Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = flexible RFID tag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 12521 KiB  
Article
Artificial Intelligence-Assisted RFID Tag-Integrated Multi-Sensor for Quality Assessment and Sensing
by Chenyang Song and Zhipeng Wu
Sensors 2024, 24(6), 1813; https://doi.org/10.3390/s24061813 - 12 Mar 2024
Cited by 1 | Viewed by 1615
Abstract
Radio frequency identification (RFID) is well known as an identification, track, and trace approach and is considered to be the key physical layer technology for the industrial internet of things (IIoT). However, IIoT systems have to introduce additional complex sensor networks for pervasive [...] Read more.
Radio frequency identification (RFID) is well known as an identification, track, and trace approach and is considered to be the key physical layer technology for the industrial internet of things (IIoT). However, IIoT systems have to introduce additional complex sensor networks for pervasive monitoring, and there are still challenges related to item-level sensing and data recording. To overcome the shortage, this work proposes an artificial intelligence (AI)-assisted RFID-based multi-sensing technology. Both passive and semi-passive RFID tag-integrated multi-sensors are developed. The main contributions and the novelty of this investigation are as follows. A UHF RFID tag-integrated multi-sensor with a boosted charge pump is proposed; it enables high RF signal sensitivity and a long operational range. The whole hardware design, including the antenna and energy harvester, are studied. Moreover, a demonstration with real-world ham product sensing data is conducted. This work also proposes and successfully demonstrates the integration of machine learning algorithms, specifically the NARX neural network, with RFID sensing data for food product quality assessment and sensing (QAS). This application of machine learning to RFID-generated data for quality assessment is also a novel aspect of the research. The deployment of an autoregressive model with an exogenous input (NARX) neural network model, tailored for nonlinear processes, emerges as the most effective, achieving a root mean square error (RMSE) of 0.007 and an R-squared value of 0.99 for ham product QAS. By deploying the technology, low-cost, timely, and flexible product QAS can be achieved in manufacturing industries, which helps product quality improvement and the optimization of the manufacturing line and supply chain. Full article
(This article belongs to the Special Issue Sensing Technologies and Wireless Communications for Industrial IoT)
Show Figures

Figure 1

25 pages, 6803 KiB  
Article
A Tiny Flexible Differential Tension Sensor
by Piotr Z. Wieczorek, Krzysztof Starecki, Krzysztof Gołofit, Maciej Radtke and Marcin Pilarz
Sensors 2023, 23(4), 1819; https://doi.org/10.3390/s23041819 - 6 Feb 2023
Cited by 1 | Viewed by 1690
Abstract
Modern applications of Internet of Things (IoT) devices require cheap and effective methods of measurement of physical quantities. Cheap IoT devices with sensor functionalities can detect a lack or excess of substances in everyday life or industry processes. One possible use of tension [...] Read more.
Modern applications of Internet of Things (IoT) devices require cheap and effective methods of measurement of physical quantities. Cheap IoT devices with sensor functionalities can detect a lack or excess of substances in everyday life or industry processes. One possible use of tension sensors in IoT applications is the automated replenishment process of fast moving consumer goods (FMCG) on shop shelves or home retail automation that allows for quick ordering of FMCG, where the IoT system is a part of smart packaging. For those reasons, a growing demand for cheap and tiny tension sensors has arisen. In this article, we propose a solution of a small flexible tension sensor fabricated in an amorphous InGaZnO (a-IGZO) thin-film process that can be integrated with other devices, e.g., near-field communications (NFC) or a barcode radio frequency identification (RFID) tag. The sensor was designed to magnify the slight internal changes in material properties caused by mechanical stress. These changes affect the dynamic electrical properties of specially designed inverters for a pair of ring oscillators, in which the frequencies become stress-dependent. In the article, we discuss and explain the approach to the optimum design of a ring oscillator that manifests the highest sensitivity to mechanical stress. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

9 pages, 2330 KiB  
Article
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes
by Ayesha Habib, Safia Akram, Mohamed R. Ali, Taseer Muhammad, Sajeela Zainab and Shafia Jehangir
Nanomaterials 2023, 13(2), 273; https://doi.org/10.3390/nano13020273 - 9 Jan 2023
Cited by 7 | Viewed by 1915
Abstract
In the world of digitization, different objects cooperate with the Internet of Things (IoT); these objects also amplify using sensing and data processing structures. Radio frequency identification (RFID) has been identified as a key enabler technology for IoT. RFID technology has been used [...] Read more.
In the world of digitization, different objects cooperate with the Internet of Things (IoT); these objects also amplify using sensing and data processing structures. Radio frequency identification (RFID) has been identified as a key enabler technology for IoT. RFID technology has been used in different conventional applications for security, goods storage, transportation and asset management. In this paper, a fully inkjet-printed chipless radio frequency identification (RFID) sensor tag is presented for the wireless identification of tagged objects. The dual polarized tag consists of two resonating structures functioning wirelessly. One resonator works for encoding purpose and other resonator is used as a CO2/temperature sensor. The sensing behavior of the tag relies on the integration of a meandered structure comprising of multi-wall carbon nanotubes (MWCNT). The MWCNT is highly sensitive to CO2 gas. The backscattered response of the square-shaped cascaded split ring resonators (SRR) is analyzed through a radar cross-section (RCS) curve. The overall tag dimension is 42.1 mm × 19.5 mm. The sensing performance of the tag is examined and optimized for two different flexible substrates, i.e., PET and Kapton®HN. The flexible tag structure has the capability to transmit 5-bit data in the frequency bands of 2.36–3.9 GHz and 2.37–3.89 GHz, for PET and Kapton®HN, respectively. The proposed chipless RFID sensor tag does not require any microchip or a power source, so it has a great potential for low-cost and automated temperature/CO2 sensing applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

28 pages, 4335 KiB  
Review
A Review of Radio Frequency Identification Sensing Systems for Structural Health Monitoring
by Muchao Zhang, Zhaoting Liu, Chuan Shen, Jianbo Wu and Aobo Zhao
Materials 2022, 15(21), 7851; https://doi.org/10.3390/ma15217851 - 7 Nov 2022
Cited by 11 | Viewed by 3405
Abstract
Structural health monitoring (SHM) plays a critical role in ensuring the safety of large-scale structures during their operational lifespan, such as pipelines, railways and buildings. In the last few years, radio frequency identification (RFID) combined with sensors has attracted increasing interest in SHM [...] Read more.
Structural health monitoring (SHM) plays a critical role in ensuring the safety of large-scale structures during their operational lifespan, such as pipelines, railways and buildings. In the last few years, radio frequency identification (RFID) combined with sensors has attracted increasing interest in SHM for the advantages of being low cost, passive and maintenance-free. Numerous scientific papers have demonstrated the great potential of RFID sensing technology in SHM, e.g., RFID vibration and crack sensing systems. Although considerable progress has been made in RFID-based SHM, there are still numerous scientific challenges to be addressed, for example, multi-parameters detection and the low sampling rate of RFID sensing systems. This paper aims to promote the application of SHM based on RFID from laboratory testing or modelling to large-scale realistic structures. First, based on the analysis of the fundamentals of the RFID sensing system, various topologies that transform RFID into passive wireless sensors are analyzed with their working mechanism and novel applications in SHM. Then, the technical challenges and solutions are summarized based on the in-depth analysis. Lastly, future directions about printable flexible sensor tags and structural health prognostics are suggested. The detailed discussion will be instructive to promote the application of RFID in SHM. Full article
(This article belongs to the Special Issue Electromagnetic Nondestructive Testing)
Show Figures

Figure 1

13 pages, 4560 KiB  
Article
A Flexible and Low-Cost UHF RFID Tag Antenna for Blood Bag Traceability
by Mohamed El Khamlichi, Alejandro Alvarez-Melcon, Otman El Mrabet, Mohammed Ali Ennasar and Juan Hinojosa
Cited by 6 | Viewed by 3347
Abstract
A new low-profile flexible RFID tag antenna operating in the ultra-high frequency (UHF) European band (865 MHz–868 MHz) is proposed for blood bag traceability. Its structure combines inductive and capacitive parts with nested slots allowing for the achieving of conjugate impedance matching with [...] Read more.
A new low-profile flexible RFID tag antenna operating in the ultra-high frequency (UHF) European band (865 MHz–868 MHz) is proposed for blood bag traceability. Its structure combines inductive and capacitive parts with nested slots allowing for the achieving of conjugate impedance matching with the IC-chip. The whole electrical parameters of the environment (substrate, bag, and blood) were considered for the design of the tag antenna. A good agreement was obtained between the measurements and electromagnetic simulations for the input impedance of the tag antenna in the UHF band. A reading range close to 2.5 m was experimentally obtained. Therefore, this tag antenna could be effective and useful in future RFID systems for blood bag monitoring, thus improving patient safety in healthcare infrastructures. Full article
Show Figures

Figure 1

22 pages, 4364 KiB  
Article
Flexible, Fully Printable, and Inexpensive Paper-Based Chipless Arabic Alphabet-Based RFID Tags
by Jawad Yousaf, Eqab Almajali, Mahmoud El Najjar, Ahmed Amir, Amir Altaf, Manzoor Elahi, Saqer Saleh Alja’afreh and Hatem Rmili
Sensors 2022, 22(2), 564; https://doi.org/10.3390/s22020564 - 12 Jan 2022
Cited by 8 | Viewed by 3018
Abstract
This work presents the design and analysis of newly developed reconfigurable, flexible, inexpensive, optically-controlled, and fully printable chipless Arabic alphabet-based radio frequency identification (RFID) tags. The etching of the metallic copper tag strip is performed on a flexible simple thin paper substrate ( [...] Read more.
This work presents the design and analysis of newly developed reconfigurable, flexible, inexpensive, optically-controlled, and fully printable chipless Arabic alphabet-based radio frequency identification (RFID) tags. The etching of the metallic copper tag strip is performed on a flexible simple thin paper substrate (ϵr = 2.31) backed by a metallic ground plane. The analysis of investigated tags is performed in CST MWS in the frequency range of 1–12 GHz for the determination of the unique signature resonance characteristics of each tag in terms of its back-scattered horizontal and vertical mono-static radar cross section (RCS). The analysis reflects that each tag has its own unique electromagnetic signature (EMS) due to the changing current distribution of metallic resonator. This EMS of each tag could be used for the robust detection and recognition of all realized 28 Arabic alphabet tags. The study also discusses, for the first time, the effect of the change in font type and size of realized tags on their EMS. The robustness and reliability of the obtained EMS of letter tags is confirmed by comparing the RCS results for selective letter tags using FDTD and MoM numerical methods, which shows very good agreement. The proposed tags could be used for smart internet of things (IoT) and product marketing applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

36 pages, 22845 KiB  
Article
A Traceable and Verifiable Tobacco Products Logistics System with GPS and RFID Technologies
by Chin-Ling Chen, Zi-Yi Lim, Hsien-Chou Liao, Yong-Yuan Deng and Peizhi Chen
Appl. Sci. 2021, 11(11), 4939; https://doi.org/10.3390/app11114939 - 27 May 2021
Cited by 12 | Viewed by 3864
Abstract
Tobacco products are an addictive commodity. According to the World Health Organization’s (WHO) latest statistics data, tobacco kills more than eight million people each year. In 2003, the WHO proposed the Framework Convention on Tobacco Control (FCTC) to provide an effective framework for [...] Read more.
Tobacco products are an addictive commodity. According to the World Health Organization’s (WHO) latest statistics data, tobacco kills more than eight million people each year. In 2003, the WHO proposed the Framework Convention on Tobacco Control (FCTC) to provide an effective framework for the control of tobacco products to governments around the world. In the field of tobacco products, the hardest problem is how to prevent counterfeit tobacco products and smuggling. To solve the problems, we proposed a blockchain-based traceable and verifiable logistics system for tobacco products with global positioning system (GPS) and radio-frequency identification (RFID) Technologies. In this research, we provide an overview of system architecture, and also define the protocol and the smart contract in every phase that stores data into the blockchain center. We realized a decentralized database and authentication system that uses blockchain and smart contract technology; every protocol in every phase was designed to achieve the integrity of data and non-repudiation of message. Every tobacco product’s shipping record will be completed by scanning the RFID tag and retrieving the GPS with a mobile reader, where the record will be updated and validated in the blockchain center. In the end, the security and costs of the system were analyzed, and a comparison was made with the EU’s (European Commission) method. Our system is more flexible for transportation, more secure in the communication protocol, and more difficult to tamper and forge data. In general, the proposed scheme solved the problem of tobacco products counterfeiting and tracking issues. Full article
(This article belongs to the Special Issue Secure and Intelligent Mobile Systems)
Show Figures

Figure 1

14 pages, 4751 KiB  
Article
Flexible Anti-Metal RFID Tag Antenna Based on High-Conductivity Graphene Assembly Film
by Bohan Zhang, Cheng Zhang, Yuchao Wang, Zhe Wang, Chengguo Liu, Daping He and Zhi P. Wu
Sensors 2021, 21(4), 1513; https://doi.org/10.3390/s21041513 - 22 Feb 2021
Cited by 21 | Viewed by 5316
Abstract
We propose a flexible anti-metal radio frequency identification (RFID) tag antenna based on a high-conductivity graphene assembly film (HCGAF). The HCGAF has a conductivity of 1.82 × 106 S m−1, a sheet resistance of 25 mΩ and a thickness of [...] Read more.
We propose a flexible anti-metal radio frequency identification (RFID) tag antenna based on a high-conductivity graphene assembly film (HCGAF). The HCGAF has a conductivity of 1.82 × 106 S m−1, a sheet resistance of 25 mΩ and a thickness of 22 μm. The HCGAF is endowed with high conductivity comparable to metal materials and superb flexibility, which is suitable for making antennas for microwave frequencies. Through proper structural design, parameter optimization, semiautomatic manufacturing and experimental measurements, an HCGAF antenna could realize a realized gain of –7.3 dBi and a radiation efficiency of 80%, and the tag could achieve a 6.4 m read range at 915 MHz on a 20 × 20 cm2 flat copper plate. In the meantime, by utilizing flexible polyethylene (PE) foam, good conformality was obtained. The read ranges of the tags attached to curved copper plates with different bending radii were measured, as well as those of those attached to several daily objects. All the results demonstrate the excellent performance of the design, which is highly favorable for practical RFID anti-metal applications. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

19 pages, 4110 KiB  
Article
Robot Localisation Using UHF-RFID Tags: A Kalman Smoother Approach
by Farhad Shamsfakhr, Andrea Motroni, Luigi Palopoli, Alice Buffi, Paolo Nepa and Daniele Fontanelli
Sensors 2021, 21(3), 717; https://doi.org/10.3390/s21030717 - 21 Jan 2021
Cited by 18 | Viewed by 3416
Abstract
Autonomous vehicles enable the development of smart warehouses and smart factories with an increased visibility, flexibility and efficiency. Thus, effective and affordable localisation methods for indoor vehicles are attracting interest to implement real-time applications. This paper presents an Extended Kalman Smoother design to [...] Read more.
Autonomous vehicles enable the development of smart warehouses and smart factories with an increased visibility, flexibility and efficiency. Thus, effective and affordable localisation methods for indoor vehicles are attracting interest to implement real-time applications. This paper presents an Extended Kalman Smoother design to both localise a mobile agent and reconstruct its entire trajectory through a sensor-fusion employing the UHF-RFID passive technology. Extensive simulations are carried out by considering the smoother optimal-window length and the effect of missing measurements from reference tags. Monte Carlo simulations are conducted for different vehicle trajectories and for different linear and angular velocities to evaluate the method accuracy. Then, an experimental analysis with a unicycle wheeled robot is performed in real indoor scenario, showing a position and orientation root mean square errors of 15 cm, and 0.2 rad, respectively. Full article
Show Figures

Figure 1

18 pages, 6724 KiB  
Article
Optimization of UHF RFID Five-Slotted Patch Tag Design Using PSO Algorithm for Biomedical Sensing Systems
by Ibtissame Bouhassoune, Abdellah Chehri, Rachid Saadane and Khalid Minaoui
Int. J. Environ. Res. Public Health 2020, 17(22), 8593; https://doi.org/10.3390/ijerph17228593 - 20 Nov 2020
Cited by 12 | Viewed by 2145
Abstract
In this paper, a new flexible wearable radio frequency identification (RFID) five-shaped slot patch tag placed on the human arm is designed for ultra-high frequency (UHF) healthcare sensing applications. The compact proposed tag consists of a patch structure provided with five shaped slot [...] Read more.
In this paper, a new flexible wearable radio frequency identification (RFID) five-shaped slot patch tag placed on the human arm is designed for ultra-high frequency (UHF) healthcare sensing applications. The compact proposed tag consists of a patch structure provided with five shaped slot radiators and a flexible substrate, which minimize the human body’s impact on the antenna radiation performance. We have optimized our designed tag using the particle swarm optimization (PSO) method with curve fitting within MATLAB to minimize antenna parameters to achieve a good return loss and an attractive radiation performance in the operating band. The PSO-optimized tag’s performance has been examined over the specific placement in some parts of the human body, such as wrist and chest, to evaluate the tag response and enable our tag antenna conception in wearable biomedical sensing applications. Finally, we have tested the robustness of this tag by evaluating its sensitivity as a function of the antenna radiator placement over the ground plane or by shaping the ground plane substrate for the tag’s position from the human body. Our numerical results show an optimal tag size with good matching features and promising read ranges near the human body. Full article
(This article belongs to the Special Issue Computing Techniques for Environmental Research and Public Health)
Show Figures

Figure 1

21 pages, 8471 KiB  
Article
A Compact and Flexible UHF RFID Tag Antenna for Massive IoT Devices in 5G System
by Muhammad Hussain, Yasar Amin and Kyung-Geun Lee
Sensors 2020, 20(19), 5713; https://doi.org/10.3390/s20195713 - 8 Oct 2020
Cited by 22 | Viewed by 7528
Abstract
Upcoming 5th-generation (5G) systems incorporate physical objects (referred to as things), which sense the presence of components such as gears, gadgets, and sensors. They may transmit many kinds of states in the smart city context, such as new deals at malls, safe distances [...] Read more.
Upcoming 5th-generation (5G) systems incorporate physical objects (referred to as things), which sense the presence of components such as gears, gadgets, and sensors. They may transmit many kinds of states in the smart city context, such as new deals at malls, safe distances on roads, patient heart rhythms (especially in hospitals), and logistic control at aerodromes and seaports around the world. These serve to form the so-called future internet of things (IoT). From this futuristic perspective, everything should have its own identity. In this context, radio frequency identification (RFID) plays a specific role, which provides wireless communications in a secure manner. Passive RFID tags carry out work using the energy harvested among massive systems. RFID has been habitually realized as a prerequisite for IoT, the combination of which is called IoT RFID (I-RFID). For the current scenario, such tags should be productive, low-profile, compact, easily mountable, and have eco-friendly features. The presently available tags are not cost-effective and have not been proven as green tags for environmentally friendly IoT in 5G systems nor are they suitable for long-range communications in 5G systems. The proposed I-RFID tag uses the meandering angle technique (MAT) to construct a design that satisfies the features of a lower-cost printed antenna over the worldwide UHF RFID band standard (860–960 MHz). In our research, tag MAT antennas are fabricated on paper-based Korsnäs by screen- and flexo-printing, which have lowest simulated effective outcomes with dielectric variation due to humidity and have a plausible read range (RR) for European (EU; 866–868 MHz) and North American (NA; 902–928 MHz) UHF band standards. The I-RFID tag size is reduced by 36% to 38% w.r.t. a previously published case, the tag gain has been improved by 23.6% to 33.12%, and its read range has been enhanced by 50.9% and 59.6% for EU and NA UHF bands, respectively. It provides impressive performance on some platforms (e.g., plastic, paper, and glass), thereby providing a new state-of-the-art I-RFID tag with better qualities in 5G systems. Full article
Show Figures

Figure 1

16 pages, 5367 KiB  
Article
An Assistive Technology Solution for User Activity Monitoring Exploiting Passive RFID
by Bruno Ando, Salvatore Baglio, Salvatore Castorina, Ruben Crispino and Vincenzo Marletta
Sensors 2020, 20(17), 4954; https://doi.org/10.3390/s20174954 - 1 Sep 2020
Cited by 7 | Viewed by 2412
Abstract
Population ageing is having a direct influence on serious health issues, including hampered mobility and physical decline. Good habits in performing physical activities, in addition to eating and drinking, are essential to improve the life quality of the elderly population. Technological solutions, aiming [...] Read more.
Population ageing is having a direct influence on serious health issues, including hampered mobility and physical decline. Good habits in performing physical activities, in addition to eating and drinking, are essential to improve the life quality of the elderly population. Technological solutions, aiming at increasing awareness or providing reminders to eat/drink regularly, can have a significant impact in this scenario. These solutions enable the possibility to constantly monitor deviations from users’ normal behavior, thus allowing reminders to be provided to users/caregivers. In this context, this paper presents a radio-frequency identification (RFID) system to monitor user’s habits, such as the use of food, beverages, and/or drugs. The device was optimized to fulfill specifications imposed by the addressed application. The approach could be extended for the monitoring of home appliances, environment exploitation, and activity rate. Advantages of the approach compared to other solutions, e.g., based on cameras, are related to the low level of invasiveness and flexibility of the adopted technology. A major contribution of this paper is related to the wide investigation of system behavior, which is aimed to define the optimal working conditions of the system, with regards to the power budget, user (antenna)-tag reading range, and the optimal inter-tag distance. To investigate the performance of the system in tag detection, experiments were performed in a scenario replicating a home environment. To achieve this aim, specificity and sensitivity indexes were computed to provide an objective evaluation of the system performance. For the case considered, if proper conditions are meet, a specificity value of 0.9 and a sensitivity value of 1 were estimated. Full article
(This article belongs to the Special Issue Sensor-Based Assistive Devices and Technology)
Show Figures

Figure 1

17 pages, 10838 KiB  
Article
A New Washable UHF RFID Tag: Design, Fabrication, and Assessment
by Aurelian Moraru, Corneliu Ursachi and Elena Helerea
Sensors 2020, 20(12), 3451; https://doi.org/10.3390/s20123451 - 18 Jun 2020
Cited by 18 | Viewed by 5249
Abstract
This paper deals with the design and fabrication of durable radio frequency identification (RFID) passive tag with inductive coupling, operating at ultra-high frequencies, dedicated to the identification and monitoring of professional textile products. A reliable architecture for the tag transponder is proposed, featuring [...] Read more.
This paper deals with the design and fabrication of durable radio frequency identification (RFID) passive tag with inductive coupling, operating at ultra-high frequencies, dedicated to the identification and monitoring of professional textile products. A reliable architecture for the tag transponder is proposed, featuring a minimal number of galvanic contacts: The two pins of the integrated circuit are connected to the terminals of the inductive coupling loop by using surface mount technology welding. The transponder is encapsulated with an electrically insulating material which is waterproof and resistant to mechanical, thermal, and chemical stress. The antenna is inductively coupled to the transponder through a double loop which substantially reduces the length of the tag and significantly improves the coupling factor, enabling the tag to operate at a low power level. The reliability and flexibility of the tag is obtained by using appropriate materials and manufacturing methods for the ultra-high frequency (UHF) antenna by embroidering a multifilament stainless steel wire on textile support. The washing cycle tests have validated the applicability of this flexible and washable RFID tag, and its electromagnetic performance was experimentally assessed in an independent laboratory. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Graphical abstract

15 pages, 3199 KiB  
Article
Reliable UHF Long-Range Textile-Integrated RFID Tag Based on a Compact Flexible Antenna Filament
by Mahmoud Wagih, Yang Wei, Abiodun Komolafe, Russel Torah and Steve Beeby
Sensors 2020, 20(12), 3435; https://doi.org/10.3390/s20123435 - 17 Jun 2020
Cited by 43 | Viewed by 5137
Abstract
This paper details the design, fabrication and testing of flexible textile-concealed Radio Frequency Identification (RFID) tags for wearable applications in a smart city/smart building environment. The proposed tag designs aim to reduce the overall footprint, enabling textile integration whilst maintaining the read range. [...] Read more.
This paper details the design, fabrication and testing of flexible textile-concealed Radio Frequency Identification (RFID) tags for wearable applications in a smart city/smart building environment. The proposed tag designs aim to reduce the overall footprint, enabling textile integration whilst maintaining the read range. The proposed RFID filament is less than 3.5 mm in width and 100 mm in length. The tag is based on an electrically small (0.0033 λ 2 ) high-impedance planar dipole antenna with a tuning loop, maintaining a reflection coefficient less than −21 dB at 915 MHz, when matched to a commercial RFID chip mounted alongside the antenna. The antenna strip and the RFID chip are then encapsulated and integrated in a standard woven textile for wearable applications. The flexible antenna filament demonstrates a 1.8 dBi gain which shows a close agreement with the analytically calculated and numerically simulated gains. The range of the fabricated tags has been measured and a maximum read range of 8.2 m was recorded at 868 MHz Moreover, the tag’s maximum calculated range at 915 MHz is 18 m, which is much longer than the commercially available laundry tags of larger length and width, such as Invengo RFID tags. The reliability of the proposed RFID tags has been investigated using a series of tests replicating textile-based use case scenarios which demonstrates its suitability for practical deployment. Washing tests have shown that the textile-integrated encapsulated tags can be read after over 32 washing cycles, and that multiple tags can be read simultaneously while being washed. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 5193 KiB  
Article
Flexible UHF RFID Tag for Blood Tubes Monitoring
by Mohamed El Khamlichi, Alejandro Alvarez Melcon, Otman El Mrabet, Mohammed Ali Ennasar and Juan Hinojosa
Sensors 2019, 19(22), 4903; https://doi.org/10.3390/s19224903 - 9 Nov 2019
Cited by 22 | Viewed by 4938
Abstract
Low-cost and flexible radio frequency identification (RFID) tag for automatic identification, tracking, and monitoring of blood products is in great demand by the healthcare industry. A robust performance to meet security and traceability requirements in the different blood sample collection and analysis centers [...] Read more.
Low-cost and flexible radio frequency identification (RFID) tag for automatic identification, tracking, and monitoring of blood products is in great demand by the healthcare industry. A robust performance to meet security and traceability requirements in the different blood sample collection and analysis centers is also required. In this paper, a novel low-cost and flexible passive RFID tag is presented for blood sample collection tubes. The tag antenna is based on two compact symmetrical capacitive structures and works at the ultra-high frequency (UHF) European band (865 MHz–868 MHz). The tag antenna is designed considering the whole dielectric parameters such as the blood, substrate and tube. In this way, it operates efficiently in the presence of blood, which has high dielectric permittivity and loss. Measurement results of the proposed tag have confirmed simulation results. The measured performance of the tag shows good matching in the desired frequency band, leading to reading ranges up to 2.2 m, which is 4.4 times higher than typical commercial tags. The potential of this tag as a sensor to monitor the amount of blood contained in clinic tubes is also demonstrated. It is expected that the proposed tag can be useful and effective in future RFID systems to introduce security and traceability in different blood sample collection and analysis centers. Full article
(This article belongs to the Special Issue RFID Sensor Tags: Hardware, Implementation, and Demonstrations)
Show Figures

Figure 1

Back to TopTop