Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = glacier front

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5575 KiB  
Article
The Importance of Solving Subglaciar Hydrology in Modeling Glacier Retreat: A Case Study of Hansbreen, Svalbard
by Eva De Andrés, José M. Muñoz-Hermosilla, Kaian Shahateet and Jaime Otero
Hydrology 2024, 11(11), 193; https://doi.org/10.3390/hydrology11110193 - 12 Nov 2024
Viewed by 916
Abstract
Arctic tidewater glaciers are retreating, serving as key indicators of global warming. This study aims to assess how subglacial hydrology affects glacier front retreat by comparing two glacier–fjord models of the Hansbreen glacier: one incorporating a detailed subglacial hydrology model and another simplifying [...] Read more.
Arctic tidewater glaciers are retreating, serving as key indicators of global warming. This study aims to assess how subglacial hydrology affects glacier front retreat by comparing two glacier–fjord models of the Hansbreen glacier: one incorporating a detailed subglacial hydrology model and another simplifying the subglacial discharge to a single channel centered in the flow line. We first validate the subglacial hydrology model by comparing its discharge channels with observations of plume activity. Simulations conducted from April to December 2010 revealed that the glacier front position aligns more closely with the observations in the coupled model than in the simplified version. Furthermore, the mass loss due to calving and submarine melting is greater in the coupled model, with the calving mass loss reaching 6 Mt by the end of the simulation compared to 4 Mt in the simplified model. These findings highlight the critical role of subglacial hydrology in predicting glacier dynamics and emphasize the importance of detailed modeling in understanding the responses of Arctic tidewater glaciers to climate change. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

14 pages, 21715 KiB  
Article
Calculation Method of Material Accumulation Rate at the Front of Trunk Glaciers Based on Satellite Monitoring
by Zhang Wang, Kaiheng Hu, Zhengzheng Li, Changhu Li and Yao Li
Sustainability 2024, 16(1), 284; https://doi.org/10.3390/su16010284 - 28 Dec 2023
Viewed by 1323
Abstract
Glaciers continue to erode and transport material, forming an accumulation area at the front of the glacier. The trunk glacier, which has many tributary glaciers upstream and converges on the main channel, deposits vast amounts of material in the main channel. It blocks [...] Read more.
Glaciers continue to erode and transport material, forming an accumulation area at the front of the glacier. The trunk glacier, which has many tributary glaciers upstream and converges on the main channel, deposits vast amounts of material in the main channel. It blocks the main channel, forming barrier lakes, and eventually turns into mountain disasters, such as debris flows or outburst floods. Therefore, the accumulation rate of the material is a major parameter in such disasters and can determine the frequency of disasters. The material usually comes from bedrock erosion by glaciers, weathering of bedrock walls, and upstream landslides, and the material loss depends on river erosion. Based on this, we set up a method to calculate the material accumulation rate in the glacier front based on satellite images. Then, the Peilong catchment was taken as an example to validate the proposed method. The results indicate that climatic fluctuations may increase landslides, resulting in more actual accumulation than the calculated value according to the average rate of bedrock retreat. The material provided by the retreat of bedrock accounts for 92% of the total volume. Our method provides a practical reference for the mid- and long-term prediction of glacial catastrophic mass movement, as global warming seriously threatens glacier instability and downstream communities. Full article
Show Figures

Figure 1

20 pages, 9854 KiB  
Article
Automatic Extraction of the Calving Front of Pine Island Glacier Based on Neural Network
by Xiangyu Song, Yang Du and Jiang Guo
Remote Sens. 2023, 15(21), 5168; https://doi.org/10.3390/rs15215168 - 29 Oct 2023
Cited by 2 | Viewed by 1475
Abstract
Calving front location plays a crucial role in studying ice–ocean interaction, mapping glacier area change, and constraining ice dynamic models. However, relying solely on visual interpretation to extract annual changes in the calving front of ice shelves is a time-consuming process. In this [...] Read more.
Calving front location plays a crucial role in studying ice–ocean interaction, mapping glacier area change, and constraining ice dynamic models. However, relying solely on visual interpretation to extract annual changes in the calving front of ice shelves is a time-consuming process. In this study, a comparative analysis was conducted on the segmentation obtained from fully convolutional networks (FCN), U-Net, and U2-Net models, revealing that U2-Net exhibited the most effective classification. Notably, U2-Net outperformed the other two models by more than 30 percent in terms of the F1 parameter. Therefore, this paper introduces an automated approach that utilizes the U2-Net model to extract the calving front of ice shelves based on a Landsat image, achieving an extraction accuracy of 58 m. To assess the model’s performance on additional ice shelves in the polar region, the calving front of the Totten and Filchner ice shelves were also extracted for the past decade. The findings demonstrated that the ice velocity of the Filchner ice shelf exceeded that of the Totten ice shelf. Between February 2014 and March 2015, the majority of the calving fronts along the Filchner Ice Shelf showed an advancing trend, with the fastest-moving front measuring 3532 ± 58 m/yr. Full article
Show Figures

Graphical abstract

21 pages, 4964 KiB  
Article
Pleistocene Glaciations of the Northwest of Iberia: Glacial Maximum Extent, Ice Thickness, and ELA of the Soajo Mountain
by Edgar Figueira, Alberto Gomes and Augusto Pérez-Alberti
Cited by 1 | Viewed by 2494
Abstract
Soajo Mountain is located in the northwestern Iberian Peninsula near the border between Portugal and Spain. Its highest elevation is 1416 m at the Pedrada summit. During the Pleistocene, the cascade cirques on the east flank and the icefield that covered the flattened [...] Read more.
Soajo Mountain is located in the northwestern Iberian Peninsula near the border between Portugal and Spain. Its highest elevation is 1416 m at the Pedrada summit. During the Pleistocene, the cascade cirques on the east flank and the icefield that covered the flattened surface of the high plateau generated several glacier valleys. This study presents a paleoglacial reconstruction of the relict glacial landscape in Soajo Mountain for the Glacial Maximum Extent (GME) through the following methods: (1) a detailed geomorphological map supported by high-resolution orthophotography, digital elevation models with a spatial resolution of 70 cm, and field surveys; (2) the delineation of the glacial surface, and the calculation of the glacial flowlines to obtain the numerical model of the ice thickness; and (3) an estimation of the paleoELA altitudes. The paleoglacial reconstruction, using GlaRe methodology, reveals a glacial surface of 16 km2, including an icefield on the Lamas de Vez plateau (mean elevation of 1150 m) and a radial glacial flow to the east and north. The arrangement of the glaciated area attests to the topographic, lithological, and structural conditioning on the development of small glacial tongues, with an emphasis on the ice tongue flowing northwards, with a thickness of 173 m and a length of 2.92 km. The Soajo GME paleoglacier comprises three main glacial sectors: Lamas de Vez Icefield, Vez and Aveleira Valleys, and the Eastern Glacial Sector. These paleoglaciers have achieved maximum ice volumes of 214.4 hm3, 269.2 hm3, and 115.8 hm3, respectively, with maximum ice thicknesses of 127 m, 173 m, and 118 m, respectively. On the west flank, a smaller paleoglacier named Branda da Gémea recorded an ice volume of 24.3 hm3 and a maximum ice thickness of 110 m. According to the ELA-AABR method, Soajo Mountain has one of the lowest ELA values in the Iberian NW, ranging from 1085 to 1057 m. This is due to its oceanic location, an orographic barrier effect, and the influence of the polar front. Full article
(This article belongs to the Special Issue GIS and Glaciers Landscape: Past and Present)
Show Figures

Figure 1

22 pages, 14069 KiB  
Article
Ice Velocity Variations of the Cook Ice Shelf, East Antarctica, from 2017 to 2022 from Sentinel-1 SAR Time-Series Offset Tracking
by Siung Lee, Seohyeon Kim, Hyunjun An and Hyangsun Han
Remote Sens. 2023, 15(12), 3079; https://doi.org/10.3390/rs15123079 - 12 Jun 2023
Cited by 3 | Viewed by 2516
Abstract
The Cook Glacier drains a significant portion of the Wilkes Subglacial Basin, the largest subglacial basin in East Antarctica—which feeds the Cook Ice Shelf. The ice velocity of the Cook Ice Shelf needs to be monitored precisely and accurately, as it plays a [...] Read more.
The Cook Glacier drains a significant portion of the Wilkes Subglacial Basin, the largest subglacial basin in East Antarctica—which feeds the Cook Ice Shelf. The ice velocity of the Cook Ice Shelf needs to be monitored precisely and accurately, as it plays a critical role in determining the ice discharge from the Wilkes Subglacial Basin. In this study, we measured the annual ice velocities of the Cook Ice Shelf using the offset tracking technique on Sentinel-1 synthetic aperture radar images obtained from 2017 to 2022. Time-series offsets in the range and azimuth directions were determined from the offset tracking pairs with a temporal baseline of 36 days obtained from January to December of each year. Statistical evaluations of the spatiotemporal variations of the time-series offsets effectively eliminated the erroneous offsets in the original offset fields; the remaining offsets were then used to produce two-dimensional annual ice velocities. The direction of the ice flow of the Cook Ice Shelf was almost constant during the period 2017–2022, and the variations in the magnitude of annual ice velocities were investigated. The annual ice velocities of the Cook East Ice Shelf (CEIS) stayed constant and showed a gradual increase from the grounding line to the ice front, except in the western part. Ice velocities of the western part of the CEIS have not changed much at the grounding line during the 6-year period, while in the dynamic shelf ice zone, ice velocities accelerated by up to 22% because of the development of numerous crevasses and fractures. The ice velocities of the Cook West Ice Shelf (CWIS) were about two times higher than those of the CEIS and tended to increase rapidly from the grounding line to the ice front. The annual ice velocities at the grounding line of CWIS increased rapidly from 1330 to 1450 m/a over 6 years, with 70% of this acceleration observed after 2021. This was attributed to a reduction in the ice shelf volume because of the evolution of surface crevasses and rifts, leading to a decrease in the ice shelf’s buttressing potential. In particular, the loss of a portion of the dynamic shelf ice zone due to a series of ice front collapses in February 2022 likely caused the rapid speed-up of the ice shelf. The results of this study indicate that the buttressing potential of the CWIS and the western part of the CEIS has been significantly reduced, which could mean serious instability of the marine ice sheet in this region. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications)
Show Figures

Figure 1

17 pages, 13401 KiB  
Article
Glaciogenic Periglacial Landform in the Making—Geomorphological Evolution of a Rockfall on a Small Glacier in the Horlachtal, Stubai Alps, Austria
by Fabian Fleischer, Florian Haas, Moritz Altmann, Jakob Rom, Camillo Ressl and Michael Becht
Remote Sens. 2023, 15(6), 1472; https://doi.org/10.3390/rs15061472 - 7 Mar 2023
Cited by 3 | Viewed by 2521
Abstract
Deglaciation in high mountain areas signifies the transition from glacial to periglacial conditioned landscapes. Due to the reduced melt rate of debris-covered glacier ice, these areas of the glacier may persist long after the surrounding glacier has melted, resulting in the formation of [...] Read more.
Deglaciation in high mountain areas signifies the transition from glacial to periglacial conditioned landscapes. Due to the reduced melt rate of debris-covered glacier ice, these areas of the glacier may persist long after the surrounding glacier has melted, resulting in the formation of distinct post-glacial landforms. In this study, we examine the geomorphological evolution and potential future development of a 19,267 m3 ± 204 m3 rockfall from the permafrost-affected headwall on the low-elevated Zwieselbachferner in the Horlachtal, Stubai Alps, Austria. The analysis uses multi-epochal remote sensing data, including photogrammetrically and airborne laser scanning-derived digital elevation models, orthophotos, and satellite data, covering a period from the initial rockfall in 2003/2004 to 2022. The data reveals that the rockfall event resulted in the formation of a supraglacial debris layer of varying thickness, spanning an area of 15,920 m2. Subsequently, 13 further rockfalls ranging from 67 m3 ± 6 m3 to 4250 m3 ± 121 m3 were detected. The mean ice thickness of the debris-covered area only slightly decreased between 2006 and 2022, in contrast to the surrounding glacier, whose thickness and length have strongly decreased. This results in the formation of a steep front and flanks that become increasingly covered by debris redistribution. The study suggests that the glacier ice covered by rockfall-derived debris will remain as a periglacial landform of glacial origin after the complete melting of the surrounding glacier. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Glacial and Periglacial Geomorphology)
Show Figures

Figure 1

16 pages, 12527 KiB  
Technical Note
Analysis of Seismic Impact on Hailuogou Glacier after the 2022 Luding Ms 6.8 Earthquake, China, Using SAR Offset Tracking Technology
by Weile Li, Junyi Chen, Huiyan Lu, Congwei Yu, Yunfeng Shan, Zhigang Li, Xiujun Dong and Qiang Xu
Remote Sens. 2023, 15(5), 1468; https://doi.org/10.3390/rs15051468 - 6 Mar 2023
Cited by 7 | Viewed by 2251
Abstract
An Ms 6.8 earthquake struck Luding County, Ganzi Prefecture, Sichuan Province on 5 September 2022, with the epicenter about 10 km away from Hailuogou Glacier. How Hailuogou Glacier was affected by the earthquake was of major concern to society. Sentinel-1 SAR satellite imaging [...] Read more.
An Ms 6.8 earthquake struck Luding County, Ganzi Prefecture, Sichuan Province on 5 September 2022, with the epicenter about 10 km away from Hailuogou Glacier. How Hailuogou Glacier was affected by the earthquake was of major concern to society. Sentinel-1 SAR satellite imaging was used to monitor the glacier surface velocity during different periods before and after the Luding earthquake based on pixel offset tracking (POT) technology, which applies a feature-tracking algorithm to overcome the phase co-registration problems commonly encountered in large displacement monitoring. The results indicated that the velocity had a positive correlation with the average daily maximum temperature and the slope gradient on the small-slope surfaces. The correlation was not apparent on the steeper surfaces, which corresponded spatially with the identified ice avalanche region in the Planet images. It was deduced that this may be because of the occurrence of ice avalanches on surfaces steeper than 25°, or that the narrower front channel impeded the glacier’s movement. The Luding earthquake did not cause a significant increase in the velocity of Hailuogou Glacier within a large range, but it disturbed the front area of the ice cascade, where the maximum velocity reached 2.5 m/d. Although the possibility of directly-induced destruction by ice avalanches after the earthquake was low, and the buffering in the downstream glacier tongue further reduced the risk of ice avalanches, the risk of some secondary hazards such as debris flow increased. The proposed method in this study might be the most efficient in monitoring and evaluating the effects of strong earthquakes on glaciers because it would not be limited by undesirable weather or traffic blockage. Full article
Show Figures

Graphical abstract

17 pages, 6359 KiB  
Article
Characteristics of Glaciers Surging in the Western Pamirs
by Zhenfeng Wang, Zongli Jiang, Kunpeng Wu, Shiyin Liu, Yong Zhang, Xin Wang, Zhen Zhang and Junfeng Wei
Remote Sens. 2023, 15(5), 1319; https://doi.org/10.3390/rs15051319 - 27 Feb 2023
Cited by 2 | Viewed by 2081
Abstract
The regional surge patterns and control mechanisms for glaciers in the western Pamirs are unclear. Using remote sensing, more surge-type glaciers have been discovered in the western Pamirs. This provides an opportunity to obtain the integral characteristics of glacier surging. Using Sentinel-1A, TSX/TDX [...] Read more.
The regional surge patterns and control mechanisms for glaciers in the western Pamirs are unclear. Using remote sensing, more surge-type glaciers have been discovered in the western Pamirs. This provides an opportunity to obtain the integral characteristics of glacier surging. Using Sentinel-1A, TSX/TDX and Landsat remote sensing data, the changes in surface velocity, surface elevation and surface features of five glaciers that have recently surged in the western Pamirs are obtained. The results show that (1) all glacier surges initiate gradually for several years and most form a surge front in the upper region of the glacier. (2) For most glaciers, the active phase of the surge is more than 2 years, except for one that is within several months. (3) The peak velocity mostly occurs in summer and autumn, and the maximum velocity is less than 8 m d−1. (4) There is sharp deceleration, such as the hydrologic controlled surge at the end of the surge. However, the surface flow of the transverse profiles shows no features of base sliding. Based on the comparison of surge patterns with other regions in High Mountain Asia, we conclude that the surging glaciers in the western Pamirs are triggered by thermal mechanisms under the control of sub-hydrological modulation. Full article
Show Figures

Figure 1

22 pages, 65930 KiB  
Article
A Multi-Resolution Approach to Point Cloud Registration without Control Points
by Eleanor A. Bash, Lakin Wecker, Mir Mustafizur Rahman, Christine F. Dow, Greg McDermid, Faramarz F. Samavati, Ken Whitehead, Brian J. Moorman, Dorota Medrzycka and Luke Copland
Remote Sens. 2023, 15(4), 1161; https://doi.org/10.3390/rs15041161 - 20 Feb 2023
Cited by 5 | Viewed by 3414
Abstract
Terrestrial photographic imagery combined with structure-from-motion (SfM) provides a relatively easy-to-implement method for monitoring environmental systems, even in remote and rough terrain. However, the collection of in-situ positioning data and the identification of control points required for georeferencing in SfM processing is the [...] Read more.
Terrestrial photographic imagery combined with structure-from-motion (SfM) provides a relatively easy-to-implement method for monitoring environmental systems, even in remote and rough terrain. However, the collection of in-situ positioning data and the identification of control points required for georeferencing in SfM processing is the primary roadblock to using SfM in difficult-to-access locations; it is also the primary bottleneck for using SfM in a time series. We describe a novel, computationally efficient, and semi-automated approach for georeferencing unreferenced point clouds (UPC) derived from terrestrial overlapping photos to a reference dataset (e.g., DEM or aerial point cloud; hereafter RPC) in order to address this problem. The approach utilizes a Discrete Global Grid System (DGGS), which allows us to capitalize on easily collected rough information about camera deployment to coarsely register the UPC using the RPC. The DGGS also provides a hierarchical set of grids which supports a hierarchical modified iterative closest point algorithm with natural correspondence between the UPC and RPC. The approach requires minimal interaction in a user-friendly interface, while allowing for user adjustment of parameters and inspection of results. We illustrate the approach with two case studies: a close-range (<1 km) vertical glacier calving front reconstructed from two cameras at Fountain Glacier, Nunavut and a long-range (>3 km) scene of relatively flat glacier ice reconstructed from four cameras overlooking Nàłùdäy (Lowell Glacier), Yukon, Canada. We assessed the accuracy of the georeferencing by comparing the UPC to the RPC, as well as surveyed control points; the consistency of the registration was assessed using the difference between successive registered surfaces in the time series. The accuracy of the registration is roughly equal to the ground sampling distance and is consistent across time steps. These results demonstrate the promise of the approach for easy-to-implement georeferencing of point clouds from terrestrial imagery with acceptable accuracy, opening the door for new possibilities in remote monitoring for change-detection, such as monitoring calving rates, glacier surges, or other seasonal changes at remote field locations. Full article
(This article belongs to the Special Issue Remote Sensing of the Cryosphere)
Show Figures

Figure 1

31 pages, 12780 KiB  
Article
The Infierno Glacier (Pyrenees, Aragon, Spain): Evolution 2016–2022
by Luis Cancer-Pomar, Gonzalo Fernández-Jarne, José Antonio Cuchí and Javier del Valle-Melendo
Cited by 2 | Viewed by 2428
Abstract
The Infierno Glacier is located in Aragon (Spain), Pyrenees Mountain range, the only one in this country that still preserves white glaciers. These are the southernmost glaciers in Europe and are currently in rapid decline. The work analyzes the evolution of the glacier [...] Read more.
The Infierno Glacier is located in Aragon (Spain), Pyrenees Mountain range, the only one in this country that still preserves white glaciers. These are the southernmost glaciers in Europe and are currently in rapid decline. The work analyzes the evolution of the glacier between 2016 and 2022 and provides data, for this period, which lacked this information, in an area bordering the glacial ice survival. In addition to the observations on the glacier itself, the variables (precipitation, temperature, snow volume and thickness) that allow an understanding of this evolution are studied. The results show a setback of the glacier (thickness losses: 4.6 m; front retreat; 14.9 m). The evolution has frequent trend changes, linked to the interannual climatic irregularity characteristic of the Pyrenees. The main explanatory factor is the thermal increase. The thermal anomalies with respect to the average reference values have increased, in this period, by +0.55 °C. The year 2022 has been particularly warm and has recorded the greatest losses for this glacier. With respect to precipitation, it has an irregular behavior and shows a tendency to decrease (−9% in the same period). This work has the additional interest of analyzing a glacier in the terminal phase, which if current trends continue, evolves into dead ice. Full article
(This article belongs to the Special Issue Mountain Glaciers, Permafrost, and Snow)
Show Figures

Figure 1

16 pages, 11886 KiB  
Technical Note
Multi-Polarisation C-Band SAR Imagery to Estimate the Recent Dynamics of the d’Iberville Glacier
by Mozhgan Zahriban Hesari, Andrea Buono, Ferdinando Nunziata, Giuseppe Aulicino and Maurizio Migliaccio
Remote Sens. 2022, 14(22), 5758; https://doi.org/10.3390/rs14225758 - 14 Nov 2022
Cited by 7 | Viewed by 1935
Abstract
To monitor polar regions is of paramount importance for climatological studies. Climate change due to anthropogenic activities is inducing global warming that, for example, has resulted in glacier melting. This has had a significant impact on sea levels and ocean circulation. In this [...] Read more.
To monitor polar regions is of paramount importance for climatological studies. Climate change due to anthropogenic activities is inducing global warming that, for example, has resulted in glacier melting. This has had a significant impact on sea levels and ocean circulation. In this study, the temporal trend of the marine-terminated d’Iberville glacier (Ellesmere Island, Canada) is analysed using C-band synthetic aperture radar satellite imagery collected by the Radarsat-2 and Sentinel-1 missions. The data set consists of a time series of 10 synthetic aperture radar data collected from 2010 to 2022 in dual-polarimetric imaging mode, where a horizontally polarised electromagnetic wave was transmitted. An automatic approach based on a global threshold constant false alarm rate method is applied to the single- and dual-polarisation features, namely the HH-polarised normalised radar cross-section and a combination of the HH- and HV-polarised scattering amplitudes, with the aim of extracting the ice front of the glacier and, therefore, estimating its behaviour over time. Independent collocated satellite optical imagery from the Sentinel-2 multi-spectral instrument is also considered, where available, to support the experimental outcomes. The experimental results show that (1) the HH-polarised normalised radar cross-section achieved better performance with respect to the dual-polarised feature, especially under the most challenging case of a sea-ice infested sea surface; (2) when the HH-polarised normalised radar cross-section was considered, the ice front extraction methodology provided a satisfactory accuracy, i.e., a root mean square error spanning from about 1.1 pixels to 3.4 pixels, depending on the sea-surface conditions; and (3) the d’Iberville glacier exhibited, during the study period, a significant retreat whose average surface velocity was 160 m per year, resulting in a net ice area loss of 2.2 km2 (0.18 km2 per year). These outcomes demonstrate that the d’Iberville glacier is behaving as most of the marine-terminated glaciers in the study area while experiencing a larger ice loss. Full article
(This article belongs to the Special Issue Remote Sensing of the Polar Oceans)
Show Figures

Figure 1

14 pages, 31766 KiB  
Article
The Contribution of the Vendée Globe Race to Improved Ocean Surface Information: A Validation of the Remotely Sensed Salinity in the Sub-Antarctic Zone
by Marta Umbert, Nina Hoareau, Jordi Salat, Joaquín Salvador, Sébastien Guimbard, Estrella Olmedo and Carolina Gabarró
J. Mar. Sci. Eng. 2022, 10(8), 1078; https://doi.org/10.3390/jmse10081078 - 6 Aug 2022
Viewed by 2687
Abstract
The Vendée Globe is the world’s most famous solo, non-stop, unassisted sailing race. The Institute of Marine Sciences and the Barcelona Ocean Sailing Foundation installed a MicroCAT on the One Ocean One Planet boat. The skipper, Dídac Costa, completed the round trip in [...] Read more.
The Vendée Globe is the world’s most famous solo, non-stop, unassisted sailing race. The Institute of Marine Sciences and the Barcelona Ocean Sailing Foundation installed a MicroCAT on the One Ocean One Planet boat. The skipper, Dídac Costa, completed the round trip in 97 days, from 8 November 2020 to 13 February 2021, providing one measurement of temperature and conductivity every 30 s during navigation. More than half of the ship’s route was in the sub-Antarctic zone, between the tropical and polar fronts, and it passed through areas of oceanographic interest such as Southern Patagonia (affected by glacier melting), the Brazil–Malvinas confluence, the Southern Pacific Ocean, and the entire Southern Indian Ocean. This sailing race gave a rare opportunity to measure in-situ sea surface salinity in a region where satellite salinity measurements are not reliable. Due to the decreased sensitivity of brightness temperature to salinity in cold seas, retrieving sea surface salinity at high latitudes remains a major challenge. This paper describes how the data are processed and uses the data to validate satellite salinity products in the sub-Antarctic zone. The sailing race measurements represent surface information (60 cm depth) not available from drifters or Argo floats. Acquiring measurements using round-the-world sailing races would allow us to analyse the evolution of ocean salinity and the impact of changes in the ice extent around Antarctica. Full article
(This article belongs to the Special Issue Technological Oceanography)
Show Figures

Figure 1

16 pages, 8697 KiB  
Article
Long-Term Monitoring and Change Analysis of Pine Island Ice Shelf Based on Multi-Source Satellite Observations during 1973–2020
by Shijie Liu, Shu Su, Yuan Cheng, Xiaohua Tong and Rongxing Li
J. Mar. Sci. Eng. 2022, 10(7), 976; https://doi.org/10.3390/jmse10070976 - 16 Jul 2022
Cited by 4 | Viewed by 2313
Abstract
Pine Island Glacier (PIG) is one of the largest contributors to sea level rise in Antarctica. Continuous thinning and frequent calving imply significant destabilization of Pine Island Glacier Ice Shelf (PIGIS). To understand the mechanism of its accelerated disintegration and its future development, [...] Read more.
Pine Island Glacier (PIG) is one of the largest contributors to sea level rise in Antarctica. Continuous thinning and frequent calving imply significant destabilization of Pine Island Glacier Ice Shelf (PIGIS). To understand the mechanism of its accelerated disintegration and its future development, we conducted a long-term monitoring and comprehensive analysis of PIGIS, including ice flow velocity, ice shelf fronts, ocean water temperature, rifts, and surface strain rates, based on multi-source satellite observations during 1973–2020. The results reveal that: (1) ice flow velocities of PIGIS increased from 2.3 km/yr in 1973 to 4.5 km/yr in 2020, with two rapid acceleration periods of 1995–2009 and 2017–2020, and its change was highly correlated to the ocean water temperature variation. (2) At least 13 calving events occurred during 1973–2020, with four unprecedented successive retreats in 2015, 2017, 2018, and 2020. (3) The acceleration of ice shelf rifting and calving may correlate to the destruction of shear margins, while this damage was likely a response to the warming of bottom seawater. The weakening southern shear margin may continue to recede, indicating that the instability of PIGIS will continue. Full article
Show Figures

Figure 1

22 pages, 15777 KiB  
Article
LGM Glaciations in the Northeastern Anatolian Mountains: New Insights
by Regina Reber, Naki Akçar, Dmitry Tikhomirov, Serdar Yesilyurt, Christof Vockenhuber, Vural Yavuz, Susan Ivy-Ochs and Christian Schlüchter
Geosciences 2022, 12(7), 257; https://doi.org/10.3390/geosciences12070257 - 22 Jun 2022
Cited by 8 | Viewed by 2462
Abstract
Barhal Valley belongs to the Çoruh Valley System in the Kaçkar Mountains of northeastern Anatolia. This 13 km long valley is located to the south of the main weather divide and to the east of Mt. Kaçkar, with the highest peak of the [...] Read more.
Barhal Valley belongs to the Çoruh Valley System in the Kaçkar Mountains of northeastern Anatolia. This 13 km long valley is located to the south of the main weather divide and to the east of Mt. Kaçkar, with the highest peak of the mountain range being 3932 m. Today, source of an average yearly precipitation of 2000 mm of moisture is the Black Sea, situated approximately 40 km to the north of the study site. Glaciers of the Last Glacial Maximum (LGM) descended directly from Mt. Kaçkar and reached an altitude of ca. 1850 m a.s.l. (above sea level). In this study, we are exploring whether the position of Barhal Valley to the south of the main weather divide and its east–west orientation have an influence on the existence and expansion of paleoglaciers. Here, we present 32 new cosmogenic 36Cl dates on erratic boulders from the Çoruh Valley System. We reconstructed three geomorphologically well-contained glacier advances in the Barhal Valley, namely at 34.0 ± 2.3 ka, 22.2 ± 2.6 ka, and 18.3 ± 1.7 ka within the time window of the global LGM. Field evidence shows that the glacier of the 18.3 ± 1.7 ka advance disappeared rapidly and that by the latest time, at 15.6 ± 1.8 ka, the upper cirques were ice-free. No evidence for Lateglacial glacier fluctuations was found, and the Neoglacial activity is restricted to the cirques with rock glaciers. A range of 2700 to 3000 m for the Equilibrium Line Altitude (ELA) at the LGM was reported based on modeling of the glacial morphology. We determined that the most likely position of the LGM ELA in the Çoruh Valley System was at 2900 m a.s.l. We suggest an alternative moisture source to the direct transport from the Black Sea for the ice accumulation in the Eastern Black See Mountains. The shift of the Polar Front and of the Siberian High Pressure System to the south during the LGM resulted in the domination of easterly airflow to the Caucasus and Kaçkar Mountains with moisture from expanded lakes in central–western Siberia and from the enlarged Aral- and Caspian Seas. Full article
(This article belongs to the Special Issue Cutting Edge Earth Sciences: Three Decades of Cosmogenic Nuclides)
Show Figures

Figure 1

36 pages, 7282 KiB  
Review
The Remotely and Directly Obtained Results of Glaciological Studies on King George Island: A Review
by Michał Dziembowski and Robert Józef Bialik
Remote Sens. 2022, 14(12), 2736; https://doi.org/10.3390/rs14122736 - 7 Jun 2022
Cited by 6 | Viewed by 2587
Abstract
Climate warming has become indisputable, and it is now crucial to increase our understanding of both the mechanisms and consequences of climate change. The Antarctic region is subjected to substantial changes, the trends of which have been recognized for several decades. In the [...] Read more.
Climate warming has become indisputable, and it is now crucial to increase our understanding of both the mechanisms and consequences of climate change. The Antarctic region is subjected to substantial changes, the trends of which have been recognized for several decades. In the South Shetland Islands, the most visible effect of climate change is progressive deglaciation. The following review focuses on past glaciological studies conducted on King George Island (KGI). The results of collected cryosphere element observations are discussed herein in a comprehensive manner. Our analysis showed that there is a lack of temporal as well as spatial continuity for studies on the basic mass balance parameters on the entire KGI ice dome and only Bellingshausen Dome has a relatively long history of data collection. The methodologies of past work, which have improved over time, are also discussed. When studying the glacier front fluctuations, the authors most frequently use a 1956 aerial photography as reference ice coverage. This was the case for seven papers, while other sources are seldomly mentioned. In other papers as many as 41 other sources were used, and therefore comparison to photos taken up to 60 years later can give misleading trends, as small glaciers may have both advanced and retreated in that time. In the case of glacial velocities there is also an apparent lack of consistency, as different glaciers were indicated as the fastest on KGI. Only Lange, Anna, Crystal, Eldred, and eastern part of Usher glaciers were determined by more than one author as the fastest. Additionally, there are gaps in the KGI Ground Penetrating Radar (GPR) survey area, which includes three ice domes: the Warszawa Icefield, the Krakow Icefield, and eastern part of King George Island. Ideas for further work on the topic are also suggested, allowing for easier access to data and thus contributing to a better understanding of glacier development mechanisms. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Glaciology)
Show Figures

Graphical abstract

Back to TopTop