Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,819)

Search Parameters:
Keywords = genetic algorithm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8453 KiB  
Article
Multi-Objective Optimization and Sensitivity Analysis of Building Envelopes and Solar Panels Using Intelligent Algorithms
by Na Zhao, Jia Zhang, Yewei Dong and Chao Ding
Buildings 2024, 14(10), 3134; https://doi.org/10.3390/buildings14103134 (registering DOI) - 1 Oct 2024
Abstract
The global drive for sustainable development and carbon neutrality has heightened the need for energy-efficient buildings. Photovoltaic buildings, which aim to reduce energy consumption and carbon emissions, play a crucial role in this effort. However, the potential of the building envelope for electricity [...] Read more.
The global drive for sustainable development and carbon neutrality has heightened the need for energy-efficient buildings. Photovoltaic buildings, which aim to reduce energy consumption and carbon emissions, play a crucial role in this effort. However, the potential of the building envelope for electricity generation is often underutilized. This study introduces an efficient hybrid method that integrates Particle Swarm Optimization (PSO), Support Vector Machine (SVM), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and the weighted Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method. This integrated approach was used to optimize the external envelope structure and photovoltaic components, leading to significant reductions: overall energy consumption decreased by 41% (from 105 kWh/m2 to 63 kWh/m2), carbon emissions by 34% (from 13,307 tCO2eq to 8817 tCO2eq), and retrofit and operating costs by 20% (from CNY 13.12 million to CNY 10.53 million) over a 25-year period. Sensitivity analysis further revealed that the window-to-wall ratio and photovoltaic windows play crucial roles in these outcomes, highlighting their potential to enhance building energy performance. These results confirm the feasibility of achieving substantial energy savings and emission reductions through this optimized design approach. Full article
Show Figures

Figure 1

16 pages, 1756 KiB  
Article
Optimal Design of a Sensor Network for Guided Wave-Based Structural Health Monitoring Using Acoustically Coupled Optical Fibers
by Rohan Soman, Jee Myung Kim, Alex Boyer and Kara Peters
Sensors 2024, 24(19), 6354; https://doi.org/10.3390/s24196354 - 30 Sep 2024
Abstract
Guided waves (GW) allow fast inspection of a large area and hence have received great interest from the structural health monitoring (SHM) community. Fiber Bragg grating (FBG) sensors offer several advantages but their use has been limited for the GW sensing due to [...] Read more.
Guided waves (GW) allow fast inspection of a large area and hence have received great interest from the structural health monitoring (SHM) community. Fiber Bragg grating (FBG) sensors offer several advantages but their use has been limited for the GW sensing due to its limited sensitivity. FBG sensors in the edge-filtering configuration have overcome this issue with sensitivity and there is a renewed interest in their use. Unfortunately, the FBG sensors and the equipment needed for interrogation is quite expensive, and hence their number is restricted. In the previous work by the authors, the number and location of the actuators was optimized for developing a SHM system with a single sensor and multiple actuators. But through the use of the phenomenon of acoustic coupling, multiple locations on the structure may be interrogated with a single FBG sensor. As a result, a sensor network with multiple sensing locations and a few actuators is feasible and cost effective. This paper develops a two-step methodology for the optimization of an actuator–sensor network harnessing the acoustic coupling ability of FBG sensors. In the first stage, the actuator–sensor network is optimized based on the application demands (coverage with at least three actuator–sensor pairs) and the cost of the instrumentation. In the second stage, an acoustic coupler network is designed to ensure high-fidelity measurements with minimal interference from other bond locations (overlap of measurements) as well as interference from features in the acoustically coupled circuit (fiber end, coupler, etc.). The non-sorting genetic algorithm (NSGA-II) is implemented for finding the optimal solution for both problems. The analytical implementation of the cost function is validated experimentally. The results show that the optimization does indeed have the potential to improve the quality of SHM while reducing the instrumentation costs significantly. Full article
18 pages, 5626 KiB  
Article
An Eco-Driving Strategy at Multiple Fixed-Time Signalized Intersections Considering Traffic Flow Effects
by Huinian Wang, Junbin Guo, Jingyao Wang and Jinghua Guo
Sensors 2024, 24(19), 6356; https://doi.org/10.3390/s24196356 - 30 Sep 2024
Abstract
To encourage energy saving and emission reduction and improve traffic efficiency in the multiple signalized intersections area, an eco-driving strategy for connected and automated vehicles (CAVs) considering the effects of traffic flow is proposed for the mixed traffic environment. Firstly, the formation and [...] Read more.
To encourage energy saving and emission reduction and improve traffic efficiency in the multiple signalized intersections area, an eco-driving strategy for connected and automated vehicles (CAVs) considering the effects of traffic flow is proposed for the mixed traffic environment. Firstly, the formation and dissipation process of signalized intersection queues are analyzed based on traffic wave theory, and a traffic flow situation estimation model is constructed, which can estimate intersection queue length and rear obstructed fleet length. Secondly, a feasible speed set calculation method for multiple signalized intersections is proposed to enable vehicles to pass through intersections without stopping and obstructing the following vehicles, adopting a trigonometric profile to generate smooth speed trajectory to ensure good riding comfort, and the speed trajectory is optimized with comprehensive consideration of fuel consumption, emissions, and traffic efficiency costs. Finally, the effectiveness of the strategy is verified. The results show that traffic performance and fuel consumption benefits increase as the penetration rate of CAVs increases. When all vehicles on the road are CAVs, the proposed strategy can increase the average speed by 9.5%, reduce the number of stops by 78.2%, reduce the stopped delay by 82.0%, and reduce the fuel consumption, NOx, and HC emissions by 20.4%, 39.4%, and 46.6%, respectively. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

18 pages, 4797 KiB  
Article
coiTAD: Detection of Topologically Associating Domains Based on Clustering of Circular Influence Features from Hi-C Data
by Drew Houchens, H. M. A. Mohit Chowdhury and Oluwatosin Oluwadare
Genes 2024, 15(10), 1293; https://doi.org/10.3390/genes15101293 - 30 Sep 2024
Abstract
Background/Objectives: Topologically associating domains (TADs) are key structural units of the genome, playing a crucial role in gene regulation. TAD boundaries are enriched with specific biological markers and have been linked to genetic diseases, making consistent TAD detection essential. However, accurately identifying TADs [...] Read more.
Background/Objectives: Topologically associating domains (TADs) are key structural units of the genome, playing a crucial role in gene regulation. TAD boundaries are enriched with specific biological markers and have been linked to genetic diseases, making consistent TAD detection essential. However, accurately identifying TADs remains challenging due to the lack of a definitive validation method. This study aims to develop a novel algorithm, termed coiTAD, which introduces an innovative approach for preprocessing Hi-C data to improve TAD prediction. This method employs a proposed “circle of influence” (COI) approach derived from Hi-C contact matrices. Methods: The coiTAD algorithm is based on the creation of novel features derived from the circle of influence in input contact matrices, which are subsequently clustered using the HDBSCAN clustering algorithm. The TADs are extracted from the clustered features based on intra-cluster interactions, thereby providing a more accurate method for identifying TADs. Results: Rigorous tests were conducted using both simulated and real Hi-C datasets. The algorithm’s validation included analysis of boundary proteins such as H3K4me1, RNAPII, and CTCF. coiTAD consistently matched other TAD prediction methods. Conclusions: The coiTAD algorithm represents a novel approach for detecting TADs. At its core, the circle-of-influence methodology introduces an innovative strategy for preparing Hi-C data, enabling the assessment of interaction strengths between genomic regions. This approach facilitates a nuanced analysis that effectively captures structural variations within chromatin. Ultimately, the coiTAD algorithm enhances our understanding of chromatin organization and offers a robust tool for genomic research. The source code for coiTAD is publicly available, and the URL can be found in the Data Availability Statement section. Full article
(This article belongs to the Collection Feature Papers in Bioinformatics)
Show Figures

Figure 1

18 pages, 4641 KiB  
Article
Sustainable Operation Strategy for Wet Flue Gas Desulfurization at a Coal-Fired Power Plant via an Improved Many-Objective Optimization
by Jianfeng Huang, Zhuopeng Zeng, Fenglian Hong, Qianhua Yang, Feng Wu and Shitong Peng
Sustainability 2024, 16(19), 8521; https://doi.org/10.3390/su16198521 - 30 Sep 2024
Abstract
Coal-fired power plants account for a large share of the power generation market in China. The mainstream method of desulfurization employed in the coal-fired power generation sector now is wet flue gas desulfurization. This process is known to have a high cost and [...] Read more.
Coal-fired power plants account for a large share of the power generation market in China. The mainstream method of desulfurization employed in the coal-fired power generation sector now is wet flue gas desulfurization. This process is known to have a high cost and be energy-/materially intensive. Due to the complicated desulfurization mechanism, it is challenging to improve the overall sustainability profile involving energy-, cost-, and resource-relevant objectives via traditional mechanistic models. As such, the present study formulated a data-driven many-objective model for the sustainability of the desulfurization process. We preprocessed the actual operation data collected from the desulfurization tower in a domestic ultra-supercritical coal-fired power plant with a 600 MW unit. The extreme random forest algorithm was adopted to approximate the objective functions as prediction models for four objectives, namely, desulfurization efficiency, unit power consumption, limestone supply, and unit operation cost. Three metrics were utilized to evaluate the performance of prediction. Then, we incorporated differential evolution and non-dominated sorting genetic algorithm-III to optimize the multiple parameters and obtain the Pareto front. The results indicated that the correlation coefficient (R2) values of the prediction models were greater than 0.97. Compared with the original operation condition, the operation under optimized parameters could improve the desulfurization efficiency by 0.25% on average and reduce energy, cost, and slurry consumption significantly. This study would help develop operation strategies to improve the sustainability of coal-fired power plants. Full article
Show Figures

Figure 1

13 pages, 1475 KiB  
Article
Nongenetic and Genetic Factors Associated with White Matter Brain Aging: Exposome-Wide and Genome-Wide Association Study
by Li Feng, Halley S. Milleson, Zhenyao Ye, Travis Canida, Hongjie Ke, Menglu Liang, Si Gao, Shuo Chen, L. Elliot Hong, Peter Kochunov, David K. Y. Lei and Tianzhou Ma
Genes 2024, 15(10), 1285; https://doi.org/10.3390/genes15101285 - 30 Sep 2024
Abstract
Background/Objectives: Human brain aging is a complex process that affects various aspects of brain function and structure, increasing susceptibility to neurological and psychiatric disorders. A number of nongenetic (e.g., environmental and lifestyle) and genetic risk factors are found to contribute to the varying [...] Read more.
Background/Objectives: Human brain aging is a complex process that affects various aspects of brain function and structure, increasing susceptibility to neurological and psychiatric disorders. A number of nongenetic (e.g., environmental and lifestyle) and genetic risk factors are found to contribute to the varying rates at which the brain ages among individuals. Methods: In this paper, we conducted both an exposome-wide association study (XWAS) and a genome-wide association study (GWAS) on white matter brain aging in the UK Biobank, revealing the multifactorial nature of brain aging. We applied a machine learning algorithm and leveraged fractional anisotropy tract measurements from diffusion tensor imaging data to predict the white matter brain age gap (BAG) and treated it as the marker of brain aging. For XWAS, we included 107 variables encompassing five major categories of modifiable exposures that potentially impact brain aging and performed both univariate and multivariate analysis to select the final set of nongenetic risk factors. Results: We found current tobacco smoking, dietary habits including oily fish, beef, lamb, cereal, and coffee intake, length of mobile phone use, use of UV protection, and frequency of solarium/sunlamp use were associated with the BAG. In genetic analysis, we identified several SNPs on chromosome 3 mapped to genes IP6K1, GMNC, OSTN, and SLC25A20 significantly associated with the BAG, showing the high heritability and polygenic architecture of human brain aging. Conclusions: The critical nongenetic and genetic risk factors identified in our study provide insights into the causal relationship between white matter brain aging and neurodegenerative diseases. Full article
(This article belongs to the Special Issue Advances in Bioinformatics and Environmental Health)
Show Figures

Figure 1

13 pages, 5755 KiB  
Article
The Importance of Genetic Testing for Familial Hypercholesterolemia: A Pediatric Pilot Study
by Andreea Teodora Constantin, Corina Delia, Lucia Maria Roșu, Ioana Roșca, Ioana Streață, Anca-Lelia Riza and Ioan Gherghina
Medicina 2024, 60(10), 1602; https://doi.org/10.3390/medicina60101602 - 29 Sep 2024
Abstract
Background and Objectives: Familial hypercholesterolemia (FH) is a genetic disease that is massively underdiagnosed worldwide. Affected patients are at high risk of cardiovascular events at young ages. Early intervention in childhood could help prevent heart attacks and cerebral strokes in these patients. Materials [...] Read more.
Background and Objectives: Familial hypercholesterolemia (FH) is a genetic disease that is massively underdiagnosed worldwide. Affected patients are at high risk of cardiovascular events at young ages. Early intervention in childhood could help prevent heart attacks and cerebral strokes in these patients. Materials and Methods: We conducted an interventional study including 10 patients that previously underwent genetic testing for familial hypercholesterolemia. These patients received lifestyle and diet recommendations that they followed for a year before being reevaluated. Results: Patients with negative genetic testing were able to achieve lower levels in their lipid panel values compared to the patients with positive genetic testing, with lifestyle changes alone. LDL-cholesterol levels decreased by 18.5% in patients without FH while patients genetically confirmed with FH failed to achieve lower LDL-cholesterol levels without medication. Conclusions: Genetic testing for FH is not always part of screening algorithms for FH. Some studies even advise against it. Our study proved the importance of genetic testing for FH when suspecting this disorder and choosing the treatment course for patients. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

22 pages, 2550 KiB  
Article
Ensemble Fusion Models Using Various Strategies and Machine Learning for EEG Classification
by Sunil Kumar Prabhakar, Jae Jun Lee and Dong-Ok Won
Bioengineering 2024, 11(10), 986; https://doi.org/10.3390/bioengineering11100986 - 29 Sep 2024
Abstract
Electroencephalography (EEG) helps to assess the electrical activities of the brain so that the neuronal activities of the brain are captured effectively. EEG is used to analyze many neurological disorders, as it serves as a low-cost equipment. To diagnose and treat every neurological [...] Read more.
Electroencephalography (EEG) helps to assess the electrical activities of the brain so that the neuronal activities of the brain are captured effectively. EEG is used to analyze many neurological disorders, as it serves as a low-cost equipment. To diagnose and treat every neurological disorder, lengthy EEG signals are needed, and different machine learning and deep learning techniques have been developed so that the EEG signals could be classified automatically. In this work, five ensemble models are proposed for EEG signal classification, and the main neurological disorder analyzed in this paper is epilepsy. The first proposed ensemble technique utilizes an equidistant assessment and ranking determination mode with the proposed Enhance the Sum of Connection and Distance (ESCD)-based feature selection technique for the classification of EEG signals; the second proposed ensemble technique utilizes the concept of Infinite Independent Component Analysis (I-ICA) and multiple classifiers with majority voting concept; the third proposed ensemble technique utilizes the concept of Genetic Algorithm (GA)-based feature selection technique and bagging Support Vector Machine (SVM)-based classification model. The fourth proposed ensemble technique utilizes the concept of Hilbert Huang Transform (HHT) and multiple classifiers with GA-based multiparameter optimization, and the fifth proposed ensemble technique utilizes the concept of Factor analysis with Ensemble layer K nearest neighbor (KNN) classifier. The best results are obtained when the Ensemble hybrid model using the equidistant assessment and ranking determination method with the proposed ESCD-based feature selection technique and Support Vector Machine (SVM) classifier is utilized, achieving a classification accuracy of 89.98%. Full article
(This article belongs to the Special Issue Machine Learning Technology in Predictive Healthcare)
Show Figures

Figure 1

28 pages, 4784 KiB  
Article
Solving Transport Infrastructure Investment Project Selection and Scheduling Using Genetic Algorithms
by Karel Ječmen, Denisa Mocková and Dušan Teichmann
Mathematics 2024, 12(19), 3056; https://doi.org/10.3390/math12193056 - 29 Sep 2024
Abstract
The development of transport infrastructure is crucial for economic growth, social connectivity, and sustainable development. Many countries have historically underinvested in transport infrastructure, necessitating more efficient strategic planning in the implementation of transport infrastructure investment projects. This article addresses the selection and scheduling [...] Read more.
The development of transport infrastructure is crucial for economic growth, social connectivity, and sustainable development. Many countries have historically underinvested in transport infrastructure, necessitating more efficient strategic planning in the implementation of transport infrastructure investment projects. This article addresses the selection and scheduling of transport infrastructure projects, specifically within the context of utilizing pre-allocated funds within a multi-annual budget investment program. The current decision-making process relies heavily on expert judgment and lacks quantitative decision support methods. We propose a genetic algorithm as a decision-support tool, framing the problem as an NP-hard 0–1 multiple knapsack problem. The proposed genetic algorithm (GA) is unique for its matrix-encoded chromosomes, specially designed genetic operators, and a customized repair operator to address the large number of invalid chromosomes generated during the GA computation. In computational experiments, the proposed GA is compared to an exact solution and proves to be efficient in terms of quality of obtained solutions and computational time, with an average computational time of 108 s and the quality of obtained solutions typically ranging between 85% and 95% of the optimal solution. These results highlight the potential of the proposed GA to enhance strategic decision-making in transport infrastructure development. Full article
Show Figures

Figure 1

20 pages, 22765 KiB  
Article
Landslide Susceptibility Assessment Based on Multisource Remote Sensing Considering Inventory Quality and Modeling
by Zhuoyu Lv, Shanshan Wang, Shuhao Yan, Jianyun Han and Gaoqiang Zhang
Sustainability 2024, 16(19), 8466; https://doi.org/10.3390/su16198466 - 29 Sep 2024
Abstract
The completeness of landslide inventories and the selection of evaluation models significantly impact the accuracy of landslide susceptibility assessments. Conventional field geological survey methods and single remote-sensing technology struggle to reliably identify landslides under complex environmental conditions. Moreover, prevalent landslide susceptibility evaluation models [...] Read more.
The completeness of landslide inventories and the selection of evaluation models significantly impact the accuracy of landslide susceptibility assessments. Conventional field geological survey methods and single remote-sensing technology struggle to reliably identify landslides under complex environmental conditions. Moreover, prevalent landslide susceptibility evaluation models are often plagued by issues such as subjectivity and overfitting. Therefore, we investigated the uncertainty in susceptibility modeling from the aspects of landslide inventory quality and model selection. The study focused on Luquan County in Yunnan Province, China. Leveraging multisource remote-sensing technologies, particularly emphasizing optical remote sensing and InSAR time-series deformation detection, the existing historical landslide inventory was refined and updated. This updated inventory was subsequently used to serve as samples. Nine evaluation indicators, encompassing factors such as distance to faults and tributaries, lithology, distance to roads, elevation, slope, terrain undulation, distance to the main streams, and average annual precipitation, were selected on the basis of the collation and organization of regional geological data. The information value and two coupled machine-learning models were formulated to evaluate landslide susceptibility. The evaluation results indicate that the two coupled models are more appropriate for susceptibility modeling than the single information value (IV) model, with the random forest model optimized by genetic algorithm in Group I2 exhibiting higher predictive accuracy (AUC = 0.796). Furthermore, comparative evaluation results reveal that, under equivalent model conditions, the incorporation of a remote-sensing landslide inventory significantly enhances the accuracy of landslide susceptibility assessment results. This study not only investigates the impact of landslide inventories and models on susceptibility outcomes but also validates the feasibility and scientific validity of employing multisource remote-sensing technologies in landslide susceptibility assessment. Full article
Show Figures

Figure 1

20 pages, 1552 KiB  
Article
AGV Scheduling for Optimizing Irregular Air Cargo Containers Handling at Airport Transshipment Centers
by Jie Li, Mingkai Zou, Yaqiong Lv and Di Sun
Mathematics 2024, 12(19), 3045; https://doi.org/10.3390/math12193045 - 28 Sep 2024
Abstract
Airport transshipment centers play a pivotal role in global logistics networks, enabling the swift and efficient transfer of cargo, which is essential for maintaining supply-chain continuity and reducing delivery times. The handling of irregularly shaped air cargo containers presents new constraints for automated [...] Read more.
Airport transshipment centers play a pivotal role in global logistics networks, enabling the swift and efficient transfer of cargo, which is essential for maintaining supply-chain continuity and reducing delivery times. The handling of irregularly shaped air cargo containers presents new constraints for automated guided vehicles (AGVs), as these shapes can complicate loading and unloading processes, directly impacting overall operational efficiency, turnaround times, and the reliability of cargo handling. This study focuses on optimizing the scheduling of AGVs to enhance cargo-handling efficiency at these hubs, particularly for managing irregular air cargo containers. A mixed-integer linear programming (MILP) model is developed, validated for feasibility with the Gurobi solver, and designed to handle large-scale operations. It incorporates a novel approach by integrating a simulated annealing optimized genetic algorithm (GA). The experimental results demonstrate that the designed algorithm can solve models of considerable size within 8 s, offering superior time efficiency compared to the solver, and an average solution quality improvement of 12.62% over the genetic algorithm, significantly enhancing both the model’s efficiency and scalability. The enhanced AGV scheduling not only boosts operational efficiency but also ensures better integration within the global logistics framework. This research provides a robust foundation for future advancements in logistics technology, offering both theoretical and practical insights into optimizing complex transportation networks. Full article
(This article belongs to the Section Engineering Mathematics)
Show Figures

Figure 1

12 pages, 1525 KiB  
Article
Multi-Objective Optimization and Reconstruction of Distribution Networks with Distributed Power Sources Based on an Improved BPSO Algorithm
by Dan Lu, Wenfeng Li, Linjuan Zhang, Qiang Fu, Qingtao Jiao and Kai Wang
Energies 2024, 17(19), 4877; https://doi.org/10.3390/en17194877 - 28 Sep 2024
Abstract
The continuous integration of distributed power into the distribution network has increased the complexity of the distribution network and created challenges in distribution-network reconfiguration. In order to make the distribution network operate in the optimal mode, this paper establishes a multi-objective reconfiguration-optimization model [...] Read more.
The continuous integration of distributed power into the distribution network has increased the complexity of the distribution network and created challenges in distribution-network reconfiguration. In order to make the distribution network operate in the optimal mode, this paper establishes a multi-objective reconfiguration-optimization model that takes into account active network loss, voltage offset, number of switching actions and distributed power output. For a distribution network with a distributed power supply, it is easy for the traditional binary particle swarm optimization algorithm to fall into a local optimum. In order to improve the convergence speed of the algorithm and avoid premature convergence, this paper adopts an improved binary particle swarm optimization algorithm to solve the problem. The IEEE33 node system is used as an example for simulation verification. The experimental results show that the algorithm improves the convergence speed and global search ability, effectively reduces the system network loss, and greatly improves the voltage level of each node. It improves the stability and economy of distribution-network operation and can effectively solve the problem of multi-objective reconfiguration. Full article
(This article belongs to the Special Issue Advances and Optimization of Electric Energy System—2nd Edition)
Show Figures

Figure 1

24 pages, 2856 KiB  
Review
Is It Time for a New Algorithm for the Pharmacotherapy of Steroid-Induced Diabetes?
by Aleksandra Ostrowska-Czyżewska, Wojciech Zgliczyński, Lucyna Bednarek-Papierska and Beata Mrozikiewicz-Rakowska
J. Clin. Med. 2024, 13(19), 5801; https://doi.org/10.3390/jcm13195801 - 28 Sep 2024
Abstract
Glucocorticoids (GS) are widely used in multiple medical indications due to their anti-inflammatory, immunosuppressive, and antiproliferative effects. Despite their effectiveness in treating respiratory, skin, joint, renal, and neoplastic diseases, they dysregulate glucose metabolism, leading to steroid-induced diabetes (SID) or a significant increase of [...] Read more.
Glucocorticoids (GS) are widely used in multiple medical indications due to their anti-inflammatory, immunosuppressive, and antiproliferative effects. Despite their effectiveness in treating respiratory, skin, joint, renal, and neoplastic diseases, they dysregulate glucose metabolism, leading to steroid-induced diabetes (SID) or a significant increase of glycemia in people with previously diagnosed diabetes. The risk of adverse event development depends on the prior therapy, the duration of the treatment, the form of the drug, and individual factors, i.e., BMI, genetics, and age. Unfortunately, SID and steroid-induced hyperglycemia (SIH) are often overlooked, because the fasting blood glucose level, which is the most commonly used diagnostic test, is insufficient for excluding both conditions. The appropriate control of post-steroid hyperglycemia remains a major challenge in everyday clinical practice. Recently, the most frequently used antidiabetic strategies have been insulin therapy with isophane insulin or multiple injections in the basal–bolus regimen. Alternatively, in patients with lower glycemia, sulphonylureas or glinides were used. Taking into account the pathogenesis of post-steroid-induced hyperglycemia, the initiation of therapy with glucagon-like peptide 1 (GLP-1) analogs and dipeptidyl peptidase 4 (DPP-4) inhibitors should be considered. In this article, we present a universal practical diagnostic algorithm of SID/SIH in patients requiring steroids, in both acute and chronic conditions, and we present a new pharmacotherapy algorithm taking into account the use of all currently available antidiabetic drugs. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

29 pages, 6243 KiB  
Article
Multi-Objective Optimisation and Deformation Analysis of Double-System Composite Guideway Based on NSGA-II
by Zhengwei Bai and Eryu Zhu
Buildings 2024, 14(10), 3115; https://doi.org/10.3390/buildings14103115 - 28 Sep 2024
Abstract
To study the optimal design of the section of the double-system composite guideway under the economic, steel consumption, and carbon emission characteristics, this paper introduced the multi-objective constrained optimisation model, which was established by the non-dominated sorting genetic algorithm II. In addition, the [...] Read more.
To study the optimal design of the section of the double-system composite guideway under the economic, steel consumption, and carbon emission characteristics, this paper introduced the multi-objective constrained optimisation model, which was established by the non-dominated sorting genetic algorithm II. In addition, the finite element model was established to further analyse the optimised section’s deformation and summarise the rail girder’s deformation law under different loads. The results showed that compared with the original design scheme, the optimised scheme can effectively reduce carbon emission during the construction of the double-system composite guideway, by 23.67% for Scheme I and 42.03% for Scheme II. On the other hand, steel had the largest share in the economic targets of the three design options, accounting for about 75% to 88.5% of the total cost. Concrete had the highest share of carbon emissions, ranging from 90% to 95% of the total carbon emissions. The distribution patterns of horizontal and vertical deformations in the three design options were independent of the load type as well as the load magnitude, but the vertical deformations were related to the load type, especially the self-weight load. The conclusions of this paper aim to fill the gap in the theoretical study of section optimisation of the double-system composite guideway and lay the theoretical foundation for developing the multi-system monorail transportation system. Full article
Show Figures

Figure 1

53 pages, 35090 KiB  
Article
Dynamical Sphere Regrouping Particle Swarm Optimization Programming: An Automatic Programming Algorithm Avoiding Premature Convergence
by Martín Montes Rivera, Carlos Guerrero-Mendez, Daniela Lopez-Betancur and Tonatiuh Saucedo-Anaya
Mathematics 2024, 12(19), 3021; https://doi.org/10.3390/math12193021 - 27 Sep 2024
Abstract
Symbolic regression plays a crucial role in machine learning and data science by allowing the extraction of meaningful mathematical models directly from data without imposing a specific structure. This level of adaptability is especially beneficial in scientific and engineering fields, where comprehending and [...] Read more.
Symbolic regression plays a crucial role in machine learning and data science by allowing the extraction of meaningful mathematical models directly from data without imposing a specific structure. This level of adaptability is especially beneficial in scientific and engineering fields, where comprehending and articulating the underlying data relationships is just as important as making accurate predictions. Genetic Programming (GP) has been extensively utilized for symbolic regression and has demonstrated remarkable success in diverse domains. However, GP’s heavy reliance on evolutionary mechanisms makes it computationally intensive and challenging to handle. On the other hand, Particle Swarm Optimization (PSO) has demonstrated remarkable performance in numerical optimization with parallelism, simplicity, and rapid convergence. These attributes position PSO as a compelling option for Automatic Programming (AP), which focuses on the automatic generation of programs or mathematical models. Particle Swarm Programming (PSP) has emerged as an alternative to Genetic Programming (GP), with a specific emphasis on harnessing the efficiency of PSO for symbolic regression. However, PSP remains unsolved due to the high-dimensional search spaces and local optimal regions in AP, where traditional PSO can encounter issues such as premature convergence and stagnation. To tackle these challenges, we introduce Dynamical Sphere Regrouping PSO Programming (DSRegPSOP), an innovative PSP implementation that integrates DSRegPSO’s dynamical sphere regrouping and momentum conservation mechanisms. DSRegPSOP is specifically developed to deal with large-scale, high-dimensional search spaces featuring numerous local optima, thus proving effective behavior for symbolic regression tasks. We assess DSRegPSOP by generating 10 mathematical expressions for mapping points from functions with varying complexity, including noise in position and cost evaluation. Moreover, we also evaluate its performance using real-world datasets. Our results show that DSRegPSOP effectively addresses the shortcomings of PSO in PSP by producing mathematical models entirely generated by AP that achieve accuracy similar to other machine learning algorithms optimized for regression tasks involving numerical structures. Additionally, DSRegPSOP combines the benefits of symbolic regression with the efficiency of PSO. Full article
(This article belongs to the Section Mathematics and Computer Science)
Show Figures

Figure 1

Back to TopTop