions, and neuromarketing. To address the low accuracy of MI-BCI, which is a key issue faced by researchers, this study employs a new approach that has been proven to have the potential to enhance motor imagery classification accuracy. The basic idea behind the approach is to apply feature extraction methods from the field of emotion recognition to the field of motor imagery. Six feature sets and four classifiers were explored using four MI classes (left and right hands, both feet, and tongue) from the BCI Competition IV 2a dataset. Statistical, wavelet analysis, Hjorth parameters, higher-order spectra, fractal dimensions (Katz, Higuchi, and Petrosian), and a five-dimensional combination of all five feature sets were implemented. GSVM, CART, LinearSVM, and SVM with polynomial kernel classifiers were considered. Our findings show that 3D fractal dimensions predominantly outperform all other feature sets, specifically during LinearSVM classification, accomplishing nearly 79.1% mean accuracy, superior to the state-of-the-art results obtained from the referenced MI paper, where CSP reached 73.7% and Riemannian methods reached 75.5%. It even performs as well as the latest TWSB method, which also reached approximately 79.1%. These outcomes emphasize that the new hybrid approach in the motor imagery/emotion recognition field improves classification accuracy when applied to motor imagery EEG signals, thus enhancing MI-BCI performance. Full article
(This article belongs to the Section Applied Neuroscience and Neural Engineering)
Show Figures

Figure 1

32 pages, 7951 KiB  
Article
Hybrid Machine Learning for Stunting Prevalence: A Novel Comprehensive Approach to Its Classification, Prediction, and Clustering Optimization in Aceh, Indonesia
by Novia Hasdyna, Rozzi Kesuma Dinata, Rahmi and T. Irfan Fajri
Viewed by 764
Abstract
Stunting remains a significant public health issue in Aceh, Indonesia, and is influenced by various socio-economic and environmental factors. This study aims to address key challenges in accurately classifying stunting prevalence, predicting future trends, and optimizing clustering methods to support more effective interventions. [...] Read more.
Stunting remains a significant public health issue in Aceh, Indonesia, and is influenced by various socio-economic and environmental factors. This study aims to address key challenges in accurately classifying stunting prevalence, predicting future trends, and optimizing clustering methods to support more effective interventions. To this end, we propose a novel hybrid machine learning framework that integrates classification, predictive modeling, and clustering optimization. Support Vector Machines (SVM) with Radial Basis Function (RBF) and Sigmoid kernels were employed to improve the classification accuracy, with the RBF kernel outperforming the Sigmoid kernel, achieving an accuracy rate of 91.3% compared with 85.6%. This provides a more reliable tool for identifying high-risk populations. Furthermore, linear regression was used for predictive modeling, yielding a low Mean Squared Error (MSE) of 0.137, demonstrating robust predictive accuracy for future stunting prevalence. Finally, the clustering process was optimized using a weighted-product approach to enhance the efficiency of K-Medoids. This optimization reduced the number of iterations from seven to three and improved the Calinski–Harabasz Index from 85.2 to 93.7. This comprehensive framework not only enhances the classification, prediction, and clustering of results but also delivers actionable insights for targeted public health interventions and policymaking aimed at reducing stunting in Aceh. Full article
(This article belongs to the Section Health Informatics)
Show Figures

Figure 1

22 pages, 6832 KiB  
Article
Classification of Asphalt Pavement Defects for Sustainable Road Development Using a Novel Hybrid Technology Based on Clustering Deep Features
by Jia Liang, Qipeng Zhang and Xingyu Gu
Sustainability 2024, 16(22), 10145; https://doi.org/10.3390/su162210145 - 20 Nov 2024
Viewed by 765
Abstract
In the rapid development of urbanization, the sustained and healthy development of transportation infrastructure has become a widely discussed topic. The inspection and maintenance of asphalt pavements not only concern road safety and efficiency but also directly impact the rational allocation of resources [...] Read more.
In the rapid development of urbanization, the sustained and healthy development of transportation infrastructure has become a widely discussed topic. The inspection and maintenance of asphalt pavements not only concern road safety and efficiency but also directly impact the rational allocation of resources and environmental sustainability. To address the challenges of modern transportation infrastructure management, this study innovatively proposes a hybrid learning model that integrates deep convolutional neural networks (DCNNs) and support vector machines (SVMs). Specifically, the model initially employs a ShuffleNet architecture to autonomously extract abstract features from various defect categories. Subsequently, the Maximum Relevance Minimum Redundancy (MRMR) method is utilized to select the top 25% of features with the highest relevance and minimal redundancy. After that, SVMs equipped with diverse kernel functions are deployed to perform training and prediction based on the selected features. The experimental results reveal that the model attains a high classification accuracy of 94.62% on a self-constructed asphalt pavement image dataset. This technology not only significantly improves the accuracy and efficiency of pavement inspection but also effectively reduces traffic congestion and incremental carbon emissions caused by pavement distress, thereby alleviating environmental burdens. It is of great significance for enhancing pavement maintenance efficiency, conserving resource consumption, mitigating environmental pollution, and promoting sustainable socio-economic development. Full article
Show Figures

Figure 1

23 pages, 5062 KiB  
Article
Audio-Based Engine Fault Diagnosis with Wavelet, Markov Blanket, ROCKET, and Optimized Machine Learning Classifiers
by Bernardo Luis Tuleski, Cristina Keiko Yamaguchi, Stefano Frizzo Stefenon, Leandro dos Santos Coelho and Viviana Cocco Mariani
Sensors 2024, 24(22), 7316; https://doi.org/10.3390/s24227316 - 15 Nov 2024
Viewed by 702
Abstract
Engine fault diagnosis is a critical task in automotive aftermarket management. Developing appropriate fault-labeled datasets can be challenging due to nonlinearity variations and divergence in feature distribution among different engine kinds or operating scenarios. To solve this task, this study experimentally measures audio [...] Read more.
Engine fault diagnosis is a critical task in automotive aftermarket management. Developing appropriate fault-labeled datasets can be challenging due to nonlinearity variations and divergence in feature distribution among different engine kinds or operating scenarios. To solve this task, this study experimentally measures audio emission signals from compression ignition engines in different vehicles, simulating injector failures, intake hose failures, and absence of failures. Based on these faults, a hybrid approach is applied to classify different conditions that help the planning and decision-making of the automobile industry. The proposed hybrid approach combines the wavelet packet transform (WPT), Markov blanket feature selection, random convolutional kernel transform (ROCKET), tree-structured Parzen estimator (TPE) for hyperparameters tuning, and ten machine learning (ML) classifiers, such as ridge regression, quadratic discriminant analysis (QDA), naive Bayes, k-nearest neighbors (k-NN), support vector machine (SVM), multilayer perceptron (MLP), random forest (RF), extra trees (ET), gradient boosting machine (GBM), and LightGBM. The audio data are broken down into sub-time series with various frequencies and resolutions using the WPT. These data are subsequently utilized as input for obtaining an informative feature subset using a Markov blanket-based selection method. This feature subset is then fed into the ROCKET method, which is paired with ML classifiers, and tuned using Optuna using the TPE approach. The generalization performance applying the proposed hybrid approach outperforms other standard ML classifiers. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

11 pages, 438 KiB  
Article
Rapid Classification of Milk Using a Cost-Effective Near Infrared Spectroscopy Device and Variable Cluster–Support Vector Machine (VC-SVM) Hybrid Models
by Eleonora Buoio, Valentina Colombo, Elena Ighina and Francesco Tangorra
Foods 2024, 13(20), 3279; https://doi.org/10.3390/foods13203279 - 16 Oct 2024
Viewed by 1132
Abstract
Removing fat from whole milk and adding water to milk to increase its volume are among the most common food fraud practices that alter the characteristics of milk. Usually, deviations from the expected fat content can indicate adulteration. Infrared spectroscopy is a commonly [...] Read more.
Removing fat from whole milk and adding water to milk to increase its volume are among the most common food fraud practices that alter the characteristics of milk. Usually, deviations from the expected fat content can indicate adulteration. Infrared spectroscopy is a commonly used technique for distinguishing pure milk from adulterated milk, even when it comes from different animal species. More recently, portable spectrometers have enabled in situ analysis with analytical performance comparable to that of benchtop instruments. Partial Least Square (PLS) analysis is the most popular tool for developing calibration models, although the increasing availability of portable near infrared spectroscopy (NIRS) has led to the use of alternative supervised techniques, including support vector machine (SVM). The aim of this study was to develop and implement a method based on the combination of a compact and low-cost Fourier Transform near infrared (FT-NIR) spectrometer and variable cluster–support vector machine (VC-SVM) hybrid model for the rapid classification of milk in accordance with EU Regulation EC No. 1308/2013 without any pre-treatment. The results obtained from the external validation of the VC-SVM hybrid model showed a perfect classification capacity (100% sensitivity, 100% specificity, MCC = 1) for the radial basis function (RBF) kernel when used to classify whole vs. not-whole and skimmed vs. not-skimmed milk samples. A strong classification capacity (94.4% sensitivity, 100% specificity, MCC = 0.95) was also achieved in discriminating semi-skimmed vs. not-semi-skimmed milk samples. This approach provides the dairy industry with a practical, simple and efficient solution to quickly identify skimmed, semi-skimmed and whole milk and detect potential fraud. Full article
Show Figures

Figure 1

17 pages, 4560 KiB  
Article
A Generalised Intelligent Bearing Fault Diagnosis Model Based on a Two-Stage Approach
by Amirmasoud Kiakojouri, Zudi Lu, Patrick Mirring, Honor Powrie and Ling Wang
Cited by 2 | Viewed by 1842
Abstract
This paper introduces a two-stage intelligent fault diagnosis model for rolling element bearings (REBs) aimed at overcoming the challenge of limited real-world vibration training data. In this study, bearing characteristic frequencies (BCFs) extracted from a novel hybrid method combining cepstrum pre-whitening (CPW) and [...] Read more.
This paper introduces a two-stage intelligent fault diagnosis model for rolling element bearings (REBs) aimed at overcoming the challenge of limited real-world vibration training data. In this study, bearing characteristic frequencies (BCFs) extracted from a novel hybrid method combining cepstrum pre-whitening (CPW) and high-pass filtering developed by the authors’ group are used as input features, and a two-stage approach is taken to develop an intelligent REB fault detect and diagnosis model. In the first stage, various machine learning (ML) methods, including support vector machine (SVM), multinomial logistic regressions (MLR), and artificial neural networks (ANN), are evaluated to identify faulty bearings from healthy ones. The best-performing ML model is selected for this stage. In the second stage, a similar evaluation is conducted to find the most suitable ML technique for bearing fault classification. The model is trained and validated using vibration data from an EU Clean Sky2 I2BS project (An EU Clean Sky 2 project ‘Integrated Intelligent Bearing Systems’ collaborated between Schaeffler Technologies and the University of Southampton. Safran Aero Engines was the topic manager for this project) and tested on datasets from Case Western Reserve University (CWRU) and the US Society for Machinery Failure Prevention Technology (MFPT). The results show that the two-stage model, using an SVM with a polynomial kernel function in Stage-1 and an ANN with one hidden layer and 0.05 dropout rate in Stage-2, can successfully detect bearing conditions in both test datasets and perform better than the results in literature without the requirement of further training. Compared with a single-stage model, the two-stage model also shows improved performance. Full article
Show Figures

Figure 1

13 pages, 3884 KiB  
Article
A Model Predicting the Maximum Face Slab Deflection of Concrete-Face Rockfill Dams: Combining Improved Support Vector Machine and Threshold Regression
by Wei Zhao, Zilong Wang, Haiyang Zhang and Ting Wang
Water 2023, 15(19), 3474; https://doi.org/10.3390/w15193474 - 2 Oct 2023
Cited by 1 | Viewed by 1435
Abstract
The deformation of concrete-face rockfill dams (CFRDs) is a key parameter for the safety control of reservoir and dam systems. Rapid and accurate estimation of the deformation characteristics of CFRDs is a top priority. To realize this, we proposed a new model for [...] Read more.
The deformation of concrete-face rockfill dams (CFRDs) is a key parameter for the safety control of reservoir and dam systems. Rapid and accurate estimation of the deformation characteristics of CFRDs is a top priority. To realize this, we proposed a new model for predicting the maximum face slab deflection (FD) of CFRDs, combining the threshold regression (TR) and the improved support vector machine (SVM). In this paper, based on the collected 71 real measurement data from engineering examples, we constructed an adaptive hybrid kernel function with high precision and generalization ability. We optimized the selection of the main parameters of the SVM by a particle swarm optimization (PSO) algorithm. Meanwhile, we clustered the deformation parameters according to the dam height by the TR. It significantly contributes to the accuracy and generalization of the model. Finally, a prediction model for the FD characteristics of CFRDs combining TR and improved SVM was developed. The new prediction model can overcome the nonlinear abrupt feature of the sample data and achieve high precision with R2 greater than 0.8 in the final testing set. Our model is more accurate with faster convergence compared to the previous model. This study provides a more accurate model for predicting maximum face slab deflection and lays the foundation for safety control and evaluation of dams. Full article
Show Figures

Figure 1

28 pages, 853 KiB  
Article
OPT-RNN-DBSVM: OPTimal Recurrent Neural Network and Density-Based Support Vector Machine
by Karim El Moutaouakil, Abdellatif El Ouissari, Adrian Olaru, Vasile Palade and Mihaela Ciorei
Mathematics 2023, 11(16), 3555; https://doi.org/10.3390/math11163555 - 17 Aug 2023
Cited by 7 | Viewed by 1267
Abstract
When implementing SVMs, two major problems are encountered: (a) the number of local minima of dual-SVM increases exponentially with the number of samples and (b) the computer storage memory required for a regular quadratic programming solver increases exponentially as the problem size expands. [...] Read more.
When implementing SVMs, two major problems are encountered: (a) the number of local minima of dual-SVM increases exponentially with the number of samples and (b) the computer storage memory required for a regular quadratic programming solver increases exponentially as the problem size expands. The Kernel-Adatron family of algorithms, gaining attention recently, has allowed us to handle very large classification and regression problems. However, these methods treat different types of samples (i.e., noise, border, and core) in the same manner, which makes these algorithms search in unpromising areas and increases the number of iterations as well. This paper introduces a hybrid method to overcome such shortcomings, called the Optimal Recurrent Neural Network and Density-Based Support Vector Machine (Opt-RNN-DBSVM). This method consists of four steps: (a) the characterization of different samples, (b) the elimination of samples with a low probability of being a support vector, (c) the construction of an appropriate recurrent neural network to solve the dual-DBSVM based on an original energy function, and (d) finding the solution to the system of differential equations that govern the dynamics of the RNN, using the Euler–Cauchy method involving an optimal time step. Density-based preprocessing reduces the number of local minima in the dual-SVM. The RNN’s recurring architecture avoids the need to explore recently visited areas. With the optimal time step, the search moves from the current vectors to the best neighboring support vectors. It is demonstrated that RNN-SVM converges to feasible support vectors and Opt-RNN-DBSVM has very low time complexity compared to the RNN-SVM with a constant time step and the Kernel-Adatron algorithm–SVM. Several classification performance measures are used to compare Opt-RNN-DBSVM with different classification methods and the results obtained show the good performance of the proposed method. Full article
(This article belongs to the Section Control Theory and Mechanics)
Show Figures

Figure 1

21 pages, 5757 KiB  
Article
Health Status Recognition Method for Rotating Machinery Based on Multi-Scale Hybrid Features and Improved Convolutional Neural Networks
by Xiangang Cao, Xingyu Guo, Yong Duan, Fuqiang Zhang, Hongwei Fan and Xin Xu
Sensors 2023, 23(12), 5688; https://doi.org/10.3390/s23125688 - 18 Jun 2023
Cited by 4 | Viewed by 1534
Abstract
Rotating machinery is susceptible to harsh environmental interference, and fault signal features are challenging to extract, leading to difficulties in health status recognition. This paper proposes multi-scale hybrid features and improved convolutional neural networks (MSCCNN) health status identification methods for rotating machinery. Firstly, [...] Read more.
Rotating machinery is susceptible to harsh environmental interference, and fault signal features are challenging to extract, leading to difficulties in health status recognition. This paper proposes multi-scale hybrid features and improved convolutional neural networks (MSCCNN) health status identification methods for rotating machinery. Firstly, the rotating machinery vibration signal is decomposed into intrinsic modal components (IMF) using empirical wavelet decomposition, and multi-scale hybrid feature sets are constructed by simultaneously extracting time-domain, frequency-domain and time-frequency-domain features based on the original vibration signal and the intrinsic modal components it decomposes. Secondly, using correlation coefficients to select features sensitive to degradation, construct rotating machinery health indicators based on kernel principal component analysis and complete health state classification. Finally, a convolutional neural network model (MSCCNN) incorporating multi-scale convolution and hybrid attention mechanism modules is developed for health state identification of rotating machinery, and an improved custom loss function is applied to improve the superiority and generalization ability of the model. The bearing degradation data set of Xi’an Jiaotong University is used to verify the effectiveness of the model. The recognition accuracy of the model is 98.22%, which is 5.83%, 3.30%, 2.29%, 1.52%, and 4.31% higher than that of SVM, CNN, CNN + CBAM, MSCNN, and MSCCNN + conventional features, respectively. The PHM2012 challenge dataset is used to increase the number of samples to validate the model effectiveness, and the model recognition accuracy is 97.67%, which is 5.63%, 1.88%, 1.36%, 1.49%, and 3.69% higher compared to SVM, CNN, CNN + CBAM, MSCNN, and MSCCNN + conventional features methods, respectively. The MSCCNN model recognition accuracy is 98.67% when validated on the degraded dataset of the reducer platform. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 2540 KiB  
Article
Machine Learning-Driven Ubiquitous Mobile Edge Computing as a Solution to Network Challenges in Next-Generation IoT
by Moteeb Al Moteri, Surbhi Bhatia Khan and Mohammed Alojail
Cited by 5 | Viewed by 2139
Abstract
Ubiquitous mobile edge computing (MEC) using the internet of things (IoT) is a promising technology for providing low-latency and high-throughput services to end-users. Resource allocation and quality of service (QoS) optimization are critical challenges in MEC systems due to the large number of [...] Read more.
Ubiquitous mobile edge computing (MEC) using the internet of things (IoT) is a promising technology for providing low-latency and high-throughput services to end-users. Resource allocation and quality of service (QoS) optimization are critical challenges in MEC systems due to the large number of devices and applications involved. This results in poor latency with minimum throughput and energy consumption as well as a high delay rate. Therefore, this paper proposes a novel approach for resource allocation and QoS optimization in MEC using IoT by combining the hybrid kernel random Forest (HKRF) and ensemble support vector machine (ESVM) algorithms with crossover-based hunter–prey optimization (CHPO). The HKRF algorithm uses decision trees and kernel functions to capture the complex relationships between input features and output labels. The ESVM algorithm combines multiple SVM classifiers to improve the classification accuracy and robustness. The CHPO algorithm is a metaheuristic optimization algorithm that mimics the hunting behavior of predators and prey in nature. The proposed approach aims to optimize the parameters of the HKRF and ESVM algorithms and allocate resources to different applications running on the MEC network to improve the QoS metrics such as latency, throughput, and energy efficiency. The experimental results show that the proposed approach outperforms other algorithms in terms of QoS metrics and resource allocation efficiency. The throughput and the energy consumption attained by our proposed approach are 595 mbit/s and 9.4 mJ, respectively. Full article
(This article belongs to the Special Issue AI, IoT, and Edge Computing for Sustainable Smart Cities)
Show Figures

Figure 1

26 pages, 10532 KiB  
Article
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
by Xinmin Song, Weihua Wei, Junbo Zhou, Guojun Ji, Ghulam Hussain, Maohua Xiao and Guosheng Geng
Sensors 2023, 23(11), 5137; https://doi.org/10.3390/s23115137 - 28 May 2023
Cited by 18 | Viewed by 2850
Abstract
We propose a new fault diagnosis model for rolling bearings based on a hybrid kernel support vector machine (SVM) and Bayesian optimization (BO). The model uses discrete Fourier transform (DFT) to extract fifteen features from vibration signals in the time and frequency domains [...] Read more.
We propose a new fault diagnosis model for rolling bearings based on a hybrid kernel support vector machine (SVM) and Bayesian optimization (BO). The model uses discrete Fourier transform (DFT) to extract fifteen features from vibration signals in the time and frequency domains of four bearing failure forms, which addresses the issue of ambiguous fault identification caused by their nonlinearity and nonstationarity. The extracted feature vectors are then divided into training and test sets as SVM inputs for fault diagnosis. To optimize the SVM, we construct a hybrid kernel SVM using a polynomial kernel function and radial basis kernel function. BO is used to optimize the extreme values of the objective function and determine their weight coefficients. We create an objective function for the Gaussian regression process of BO using training and test data as inputs, respectively. The optimized parameters are used to rebuild the SVM, which is then trained for network classification prediction. We tested the proposed diagnostic model using the bearing dataset of the Case Western Reserve University. The verification results show that the fault diagnosis accuracy is improved from 85% to 100% compared with the direct input of vibration signal into the SVM, and the effect is significant. Compared with other diagnostic models, our Bayesian-optimized hybrid kernel SVM model has the highest accuracy. In laboratory verification, we took sixty sets of sample values for each of the four failure forms measured in the experiment, and the verification process was repeated. The experimental results showed that the accuracy of the Bayesian-optimized hybrid kernel SVM reached 100%, and the accuracy of five replicates reached 96.7%. These results demonstrate the feasibility and superiority of our proposed method for fault diagnosis in rolling bearings. Full article
Show Figures

Figure 1

19 pages, 2743 KiB  
Article
A New Hybrid Fault Diagnosis Method for Wind Energy Converters
by Jinping Liang and Ke Zhang
Electronics 2023, 12(5), 1263; https://doi.org/10.3390/electronics12051263 - 6 Mar 2023
Cited by 8 | Viewed by 1725
Abstract
Fault diagnostic techniques can reduce the requirements for the experience of maintenance crews, accelerate maintenance speed, reduce maintenance cost, and increase electric energy production profitability. In this paper, a new hybrid fault diagnosis method based on multivariate empirical mode decomposition (MEMD), fuzzy entropy [...] Read more.
Fault diagnostic techniques can reduce the requirements for the experience of maintenance crews, accelerate maintenance speed, reduce maintenance cost, and increase electric energy production profitability. In this paper, a new hybrid fault diagnosis method based on multivariate empirical mode decomposition (MEMD), fuzzy entropy (FE), and an artificial fish swarm algorithm (AFSA)-support vector machine (SVM) is proposed to identify the faults of a wind energy converter. Firstly, the measured three-phase output voltage signals are processed by MEMD to obtain three sets of intrinsic mode functions (IMFs). The multi-scale analysis tool MEMD is used to extract the common modes matching the timescale. It studies the multi-scale relationship between three-phase voltages, realizes their synchronous analysis, and ensures that the number and frequency of the modes match and align. Then, FE is calculated to describe the IMFs’ complexity, and the IMFs-FE information is taken as fault feature to increase the robustness to working conditions and noise. Finally, the AFSA algorithm is used to optimize SVM parameters, solving the difficulty in selecting the penalty factor and radial basis function kernel. The effectiveness of the proposed method is verified in a simulated wind energy system, and the results show that the diagnostic accuracy for 22 fault modes is 98.7% under different wind speeds, and the average accuracy of 30 running can be maintained above 84% for different noise levels. The maximum, minimum, average, and standard deviation are provided to prove the robust and stable performance. Compared with the other methods, the proposed hybrid method shows excellent performance in terms of high accuracy, strong robustness, and computational efficiency. Full article
Show Figures

Figure 1

14 pages, 5317 KiB  
Article
Vehicle Classification Using Deep Feature Fusion and Genetic Algorithms
by Ahmed S. Alghamdi, Ammar Saeed, Muhammad Kamran, Khalid T. Mursi and Wafa Sulaiman Almukadi
Cited by 17 | Viewed by 2939
Abstract
Vehicle classification is a challenging task in the area of image processing. It involves the classification of various vehicles based on their color, model, and make. A distinctive variety of vehicles belonging to various model categories have been developed in the automobile industry, [...] Read more.
Vehicle classification is a challenging task in the area of image processing. It involves the classification of various vehicles based on their color, model, and make. A distinctive variety of vehicles belonging to various model categories have been developed in the automobile industry, which has made it necessary to establish a compact system that can classify vehicles within a complex model group. A well-established vehicle classification system has applications in security, vehicle monitoring in traffic cameras, route analysis in autonomous vehicles, and traffic control systems. In this paper, a hybrid model based on the integration of a pre-trained Convolutional Neural Network (CNN) and an evolutionary feature selection model is proposed for vehicle classification. The proposed model performs classification of eight different vehicle categories including sports cars, luxury cars and hybrid power-house SUVs. The used in this work is derived from Stanford car dataset that contains almost 196 cars and vehicle classes. After performing appropriate data preparation and preprocessing steps, feature learning and extraction is carried out using pre-trained VGG16 first that learns and extracts deep features from the set of input images. These features are then taken out of the last fully connected layer of VGG16, and feature optimization phase is carried out using evolution-based nature-inspired optimization model Genetic Algorithm (GA). The classification is performed using numerous SVM kernels where Cubic SVM achieves an accuracy of 99.7% and outperforms other kernels as well as excels in terns of performance as compared to the existing works. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

Back to TopTop