Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = glacial lake outburst flood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10145 KiB  
Article
Monitoring and Disaster Assessment of Glacier Lake Outburst in High Mountains Asian Using Multi-Satellites and HEC-RAS: A Case of Kyagar in 2018
by Long Jiang, Zhiqiang Lin, Zhenbo Zhou, Hongxin Luo, Jiafeng Zheng, Dongsheng Su and Minhong Song
Remote Sens. 2024, 16(23), 4447; https://doi.org/10.3390/rs16234447 - 27 Nov 2024
Viewed by 754
Abstract
The glaciers in the High Mountain Asia (HMA) region are highly vulnerable to global warming, posing significant threats to downstream populations and infrastructure through glacier lake outburst floods (GLOFs). The monitoring and early warnings of these events are challenging due to sparse observations [...] Read more.
The glaciers in the High Mountain Asia (HMA) region are highly vulnerable to global warming, posing significant threats to downstream populations and infrastructure through glacier lake outburst floods (GLOFs). The monitoring and early warnings of these events are challenging due to sparse observations in these remote regions. To explore reproducing the evolution of GLOFs with sparse observations in situ, this study focuses on the outburst event and corresponding GLOFs in August 2018 caused by the Kyagar Glacier lake, a typical glacier lake of the HMA in the Karakoram, which is known for its frequent outburst events, using a combination of multi-satellite remote sensing data (Sentinel-1 and Sentinel-2) and the HEC-RAS hydrodynamic model. The water depth of the glacier lake and downstream was extracted from satellite data adapted by the Floodwater Depth Elevation Tool (FwDET) as a baseline to compare them with simulations. The elevation-water volume curve was obtained by extrapolation and was applied to calculate the water surface elevation (WSE). The inundation of the downstream of the lake outburst was obtained through flood modeling by incorporating a load elevation-water volume curve and the Digital Elevation Model (DEM) into the hydrodynamic model HEC-RAS. The results showed that the Kyagar glacial lake outburst was rapid and destructive, accompanied by strong currents at the end of each downstream storage ladder. A series of meteorological evaluation indicators showed that HEC-RAS reproduced the medium and low streamflow rates well. This study demonstrated the value of integrating remote sensing and hydrodynamic modeling into GLOF assessments in data-scarce regions, providing insights for disaster risk management and mitigation. Full article
(This article belongs to the Topic Advances in Hydrological Remote Sensing)
Show Figures

Figure 1

21 pages, 10021 KiB  
Article
Glacial Lake Outburst Flood Susceptibility Mapping in Sikkim: A Comparison of AHP and Fuzzy AHP Models
by Arindam Das, Suraj Kumar Singh, Shruti Kanga, Bhartendu Sajan, Gowhar Meraj and Pankaj Kumar
Climate 2024, 12(11), 173; https://doi.org/10.3390/cli12110173 - 30 Oct 2024
Viewed by 1746
Abstract
The Sikkim region of the Eastern Himalayas is highly susceptible to Glacial Lake Outburst Floods (GLOFs), a risk that has increased significantly due to rapid glacial retreat driven by climate change in recent years. This study presents a comprehensive evaluation of GLOF susceptibility [...] Read more.
The Sikkim region of the Eastern Himalayas is highly susceptible to Glacial Lake Outburst Floods (GLOFs), a risk that has increased significantly due to rapid glacial retreat driven by climate change in recent years. This study presents a comprehensive evaluation of GLOF susceptibility in Sikkim, employing Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) models. Key factors influencing GLOF vulnerability, including lake volume, seismic activity, precipitation, slope, and proximity to rivers, were quantified to develop AHP and FAHP based susceptibility maps. These maps were validated using Receiver Operating Characteristic (ROC) curves, with the AHP method achieving an Area Under the Curve (AUC) of 0.92 and the FAHP method scoring 0.88, indicating high predictive accuracy for both models. A comparison of the two approaches revealed distinct characteristics, with FAHP providing more granular insights into moderate-risk zones, while AHP offered stronger predictive capability for high-risk areas. Our results indicated that the expansion of glacial lakes, particularly over the past three decades, has heightened the potential for GLOFs, highlighting the urgent need for continuous monitoring and adaptive risk mitigation strategies in the region. This study, in addition to enhancing our understanding of GLOF risks in Sikkim, also provides a robust framework for assessing and managing these risks in other glacial regions worldwide. Full article
(This article belongs to the Special Issue Coping with Flooding and Drought)
Show Figures

Figure 1

22 pages, 8679 KiB  
Article
An Analysis of the Mechanisms Involved in Glacial Lake Outburst Flooding in Nyalam, Southern Tibet, in 2018 Based on Multi-Source Data
by Yixing Zhao, Wenliang Jiang, Qiang Li, Qisong Jiao, Yunfeng Tian, Yongsheng Li, Tongliang Gong, Yanhong Gao and Weishou Zhang
Remote Sens. 2024, 16(15), 2719; https://doi.org/10.3390/rs16152719 - 24 Jul 2024
Viewed by 989
Abstract
Glacial Lake Outburst Flood (GLOF) events, particularly prevalent in Asia’s High Mountain regions, pose a significant threat to downstream regions. However, limited understanding of triggering mechanisms and inadequate observations pose significant barriers for early warnings of impending GLOFs. The 2018 Nyalam GLOF event [...] Read more.
Glacial Lake Outburst Flood (GLOF) events, particularly prevalent in Asia’s High Mountain regions, pose a significant threat to downstream regions. However, limited understanding of triggering mechanisms and inadequate observations pose significant barriers for early warnings of impending GLOFs. The 2018 Nyalam GLOF event in southern Tibet offers a valuable opportunity for retrospective analysis. By combining optical and radar remote sensing images, meteorological data, and seismicity catalogs, we examined the spatiotemporal evolution, triggering factors, and the outburst mechanism of this event. Our analysis reveals a progressive retreat of 400–800 m for the parent glaciers between 1991 and 2018, increasing the runoff areas at glacier termini by 167% from 2015 to 2018 and contributing abundant meltwater to the glacial lake. In contrast, the lake size shrunk, potentially due to a weakening moraine dam confirmed by SAR interferometry, which detected continuous subsidence with a maximum line-of-sight (LOS) rate of ~120 mm/a over the preceding ~2.5 years. Additionally, temperature and precipitation in 2018 exceeded the prior decade’s average. Notably, no major earthquakes preceded the event. Based on these observations, we propose a likely joint mechanism involving high temperatures, heavy precipitation, and dam instability. An elevated temperature and precipitation accelerated glacial melt, increasing lake water volume and seepage through the moraine dam. This ultimately compromised dam stability and led to its failure between 3 August 2018 and 6 August 2018. Our findings demonstrate the existence of precursory signs for impending GLOFs. By monitoring the spatiotemporal evolution of environmental factors and deformation, it is possible to evaluate glacial lake risk levels. This work contributes to a more comprehensive understanding of GLOF mechanisms and is of significant importance for future glacial lake risk assessments. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Figure 1

19 pages, 10012 KiB  
Article
Retrospective Analysis of Glacial Lake Outburst Flood (GLOF) Using AI Earth InSAR and Optical Images: A Case Study of South Lhonak Lake, Sikkim
by Yang Yu, Bingquan Li, Yongsheng Li and Wenliang Jiang
Remote Sens. 2024, 16(13), 2307; https://doi.org/10.3390/rs16132307 - 24 Jun 2024
Cited by 3 | Viewed by 2821
Abstract
On 4 October 2023, a glacier lake outburst flood (GLOF) occurred at South Lhonak Lake in the northwest of Sikkim, India, posing a severe threat to downstream lives and property. Given the serious consequences of GLOFs, understanding their triggering factors is urgent. This [...] Read more.
On 4 October 2023, a glacier lake outburst flood (GLOF) occurred at South Lhonak Lake in the northwest of Sikkim, India, posing a severe threat to downstream lives and property. Given the serious consequences of GLOFs, understanding their triggering factors is urgent. This paper conducts a comprehensive analysis of optical imagery and InSAR deformation results to study changes in the surrounding surface of the glacial lake before and after the GLOF event. To expedite the processing of massive InSAR data, an InSAR processing system based on the SBAS-InSAR data processing flow and the AI Earth cloud platform was developed. Sentinel-1 SAR images spanning from January 2021 to March 2024 were used to calculate surface deformation velocity. The evolution of the lake area and surface variations in the landslide area were observed using optical images. The results reveal a significant deformation area within the moraine encircling the lake before the GLOF, aligning with the area where the landslide ultimately occurred. Further research suggests a certain correlation between InSAR deformation results and multiple factors, such as rainfall, lake area, and slope. We speculate that heavy rainfall triggering landslides in the moraine may have contributed to breaching the moraine dam and causing the GLOF. Although the landslide region is relatively stable overall, the presence of a crack in the toparea of landslide raises concerns about potential secondary landslides. Our study may improve GLOF risk assessment and management, thereby mitigating or preventing their hazards. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Graphical abstract

16 pages, 2325 KiB  
Article
The Impact of Climate Change on Glacial Lake Outburst Floods
by Jiajia Gao, Jun Du, Yuxuan Bai, Tao Chen and Yixi Zhuoma
Water 2024, 16(12), 1742; https://doi.org/10.3390/w16121742 - 20 Jun 2024
Cited by 2 | Viewed by 2187
Abstract
Glacial lake outburst floods (GLOF) hazards in alpine areas are increasing. The effects of climate change on GLOF hazards are unclear. This study examined 37 glacial lakes and climate data from 15 meteorological stations and explored the correlation between climate variations at different [...] Read more.
Glacial lake outburst floods (GLOF) hazards in alpine areas are increasing. The effects of climate change on GLOF hazards are unclear. This study examined 37 glacial lakes and climate data from 15 meteorological stations and explored the correlation between climate variations at different temporal scales. The results indicate that 19 GLOFs hazards occurred in El Niño (warm) years, 8 GLOFs hazards occurred in La Niña (cold) years, 3 GLOFs hazards occurred in cold/warm or warm/cold transition years, and 7 GLOFs hazards occurred in normal years. The higher the fluctuations, the higher the probability of GLOF hazards. Climatic conditions can be divided into three categories: extreme temperature and precipitation, as represented by the Guangxie Co GLOF; extreme precipitation, as represented by the Poge Co GLOF; and extreme temperature, as represented by the Tsho Ga GLOF. Full article
Show Figures

Figure 1

21 pages, 33442 KiB  
Article
A Comprehensive Examination of the Medvezhiy Glacier’s Surges in West Pamir (1968–2023)
by Murodkhudzha Murodov, Lanhai Li, Mustafo Safarov, Mingyang Lv, Amirkhamza Murodov, Aminjon Gulakhmadov, Kabutov Khusrav and Yubao Qiu
Remote Sens. 2024, 16(10), 1730; https://doi.org/10.3390/rs16101730 - 14 May 2024
Cited by 5 | Viewed by 1277
Abstract
The Vanj River Basin contains a dynamic glacier, the Medvezhiy glacier, which occasionally poses a danger to local residents due to its surging, flooding, and frequent blockages of the Abdukahor River, leading to intense glacial lake outburst floods (GLOF). This study offers a [...] Read more.
The Vanj River Basin contains a dynamic glacier, the Medvezhiy glacier, which occasionally poses a danger to local residents due to its surging, flooding, and frequent blockages of the Abdukahor River, leading to intense glacial lake outburst floods (GLOF). This study offers a new perspective on the quantitative assessment of glacier surface velocities and associated lake changes during six surges from 1968 to 2023 by using time-series imagery (Corona, Hexagon, Landsat), SRTM elevation maps, ITS_LIVE, unmanned aerial vehicles, local climate, and glacier surface elevation changes. Six turbulent periods (1968, 1973, 1977, 1989–1990, 2001, and 2011) were investigated, each lasting three years within a 10–11-year cycle. During inactive phases, a reduction in the thickness of the glacier tongue in the ablation zone occurred. During a surge in 2011, the flow accelerated, creating an ice dam and conditions for GLOF. Using these datasets, we reconstructed the process of the Medvezhiy glacier surge with high detail and identified a clear signal of uplift in the surface above the lower glacier tongue as well as a uniform increase in velocities associated with the onset of the surge. The increased activity of the Medvezhiy glacier and seasonal fluctuations in surface runoff are closely linked to climatic factors throughout the surge phase, and recent UAV observations indicate the absence of GLOFs in the glacier’s channel. Comprehending the processes of glacier movements and related changes at a regional level is crucial for implementing more proactive measures and identifying appropriate strategies for mitigation. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

44 pages, 25578 KiB  
Review
Remote Sensing and Modeling of the Cryosphere in High Mountain Asia: A Multidisciplinary Review
by Qinghua Ye, Yuzhe Wang, Lin Liu, Linan Guo, Xueqin Zhang, Liyun Dai, Limin Zhai, Yafan Hu, Nauman Ali, Xinhui Ji, Youhua Ran, Yubao Qiu, Lijuan Shi, Tao Che, Ninglian Wang, Xin Li and Liping Zhu
Remote Sens. 2024, 16(10), 1709; https://doi.org/10.3390/rs16101709 - 11 May 2024
Cited by 1 | Viewed by 3173
Abstract
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are [...] Read more.
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are essential for studying climate change, the hydrological cycle, water resource management, and natural disaster mitigation and prevention. However, knowledge gaps, data uncertainties, and other substantial challenges limit comprehensive research in climate–cryosphere–hydrology–hazard systems. To address this, we provide an up-to-date, comprehensive, multidisciplinary review of remote sensing techniques in cryosphere studies, demonstrating primary methodologies for delineating glaciers and measuring geodetic glacier mass balance change, glacier thickness, glacier motion or ice velocity, snow extent and water equivalent, frozen ground or frozen soil, lake ice, and glacier-related hazards. The principal results and data achievements are summarized, including URL links for available products and related data platforms. We then describe the main challenges for cryosphere monitoring using satellite-based datasets. Among these challenges, the most significant limitations in accurate data inversion from remotely sensed data are attributed to the high uncertainties and inconsistent estimations due to rough terrain, the various techniques employed, data variability across the same regions (e.g., glacier mass balance change, snow depth retrieval, and the active layer thickness of frozen ground), and poor-quality optical images due to cloudy weather. The paucity of ground observations and validations with few long-term, continuous datasets also limits the utilization of satellite-based cryosphere studies and large-scale hydrological models. Lastly, we address potential breakthroughs in future studies, i.e., (1) outlining debris-covered glacier margins explicitly involving glacier areas in rough mountain shadows, (2) developing highly accurate snow depth retrieval methods by establishing a microwave emission model of snowpack in mountainous regions, (3) advancing techniques for subsurface complex freeze–thaw process observations from space, (4) filling knowledge gaps on scattering mechanisms varying with surface features (e.g., lake ice thickness and varying snow features on lake ice), and (5) improving and cross-verifying the data retrieval accuracy by combining different remote sensing techniques and physical models using machine learning methods and assimilation of multiple high-temporal-resolution datasets from multiple platforms. This comprehensive, multidisciplinary review highlights cryospheric studies incorporating spaceborne observations and hydrological models from diversified techniques/methodologies (e.g., multi-spectral optical data with thermal bands, SAR, InSAR, passive microwave, and altimetry), providing a valuable reference for what scientists have achieved in cryosphere change research and its hydrological effects on the Third Pole. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

17 pages, 9692 KiB  
Article
The Impacts of River Channel Blockages Caused by Sliding Embankment Collapses during Earthquakes
by Norio Harada, Yoshifumi Satofuka and Takahisa Mizuyama
Water 2024, 16(6), 822; https://doi.org/10.3390/w16060822 - 12 Mar 2024
Cited by 1 | Viewed by 1780
Abstract
New Japanese regulations governing earth embankment construction were introduced after a debris flow in Atami City, Shizuoka Prefecture, caused significant damage. Slope failures block river channels during earthquakes, triggering flooding, inundation, and debris flows. Appropriate risk assessments are crucial for residential areas potentially [...] Read more.
New Japanese regulations governing earth embankment construction were introduced after a debris flow in Atami City, Shizuoka Prefecture, caused significant damage. Slope failures block river channels during earthquakes, triggering flooding, inundation, and debris flows. Appropriate risk assessments are crucial for residential areas potentially impacted by earthen embankment landslides during seismic events. This study evaluates the methods used to assess the potential damage caused by such landslides and previous research on the harm caused by embankment failures during earthquakes. We derived predictive equations based on statistical analyses of historical dam landslides that triggered river channel blockages when residential earth embankments failed in the Nigawa Yurino area. The equations describe the morphologies of landslide dams in river channels. The results indicated that the predictive equations were reasonably accurate. We built and validated a two-dimensional model of landslide dam overtopping and breaching using experimental data on a gently sloping dam. We derived the outflow volumes associated with residential earth embankment failures when full reservoirs breached in the Nigawa Yurino area. Our findings suggest that the peak outflow volumes after such embankments breach are generally lower than those associated with dam landslides or deep-seated dam failures, but higher than those of glacial lake outburst floods. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 35735 KiB  
Article
Glacial Lake Changes and Risk Assessment in Rongxer Watershed of China–Nepal Economic Corridor
by Sihui Zhang, Yong Nie and Huayu Zhang
Remote Sens. 2024, 16(4), 725; https://doi.org/10.3390/rs16040725 - 19 Feb 2024
Cited by 2 | Viewed by 2174
Abstract
Glacial lake outburst floods (GLOFs) are one of the most severe disasters in alpine regions, releasing a large amount of water and sediment that can cause fatalities and economic loss as well as substantial damage to downstream infrastructures. The risk of GLOFs in [...] Read more.
Glacial lake outburst floods (GLOFs) are one of the most severe disasters in alpine regions, releasing a large amount of water and sediment that can cause fatalities and economic loss as well as substantial damage to downstream infrastructures. The risk of GLOFs in the Himalayas is exacerbated by glacier retreat caused by global warming. Critical economic corridors, such as the Rongxer Watershed, are threatened by GLOFs, but the lack of risk assessment specific to the watershed hinders hazard prevention. In this study, we propose a novel model to evaluate the risk of GLOF using a combination of remote sensing observations, GIS, and hydrological models and apply this model to the GLOF risk assessment in the Rongxer Watershed. The results show that (1) the area of glacial lakes in the Rongxer Watershed increased by 31.19% from 11.35 km2 in 1990 to 14.89 km2 in 2020, and (2) 18 lakes were identified as potentially dangerous glacial lakes (PDGLs) that need to be assessed for the GLOF risk, and two of them were categorized as very high risk (Niangzongmajue and Tsho Rolpa). The proposed model was robust in a GLOF risk evaluation by historical GLOFs in the Himalayas. The glacial lake data and GLOF risk assessment model of this study have the potential to be widely used in research on the relationships between glacial lakes and climate change, as well as in disaster mitigation of GLOFs. Full article
Show Figures

Figure 1

14 pages, 21715 KiB  
Article
Calculation Method of Material Accumulation Rate at the Front of Trunk Glaciers Based on Satellite Monitoring
by Zhang Wang, Kaiheng Hu, Zhengzheng Li, Changhu Li and Yao Li
Sustainability 2024, 16(1), 284; https://doi.org/10.3390/su16010284 - 28 Dec 2023
Viewed by 1439
Abstract
Glaciers continue to erode and transport material, forming an accumulation area at the front of the glacier. The trunk glacier, which has many tributary glaciers upstream and converges on the main channel, deposits vast amounts of material in the main channel. It blocks [...] Read more.
Glaciers continue to erode and transport material, forming an accumulation area at the front of the glacier. The trunk glacier, which has many tributary glaciers upstream and converges on the main channel, deposits vast amounts of material in the main channel. It blocks the main channel, forming barrier lakes, and eventually turns into mountain disasters, such as debris flows or outburst floods. Therefore, the accumulation rate of the material is a major parameter in such disasters and can determine the frequency of disasters. The material usually comes from bedrock erosion by glaciers, weathering of bedrock walls, and upstream landslides, and the material loss depends on river erosion. Based on this, we set up a method to calculate the material accumulation rate in the glacier front based on satellite images. Then, the Peilong catchment was taken as an example to validate the proposed method. The results indicate that climatic fluctuations may increase landslides, resulting in more actual accumulation than the calculated value according to the average rate of bedrock retreat. The material provided by the retreat of bedrock accounts for 92% of the total volume. Our method provides a practical reference for the mid- and long-term prediction of glacial catastrophic mass movement, as global warming seriously threatens glacier instability and downstream communities. Full article
Show Figures

Figure 1

19 pages, 5401 KiB  
Article
Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS
by Liye Yang, Zhong Lu, Chaojun Ouyang, Chaoying Zhao, Xie Hu and Qin Zhang
Remote Sens. 2023, 15(22), 5327; https://doi.org/10.3390/rs15225327 - 12 Nov 2023
Cited by 6 | Viewed by 4726
Abstract
The Shishapangma region, situated in the middle of the Himalayas, is rich in glacial lakes and glaciers. Hence, glacial lake outburst floods (GLOFs) have become a top priority because of the severe threat posed by GLOFs to the downstream settlements. This study presents [...] Read more.
The Shishapangma region, situated in the middle of the Himalayas, is rich in glacial lakes and glaciers. Hence, glacial lake outburst floods (GLOFs) have become a top priority because of the severe threat posed by GLOFs to the downstream settlements. This study presents a comprehensive analysis of GLOF hazards using multi-source remote sensing datasets and designs a flood model considering the different breaching depths and release volumes for the Galong Co region. Based on high-resolution optical images, we derived the expanding lake area and volume of glacial lakes. We monitored deformation velocity and long-term deformation time series around the lake dam with Small BAseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR). The glacier thinning trend was obtained from the difference in the Digital Elevation Model (DEM). We identified potential avalanche sources by combining topographic slope and measurable deformation. We then carried out flood modeling under three different scenarios using the hydrodynamic model HEC-RAS for Galong Co, which is formed upstream of Nyalam. The results show that the Nyalam region is exposed to high-intensity GLOFs in all scenarios. The larger breaching depth and release volumes caused a greater flow depth and peak discharge. Overall, the multiple remote sensing approaches can be applied to other glacial lakes, and the modeling can be used as a basis for GLOF mitigation. Full article
Show Figures

Figure 1

20 pages, 9852 KiB  
Article
Inventory of Glacial Lake in the Southeastern Qinghai-Tibet Plateau Derived from Sentinel-1 SAR Image and Sentinel-2 MSI Image
by Yuan Zhang, Jun Zhao, Xiaojun Yao, Hongyu Duan, Jianxia Yang and Wenlong Pang
Remote Sens. 2023, 15(21), 5142; https://doi.org/10.3390/rs15215142 - 27 Oct 2023
Cited by 2 | Viewed by 1507
Abstract
The glacial lakes in the Southeastern Qinghai–Tibet Plateau (SEQTP) have undergone dramatic expansion in the context of global warming, leading to several glacial lake outburst floods (GLOFs) disasters. However, there is a gap and incompleteness in glacial lake inventories across this area due [...] Read more.
The glacial lakes in the Southeastern Qinghai–Tibet Plateau (SEQTP) have undergone dramatic expansion in the context of global warming, leading to several glacial lake outburst floods (GLOFs) disasters. However, there is a gap and incompleteness in glacial lake inventories across this area due to the heavy cloud cover. In this study, an updated and comprehensive glacial lake inventory was produced by object-based image analysis (OBIA) and manual vectorization based on the Sentinel-1 SAR and Sentinel-2 MSI images acquired in 2022. Detailed steps regarding the OBIA were provided, and the feature set of Sentinel-1 SAR images suitable for extracting glacial lakes was also determined in this paper. We found that the mean combination of ascending-orbit and descending-orbit images is appropriate for mapping glacial lakes. VV-polarized backscattering coefficients from ascending-orbit achieved a better performance for delineating glacial lakes within the study area. Moreover, the distribution of glacial lakes was characterized in terms of four aspects: size, type, elevation, and space. There were 3731 glacial lakes with a total area of 1664.22 ± 0.06 km2 in the study area; most of them were less than 0.07 km2. Ice-contacted lakes were primarily located in the Palongzangbo basin (13.24 ± 0.08 km2). Nyang Qu basin had the most abundant glacial lake resources (2456 and 93.32 ± 0.18 km2). A comparison with previously published glacial lake datasets demonstrated that our dataset is more complete. This inventory is useful for evaluating water resources, studying glacier–glacial lake interactions, and assessing GLOFs’ susceptibility in the SEQTP. Full article
Show Figures

Graphical abstract

21 pages, 11246 KiB  
Article
Characterization of Three Surges of the Kyagar Glacier, Karakoram
by Zhen Zhang, Jinbiao Zhao, Shiyin Liu, Qibing Zhang, Zongli Jiang, Yangyang Xu and Haoran Su
Remote Sens. 2023, 15(8), 2113; https://doi.org/10.3390/rs15082113 - 17 Apr 2023
Cited by 10 | Viewed by 2088
Abstract
Glaciers experience periodic variations in flow velocity called surges, each of which influences the glacier’s characteristics and the occurrence of downstream disasters (e.g., ice-dammed lake outburst floods). The Karakoram region contains many surging glaciers, yet there are few comprehensive studies of multiple surge [...] Read more.
Glaciers experience periodic variations in flow velocity called surges, each of which influences the glacier’s characteristics and the occurrence of downstream disasters (e.g., ice-dammed lake outburst floods). The Karakoram region contains many surging glaciers, yet there are few comprehensive studies of multiple surge cycles. In this work, Landsat, topographic map, Shuttle Radar Topography Mission (SRTM), TerraSAR-X/TanDEM-X, ITS_LIVE, and Sentinel-1 glacier velocity data were used to systematically analyze the characteristics of Kyagar Glacier since the 1970s. Three surging events were identified, with active phases in 1975–1978, 1995–1997, and 2014–2016. The timing of these surges was similar, with a cycle of 19–20 years, an active phase of 3–4 years, and a quiescent phase of 16–17 years. During the quiescent phase, a large amount of ice accumulates in the lower part of the accumulation zone, and the terminal of the tongue thins significantly. According to the most recent surge event (2014–2016), glacier flow accelerated suddenly in the active phase and reached a maximum velocity of 2 ± 0.08 m d−1. Then, the glacier terminal thickened sharply, the reservoir zone thinned by 12 ± 0.2 m, and the terminal receiving zone thickened by 28 ± 0.2 m. The glacier may have entered a quiescent phase after July 2016. The glacier surge causes a large amount of material to transfer from upstream to downstream, forming an ice dam and creating conditions for a glacial lake outburst flood (GLOF). At the termination of the active phase, the subglacial drainage channel became effective, triggering the GLOF. For a period of the quiescent phase, the glacier ablation intensifies and the GLOF repeats constantly. One surge caused 7–8 GLOFs, and then a continuous reduction in the ice dam elevation. Eventually, the ice dam disappeared, and the GLOF no longer continued before the next glacier-surging event. Full article
Show Figures

Figure 1

18 pages, 7948 KiB  
Article
Monitoring Glacier Lake Outburst Flood (GLOF) of Lake Merzbacher Using Dense Chinese High-Resolution Satellite Images
by Changjun Gu, Suju Li, Ming Liu, Kailong Hu and Ping Wang
Remote Sens. 2023, 15(7), 1941; https://doi.org/10.3390/rs15071941 - 5 Apr 2023
Cited by 10 | Viewed by 5012
Abstract
Establishing an effective real-time monitoring and early warning system for glacier lake outburst floods (GLOFs) requires a full understanding of their occurrence mechanism. However, the harsh conditions and hard-to-reach locations of these glacial lakes limit detailed fieldwork, making satellite imagery a critical tool [...] Read more.
Establishing an effective real-time monitoring and early warning system for glacier lake outburst floods (GLOFs) requires a full understanding of their occurrence mechanism. However, the harsh conditions and hard-to-reach locations of these glacial lakes limit detailed fieldwork, making satellite imagery a critical tool for monitoring. Lake Mercbacher, an ice-dammed lake in the central Tian Shan mountain range, poses a significant threat downstream due to its relatively high frequency of outbursts. In this study, we first monitored the daily changes in the lake area before the 2022 Lake Mercbacher outburst. Additionally, based on historical satellite images from 2014 to 2021, we calculated the maximum lake area (MLA) and its changes before the outburst. Furthermore, we extracted the proportion of floating ice and water area during the period. The results show that the lake area of Lake Mercbacher would first increase at a relatively low speed (0.01 km2/day) for about one month, followed by a relatively high-speed increase (0.04 km2/day) until reaching the maximum, which would last for about twenty days. Then, the lake area would decrease slowly until the outburst, which would last five days and is significant for early warning. Moreover, the floating ice and water proportion provides more information about the outburst signals. In 2022, we found that the floating ice area increased rapidly during the early warning stage, especially one day before the outburst, accounting for about 50% of the total lake area. Historical evidence indicates that the MLA shows a decreasing trend, and combining it with the outburst date and climate data, we found that the outburst date shows an obvious advance trend (6 days per decade) since 1902, caused by climate warming. Earlier melting results in an earlier outburst. This study provides essential references for monitoring Lake Mercbacher GLOFs and building an effective early warning system. Full article
Show Figures

Figure 1

18 pages, 29438 KiB  
Article
Remote Sensing Monitoring and Analysis of Jinwuco Lateral Moraine Landslide-Glacial Lake Outburst in Southeast Tibet
by Yaping Gao, Wenguang Yang, Rui Guo and Liming Jiang
Remote Sens. 2023, 15(6), 1475; https://doi.org/10.3390/rs15061475 - 7 Mar 2023
Cited by 5 | Viewed by 2932
Abstract
On 25 June 2020, a glacial lake outburst flood (GLOF) occurred in Jinwuco, Nidou Zangbo, and southeast Tibet, causing catastrophic damage to multiple infrastructures such as roads, bridges, and farmlands in the surrounding and downstream areas. Due to the lack of long-term monitoring [...] Read more.
On 25 June 2020, a glacial lake outburst flood (GLOF) occurred in Jinwuco, Nidou Zangbo, and southeast Tibet, causing catastrophic damage to multiple infrastructures such as roads, bridges, and farmlands in the surrounding and downstream areas. Due to the lack of long-term monitoring of glacial lake and glacier changes in the region and the surrounding surface, the spatial and temporal evolutionary characteristics and triggering factors of the disaster still need to be determined. Here, we combine multi-temporal optical remote sensing image interpretation, surface deformation monitoring with synthetic aperture radar (SAR)/InSAR, meteorological observation data, and corresponding soil moisture change information to systematically analyze the spatial and temporal evolution characteristics and triggering factors of this GLOF disaster. Optical images taken between 1987 and 2020 indicate that the glacial lake’s initial area of 0.39 km2 quickly grew to 0.56 km2, then plummeted to 0.26 km2 after the catastrophe. Meanwhile, we found obvious signs of slippage beside the lateral moraine at the junction of the glacier’s terminus and the glacial lake. The pixel offset tracking (POT) results based on SAR images acquired before and after the disaster reveal that the western lateral moraine underwent a 40 m line of sight (LOS) deformation. The small baseline subset InSAR (SBAS-InSAR) results from 2017 to 2021 show that the cumulative deformation of the slope around the lateral moraine increased in the rainy season before the disaster, with a maximum cumulative deformation of −52 mm in 120 days and gradually stabilized after the disaster. However, there are three long-term deformation areas on the slope above it, showing an increasing trend after the disaster, with cumulative deformation exceeding −30 mm during the monitoring period. The lateral moraine collapse occurred in a warm climate with continuous and intense precipitation, and the low backscatter intensity prior to the slide suggests that the soil was very moist. Intense rainfall is thought to be the catalyst for lateral moraine collapse, whereas the lateral moraine falling into the glacier lake is the direct cause of the GLOF. This study shows that the joint active–passive remote sensing technique can accurately obtain the spatial and temporal evolution characteristics and triggering factors of GLOF. It is helpful to understand the GLOF event caused by the slide of lateral moraine more comprehensively, which is essential for further work related to glacial lake hazard assessment. Full article
Show Figures

Figure 1

Back to TopTop