Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,510)

Search Parameters:
Keywords = eukaryote

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 16756 KiB  
Article
Structural Features of DNA in tRNA Genes and Their Upstream Sequences
by Ekaterina A. Savina, Tatiana G. Shumilina, Viktoria A. Porolo, Georgy S. Lebedev, Yury L. Orlov, Anastasia A. Anashkina and Irina A. Il’icheva
Int. J. Mol. Sci. 2024, 25(21), 11758; https://doi.org/10.3390/ijms252111758 - 1 Nov 2024
Viewed by 215
Abstract
RNA polymerase III (Pol III) transcribes tRNA genes using type II promoters. The internal control regions contain a Box A and a Box B, which are recognized by TFIIIC. The 5′-flanking regions of tRNA genes clearly play a role in the regulation of [...] Read more.
RNA polymerase III (Pol III) transcribes tRNA genes using type II promoters. The internal control regions contain a Box A and a Box B, which are recognized by TFIIIC. The 5′-flanking regions of tRNA genes clearly play a role in the regulation of transcription, but consensus sequences in it have been found only in some plants and S. pombe; although, the TATA binding protein (TBP) is a component of the TFIIIB complex in all eukaryotes. Archaea utilize an ortholog of the TBP. The goal of this work is the detection of the positions of intragenic and extragenic promoters of Pol III, which regulate the transcription of tRNA genes in eukaryotes and archaea. For this purpose, we analyzed textual and some structural, mechanical, and physicochemical properties of the DNA in the 5′-flanking regions of tRNA genes, as well as in 30 bp at the beginning of genes and 60 bp at the end of genes in organisms possessing the TBP or its analog (eukaryotes, archaea) and organisms not possessing the TBP (bacteria). Representative tRNA gene sets of 11 organisms were taken from the GtRNAdb database. We found that the consensuses of A- and B-boxes in organisms from all three domains are identical; although, they differ in the conservativism of some positions. Their location relative to the ends of tRNA genes is also identical. In contrast, the structural and mechanical properties of DNA in the 5′-flanking regions of tRNA genes differ not only between organisms from different domains, but also between organisms from the same domain. Well-expressed TBP binding positions are found only in S. pombe and A. thaliana. We discuss possible reasons for the variability of the 5′-flanking regions of tRNA genes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 2032 KiB  
Article
Transcriptomic and Physiological Meta-Analysis of Multiple Stress-Resistant Saccharomyces cerevisiae Strains
by Abdulkadir Özel, Alican Topaloğlu, Ömer Esen, Can Holyavkin, Mehmet Baysan and Zeynep Petek Çakar
Stresses 2024, 4(4), 714-733; https://doi.org/10.3390/stresses4040046 (registering DOI) - 1 Nov 2024
Viewed by 315
Abstract
Meta-analysis is a beneficial approach to reevaluating the outcomes of independent previous studies in the same scope. Saccharomyces cerevisiae, or the baker’s yeast, is a commonly used unicellular and eukaryotic model organism. In this study, 12 evolved S. cerevisiae strains that became [...] Read more.
Meta-analysis is a beneficial approach to reevaluating the outcomes of independent previous studies in the same scope. Saccharomyces cerevisiae, or the baker’s yeast, is a commonly used unicellular and eukaryotic model organism. In this study, 12 evolved S. cerevisiae strains that became resistant to diverse stress conditions (boron, caffeine, caloric restriction, cobalt, coniferyl aldehyde, ethanol, iron, nickel, oxidative stress, 2-phenylethanol, and silver stress) by adaptive laboratory evolution were reassessed to reveal the correlated stress/stressor clusters based on their transcriptomic and stress–cross-resistance data. Principal Component Analysis (PCA) with k-means clustering was performed. Five clusters for the transcriptomic data of strains and six clusters for cross-resistance stressors were identified. Through statistical evaluations, critical genes pertinent to each cluster were elucidated. The pathways associated with these genes were investigated using the KEGG database. The findings demonstrated that caffeine and coniferyl aldehyde stressors exhibit clear distinctions from other stressors in terms of both physiological stress-cross-resistance responses and transcriptomic profiles. Pathway analysis showed that ribosome biogenesis was downregulated, and starch and sucrose metabolism was upregulated across all clusters. Gene and pathway analyses have shown that stressors lead to distinct changes in yeast gene expression, and these alterations have been systematically documented for each cluster. Several of the highlighted genes are pivotal for further exploration and could potentially clarify new aspects of stress response mechanisms and multiple stress resistance in yeast. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

19 pages, 5219 KiB  
Article
Arabidopsis Actin-Binding Protein WLIM2A Links PAMP-Triggered Immunity and Cytoskeleton Organization
by Prabhu Manickam, Aala A. Abulfaraj, Hanna M. Alhoraibi, Alaguraj Veluchamy, Marilia Almeida-Trapp, Heribert Hirt and Naganand Rayapuram
Int. J. Mol. Sci. 2024, 25(21), 11642; https://doi.org/10.3390/ijms252111642 - 30 Oct 2024
Viewed by 214
Abstract
Arabidopsis LIM proteins are named after the initials of three proteins Lin-11, Isl-1, and MEC-3, which belong to a class of transcription factors that play an important role in the developmental regulation of eukaryotes and are also involved in a variety of life [...] Read more.
Arabidopsis LIM proteins are named after the initials of three proteins Lin-11, Isl-1, and MEC-3, which belong to a class of transcription factors that play an important role in the developmental regulation of eukaryotes and are also involved in a variety of life processes, including gene transcription, the construction of the cytoskeleton, signal transduction, and metabolic regulation. Plant LIM proteins have been shown to regulate actin bundling in different cells, but their role in immunity remains elusive. Mitogen-activated protein kinases (MAPKs) are a family of conserved serine/threonine protein kinases that link upstream receptors to their downstream targets. Pathogens produce pathogen-associated molecular patterns (PAMPs) that trigger the activation of MAPK cascades in plants. Recently, we conducted a large-scale phosphoproteomic analysis of PAMP-induced Arabidopsis plants to identify putative MAPK targets. One of the identified phospho-proteins was WLIM2A, an Arabidopsis LIM protein. In this study, we investigated the role of WLIM2A in plant immunity. We employed a reverse-genetics approach and generated wlim2a knockout lines using CRISPR-Cas9 technology. We also generated complementation and phosphosite-mutated WLIM2A expression lines in the wlim2a background. The wlim2a lines were compromised in their response to Pseudomonas syringae Pst DC3000 but showed enhanced resistance to the necrotrophic fungus Botrytis cinereae. Transcriptome analyses of wlim2a mutants revealed the deregulation of immune hormone biosynthesis and signaling of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways. The wlim2a mutants also exhibited altered stomatal phenotypes. Analysis of plants expressing WLIM2A variants of the phospho-dead or phospho-mimicking MAPK phosphorylation site showed opposing stomatal behavior and resistance phenotypes in response to Pst DC3000 infection, proving that phosphorylation of WLIM2A plays a crucial role in plant immunity. Overall, these data demonstrate that phosphorylation of WLIM2A by MAPKs regulates Arabidopsis responses to plant pathogens. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 2393 KiB  
Article
Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems
by Rhonda R. Janke, Daniel Menezes-Blackburn, Asma Al Hamdi and Abdul Rehman
Sustainability 2024, 16(21), 9391; https://doi.org/10.3390/su16219391 - 29 Oct 2024
Viewed by 440
Abstract
Organic farming encourages soil management practices that can improve soil health and fertility by increasing soil organic matter inputs and system sustainability. This study evaluated the effect of three years of continuous organic farming and intercropping orchard treatments on soil microbial diversity, microbial [...] Read more.
Organic farming encourages soil management practices that can improve soil health and fertility by increasing soil organic matter inputs and system sustainability. This study evaluated the effect of three years of continuous organic farming and intercropping orchard treatments on soil microbial diversity, microbial enumeration, respiration, soil fertility and fruit yields. Organic management resulted in higher soil organic matter content, Olsen P, and water holding capacity, but did not affect soil pH, electrical conductivity (EC), K, or Na levels. Growth parameters measured on all fruit trees were not significantly different among treatments. The enumeration of bacteria was significantly higher in organic plots when compared to conventionally managed plots. Soil respiration and substrate-induced respiration were significantly higher in the organic diverse plots in comparison to both conventional systems. The genomic analysis of prokaryotes (16S rRNA) and eukaryotes/fungi (ITS) revealed a significantly higher number of taxa, Shannon H index, and Equitability index in the organic systems for both prokaryotes and eukaryotes, in comparison to conventional farming, all of which are indicators of system sustainability. The relative abundance of Operational Taxonomic Units (OTUs) previously reported as diazotrophs, denitrifiers, or involved in the sulfur cycle, as well as Arbuscular Mychorrizae Fungi (AMF)/glomeromycotan, were highest in the organically managed soils than in the conventional plots. A multivariate correlation network clustering revealed that the microbial communities within the organic and conventional soils had strong dissimilarities regarding soil microbial niches. Our work provides evidence that organic management can be used for increasing soil microbial diversity and soil health, leading to higher levels of sustainability in fruit orchard systems. Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

12 pages, 6601 KiB  
Article
A Lipase Gene of Thermomyces lanuginosus: Sequence Analysis and High-Efficiency Expression in Pichia pastoris
by Le Yi, Lifeng Cheng, Qi Yang, Wei Luo and Shengwen Duan
Int. J. Mol. Sci. 2024, 25(21), 11591; https://doi.org/10.3390/ijms252111591 - 29 Oct 2024
Viewed by 297
Abstract
Lipase, a type of enzyme that decomposes and synthesizes triglycerides, plays an important role in lipid processing. In this study, a heat-resisting lipase gene (lip4) from Thermomyces lanuginosus was subcloned into the pPICZαA vector and then transformed into Pichia pastoris X33. [...] Read more.
Lipase, a type of enzyme that decomposes and synthesizes triglycerides, plays an important role in lipid processing. In this study, a heat-resisting lipase gene (lip4) from Thermomyces lanuginosus was subcloned into the pPICZαA vector and then transformed into Pichia pastoris X33. The recombinant yeast cell concentration reached the maximum (119.5 g/L) at 144 h, and the lipase (Lip4) activity reached the maximum (3900 U/mL) at 168 h in 10 L bioreactor. Through bioinformatics analysis, S168, as the key site of Lip4, participated in the formation of the catalytic triads S168-D223-H280 and G166-H167-S168-L169-G170. Furthermore, S168 and seven conserved amino acids of G104/288, S105, A195, P196, V225 and I287 constitute the active center of Lip4. Specifically, the structure modeling showed two α-helices of the lid domain, outside the active pocket domain, controlling the entry of the substrate on Lip4. The potential glycosylation of Asn-33 may be involved in exhibiting the high stable temperature for lipase activity. Therefore, the eukaryotic system was constructed to express Lip4 efficiently, and the amino acid sites related to the catalytic efficiency of Lip4 were clarified, providing a new way for its subsequent property research and industrial application. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

37 pages, 3352 KiB  
Review
Photosynthetic Electron Flows and Networks of Metabolite Trafficking to Sustain Metabolism in Photosynthetic Systems
by Neda Fakhimi and Arthur R. Grossman
Plants 2024, 13(21), 3015; https://doi.org/10.3390/plants13213015 - 28 Oct 2024
Viewed by 477
Abstract
Photosynthetic eukaryotes have metabolic pathways that occur in distinct subcellular compartments. However, because metabolites synthesized in one compartment, including fixed carbon compounds and reductant generated by photosynthetic electron flows, may be integral to processes in other compartments, the cells must efficiently move metabolites [...] Read more.
Photosynthetic eukaryotes have metabolic pathways that occur in distinct subcellular compartments. However, because metabolites synthesized in one compartment, including fixed carbon compounds and reductant generated by photosynthetic electron flows, may be integral to processes in other compartments, the cells must efficiently move metabolites among the different compartments. This review examines the various photosynthetic electron flows used to generate ATP and fixed carbon and the trafficking of metabolites in the green alga Chlamydomomas reinhardtii; information on other algae and plants is provided to add depth and nuance to the discussion. We emphasized the trafficking of metabolites across the envelope membranes of the two energy powerhouse organelles of the cell, the chloroplast and mitochondrion, the nature and roles of the major mobile metabolites that move among these compartments, and the specific or presumed transporters involved in that trafficking. These transporters include sugar-phosphate (sugar-P)/inorganic phosphate (Pi) transporters and dicarboxylate transporters, although, in many cases, we know little about the substrate specificities of these transporters, how their activities are regulated/coordinated, compensatory responses among transporters when specific transporters are compromised, associations between transporters and other cellular proteins, and the possibilities for forming specific ‘megacomplexes’ involving interactions between enzymes of central metabolism with specific transport proteins. Finally, we discuss metabolite trafficking associated with specific biological processes that occur under various environmental conditions to help to maintain the cell’s fitness. These processes include C4 metabolism in plants and the carbon concentrating mechanism, photorespiration, and fermentation metabolism in algae. Full article
Show Figures

Figure 1

12 pages, 4171 KiB  
Article
Editing eIF4E in the Watermelon Genome Using CRISPR/Cas9 Technology Confers Resistance to ZYMV
by Maoying Li, Yanhong Qiu, Dongyang Zhu, Xiulan Xu, Shouwei Tian, Jinfang Wang, Yongtao Yu, Yi Ren, Guoyi Gong, Haiying Zhang, Yong Xu and Jie Zhang
Int. J. Mol. Sci. 2024, 25(21), 11468; https://doi.org/10.3390/ijms252111468 - 25 Oct 2024
Viewed by 422
Abstract
Watermelon is one of the most important cucurbit crops, but its production is seriously affected by viral infections. Although eIF4E proteins have emerged as the major mediators of the resistance to viral infections, the mechanism underlying the contributions of eIF4E to watermelon disease [...] Read more.
Watermelon is one of the most important cucurbit crops, but its production is seriously affected by viral infections. Although eIF4E proteins have emerged as the major mediators of the resistance to viral infections, the mechanism underlying the contributions of eIF4E to watermelon disease resistance remains unclear. In this study, three CleIF4E genes and one CleIF(iso)4E gene were identified in the watermelon genome. Among these genes, CleIF4E1 was most similar to other known eIF4E genes. To investigate the role of CleIF4E1, CRISPR/Cas9 technology was used to knock out CleIF4E1 in watermelon. One selected mutant line had an 86 bp deletion that resulted in a frame-shift and the expression of a truncated protein. The homozygous mutant exhibits developmental defects in plant growth, leaf morphology and reduced yield. Furthermore, the mutant was protected against the zucchini yellow mosaic virus, but not the cucumber green mottled mosaic virus. In summary, this study preliminarily clarified the functions of eIF4E proteins in watermelon. The generated data will be useful for elucidating eIF4E-related disease resistance mechanisms in watermelon. The tissue-specific editing of CleIF4E1 in future studies may help to prevent adverse changes to watermelon fertility. Full article
(This article belongs to the Special Issue Genetics and Molecular Breeding of Cucurbitaceous Crops)
Show Figures

Figure 1

12 pages, 6512 KiB  
Article
Analysis of Alternative Splicing Events and Identification of Key Genes in Brassica napus Leaves Infected by Leptosphaeria biglobosa
by Xinning Ma, Lin Yuan, Jiuru Huangfu, Mengjiao Yan, Chen Guo, Lili Zhao, Hongxia Sun, Xiaoqing Jia, Ziqin Li and Haiyan Huangfu
Agronomy 2024, 14(11), 2500; https://doi.org/10.3390/agronomy14112500 - 25 Oct 2024
Viewed by 395
Abstract
Alternative splicing (AS) is a prevalent post-transcriptional regulatory mechanism in eukaryotes and plays a crucial role in plant disease resistance. Here, we used the Illumina Novaseq sequencing platform to conduct transcriptome sequencing on canola (Brassica napus) leaves infected with the blackleg [...] Read more.
Alternative splicing (AS) is a prevalent post-transcriptional regulatory mechanism in eukaryotes and plays a crucial role in plant disease resistance. Here, we used the Illumina Novaseq sequencing platform to conduct transcriptome sequencing on canola (Brassica napus) leaves infected with the blackleg pathogen (Leptosphaeria biglobosa strain nm−1) at 0 h, 72 h, 120 h, and 168 h post-inoculation to investigate the mechanism of AS coordination with transcriptional regulation in canola’s response to blackleg disease. The rMATS software (4.1.0) was employed to analyze different AS events in samples taken at 72 h, 120 h, and 168 h. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to elucidate the biological functions of differentially spliced genes at various time points, while Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify key modules and hub genes. As a result, our analysis reveals 16908 AS events across three time points, with 221 being differently spliced. Intron retention (RI) was the most common AS event, accounting for approximately 55% of all events, while alternative 5′ splice site events were least common, comprising only 2%. Furthermore, a total of 213 significantly differentially spliced genes were identified, which were enriched in functions related to protein kinase activity, transferase activity, and pathways such as MAPK signaling pathway—plant and plant hormone signal transduction. WGCNA identified three key modules and ten hub genes, including calcium-binding transcription activator 1, LRR class receptor serine/threonine protein kinase FEI 2, PLATZ transcription factor family proteins, serine/threonine protein kinase PRP4, and E3 ubiquitin ligase SUD1, all of which are associated with canola resistance to L. biglobosa. Thus, this study provides a theoretical basis for identifying disease-resistance genes involved in AS and for exploring the functions of AS gene isoforms in canola. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

10 pages, 1320 KiB  
Article
Suppression by RNA Polymerase I Inhibitors Varies Greatly Between Distinct RNA Polymerase I Transcribed Genes in Malaria Parasites
by Hermela Samuel, Riward Campelo Morillo and Björn F. C. Kafsack
Pathogens 2024, 13(11), 924; https://doi.org/10.3390/pathogens13110924 - 24 Oct 2024
Viewed by 435
Abstract
The transcription of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I) is the rate-limiting step in ribosome biogenesis and a major determinant of cellular growth rates. Unlike other eukaryotes, which express identical rRNA from large tandem arrays of dozens to hundreds of [...] Read more.
The transcription of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I) is the rate-limiting step in ribosome biogenesis and a major determinant of cellular growth rates. Unlike other eukaryotes, which express identical rRNA from large tandem arrays of dozens to hundreds of identical rRNA genes in every cell, the genome of the human malaria parasite Plasmodium falciparum contains only a handful single-copy 47S rRNA loci that differ substantially from one another in length, sequence, and expression in different cell types. We found that the growth of the malaria parasite was acutely sensitive to the Pol I inhibitors 9-hydroxyellipticine and BMH-21 and demonstrated that they greatly reduce the transcription of 47S rRNAs as well as the transcription of other non-coding RNA genes. This makes P. falciparum only the second known organism where RNA Polymerase I transcribes genes other than the 47S rRNAs. We found that the various types of Pol I-transcribed genes differed by more than two orders of magnitude in their susceptibility to these inhibitors and explored the implications of these findings for the regulation of rRNA in P. falciparum. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

16 pages, 3485 KiB  
Article
Genomic Sequence of the Threespine Stickleback Iridovirus (TSIV) from Wild Gasterosteus aculeatus in Stormy Lake, Alaska
by Alyssa M. Yoxsimer, Emma G. Offenberg, Austin Wolfgang Katzer, Michael A. Bell, Robert L. Massengill and David M. Kingsley
Viruses 2024, 16(11), 1663; https://doi.org/10.3390/v16111663 - 24 Oct 2024
Viewed by 474
Abstract
The threespine stickleback iridovirus (TSIV), a double-stranded DNA virus, was the first megalocytivirus detected in wild North American fishes. We report a second occurrence of TSIV in threespine stickleback (Gasterosteus aculeatus) from Stormy Lake, Alaska, and assemble a nearly complete genome [...] Read more.
The threespine stickleback iridovirus (TSIV), a double-stranded DNA virus, was the first megalocytivirus detected in wild North American fishes. We report a second occurrence of TSIV in threespine stickleback (Gasterosteus aculeatus) from Stormy Lake, Alaska, and assemble a nearly complete genome of TSIV. The 115-kilobase TSIV genome contains 94 open reading frames (ORFs), with 91 that share homology with other known iridoviruses. We identify three ORFs that likely originate from recent lateral gene transfers from a eukaryotic host and one ORF with homology to B22 poxvirus proteins that likely originated from a lateral gene transfer between viruses. Phylogenetic analysis of 24 iridovirus core genes and pairwise sequence identity analysis support TSIV as a divergent sister taxon to other megalocytiviruses and a candidate for a novel species designation. Screening of stickleback collected from Stormy Lake before and after a 2012 rotenone treatment to eliminate invasive fish shows 100% positivity for TSIV in the two years before treatment (95% confidence interval: 89–100% prevalence) and 0% positivity for TSIV in 2024 after treatment (95% confidence interval: 0 to 3.7% prevalence), suggesting that the rotenone treatment and subsequent crash and reestablishment of the stickleback population is associated with loss of TSIV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

20 pages, 7623 KiB  
Article
Structural Analysis of Virus Regulatory N6-Methyladenosine (m6A) Machinery of the Black Flying Fox (Pteropus alecto) and the Egyptian Fruit Bat (Rousettus aegyptiacus) Shows Evolutionary Conservation Amongst Mammals
by Asmaa Nasr, Nikki Copeland and Muhammad Munir
Genes 2024, 15(11), 1361; https://doi.org/10.3390/genes15111361 - 23 Oct 2024
Viewed by 432
Abstract
Background: N6-methyladenosine (m6A) is an abundant RNA epitranscriptomic modification in eukaryotes. The m6A machinery includes cellular writer, eraser and reader proteins that regulate m6A. Pteropus alecto (P. alecto) (the Australian black flying fox) and Rousettus aegyptiacus (R. aegyptiacus) (the [...] Read more.
Background: N6-methyladenosine (m6A) is an abundant RNA epitranscriptomic modification in eukaryotes. The m6A machinery includes cellular writer, eraser and reader proteins that regulate m6A. Pteropus alecto (P. alecto) (the Australian black flying fox) and Rousettus aegyptiacus (R. aegyptiacus) (the Egyptian fruit bat) are bats associated with several viral zoonoses yet neglected in the field of m6A epigenetics studies. Objectives: This study utilises various bioinformatics and in silico tools to genetically identify, characterise and annotate the m6A machinery in P. alecto and R. aegyptiacus. Methods: A range of bioinformatic tools were deployed to comprehensively characterise all known m6A-associated proteins of P. alecto and R. aegyptiacus. Results: Phylogenetically, the m6A fat mass and obesity-associated protein (FTO) eraser placed the order Chiroptera (an order including all bat species) in a separate clade. Additionally, it showed the lowest identity matrices in P. alecto and R. aegyptiacus when compared to other mammals (74.1% and 72.8%) and Homo sapiens (84.0% and 76.1%), respectively. When compared to humans, genetic loci-based analysis of P. alecto and R. aegyptiacus showed syntenic conservation in multiple flanking genes of 8 out the 10 m6A-associated genes. Furthermore, amino acid alignment and protein tertiary structure of the two bats’ m6A machinery demonstrated conservation in the writers but not in erasers and readers, compared to humans. Conclusions: These studies provide foundational annotation and genetic characterisation of m6A machinery in two important species of bats which can be exploited to study bat–virus interactions at the interface of epitranscriptomics. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1219 KiB  
Article
Characterization of a New Hsp110 Inhibitor as a Potential Antifungal
by Cancan Sun, Yi Li, Justin M. Kidd, Jizhong Han, Liangliang Ding, Aaron E. May, Lei Zhou and Qinglian Liu
J. Fungi 2024, 10(11), 732; https://doi.org/10.3390/jof10110732 - 23 Oct 2024
Viewed by 436
Abstract
Fungal infections present a significant global health challenge, prompting ongoing research to discover innovative antifungal agents. The 110 kDa heat shock proteins (Hsp110s) are molecular chaperones essential for maintaining cellular protein homeostasis in eukaryotes. Fungal Hsp110s have emerged as a promising target for [...] Read more.
Fungal infections present a significant global health challenge, prompting ongoing research to discover innovative antifungal agents. The 110 kDa heat shock proteins (Hsp110s) are molecular chaperones essential for maintaining cellular protein homeostasis in eukaryotes. Fungal Hsp110s have emerged as a promising target for innovative antifungal strategies. Notably, 2H stands out as a promising candidate in the endeavor to target Hsp110s and combat fungal infections. Our study reveals that 2H exhibits broad-spectrum antifungal activity, effectively disrupting the in vitro chaperone activity of Hsp110 from Candida auris and inhibiting the growth of Cryptococcus neoformans. Pharmacokinetic analysis indicates that oral administration of 2H may offer enhanced efficacy compared to intravenous delivery, emphasizing the importance of optimizing the AUC/MIC ratio for advancing its clinical therapy. Full article
(This article belongs to the Special Issue New Discovery on Antifungal Drugs)
Show Figures

Figure 1

15 pages, 3345 KiB  
Project Report
Looking for Pathogens in Dust from North Africa Arriving in the French West Indies Using Metabarcoding and Cultivable Analysis
by Yann Reynaud, Andric Gelasse, Luc Multigner, Philippe Quénel, Antoine Talarmin and Stéphanie Guyomard-Rabenirina
Microorganisms 2024, 12(10), 2111; https://doi.org/10.3390/microorganisms12102111 - 21 Oct 2024
Viewed by 669
Abstract
Periodically, the French West Indies receive dust originating from North Africa (NA). Microorganisms associated with desert dust can be transported over long distances through the atmosphere and could represent a means for the remote colonization of new habitats by putatively pathogenic microorganisms. The [...] Read more.
Periodically, the French West Indies receive dust originating from North Africa (NA). Microorganisms associated with desert dust can be transported over long distances through the atmosphere and could represent a means for the remote colonization of new habitats by putatively pathogenic microorganisms. The aim of this study was to determine the diversity and frequency of microbial agents (bacteria, eukaryotes) in NA dusts and the potential threat toward human and/or animal health by comparing microbial air composition during dust events and in control samples. In 2017 and 2018, 16 samples were collected during seven NA dust episodes and there were 9 controls. The microbial composition of the samples was characterized using a cultivable approach and by metabarcoding analyses (16S and 18S). A greater bacterial load and greater diversity were observed during the dust events, and some genera were significantly associated with the events. Some, such as Geodermatophilus, can be considered signature species of NA dust. No pathogenic species were found with the cultivable approach, whereas the metabarcoding analyses highlighted the presence of several potentially pathogenic species or known human pathogens such as Naegleria fowleri. Full article
Show Figures

Figure 1

17 pages, 16441 KiB  
Article
N6-Methyladenosine RNA Modification Regulates the Differential Muscle Development in Large White and Ningxiang Pigs
by Hao Gu, Kang Xu, Zhao Yu, Zufeng Ren, Fan Chen, Changfan Zhou, Wei Zeng, Hongyan Ren, Yulong Yin and Yanzhen Bi
Cells 2024, 13(20), 1744; https://doi.org/10.3390/cells13201744 - 21 Oct 2024
Viewed by 482
Abstract
N6-methyladenosine (m6A) is the most common modification in eukaryotic RNAs. Growing research indicates that m6A methylation is crucial for a multitude of biological processes. However, research on the m6A modifications in the regulation of porcine muscle growth [...] Read more.
N6-methyladenosine (m6A) is the most common modification in eukaryotic RNAs. Growing research indicates that m6A methylation is crucial for a multitude of biological processes. However, research on the m6A modifications in the regulation of porcine muscle growth is lacking. In this study, we identified differentially expressed genes in the neonatal period of muscle development between Large White (LW) and NingXiang (NX) pigs and further reported m6A methylation patterns via MeRIP-seq. We found that m6A modification regulates muscle cell development, myofibrils, cell cycle, and phosphatase regulator activity during the neonatal phase of muscle development. Interestingly, differentially expressed genes in LW and NX pigs were mainly enriched in pathways involved in protein synthesis. Furthermore, we performed a conjoint analysis of MeRIP-seq and RNA-seq data and identified 27 differentially expressed and m6A-modified genes. Notably, a typical muscle-specific envelope transmembrane protein, WFS1, was differentially regulated by m6A modifications in LW and NX pigs. We further revealed that the m6A modification accelerated the degradation of WFS1 in a YTHDF2-dependent manner. Noteworthy, we identified a single nucleotide polymorphism (C21551T) within the last exon of WFS1 that resulted in variable m6A methylation, contributing to the differing WFS1 expression levels observed in LW and NX pigs. Our study conducted a comprehensive analysis of the m6A modification on NX and LW pigs during the neonatal period of muscle development, and elucidated the mechanism by which m6A regulates the differential expression of WFS1 in the two breeds. Full article
Show Figures

Figure 1

15 pages, 9809 KiB  
Article
Cloning and Identification of Common Carp (Cyprinus carpio) PI3KC3 and Its Expression in Response to CyHV-3 Infection
by Xiaona Jiang, Lijing Tian, Wanying Ren, Chitao Li, Xuesong Hu, Yanlong Ge, Lei Cheng, Xiaodan Shi and Zhiying Jia
Curr. Issues Mol. Biol. 2024, 46(10), 11714-11728; https://doi.org/10.3390/cimb46100696 - 21 Oct 2024
Viewed by 457
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a class of key regulatory factors in eukaryotes that can inhibit viral replication by influencing autophagy. Currently, cyprinid herpesvirus 3 (CyHV-3) poses a serious threat to common carp culture. However, PI3K has not yet been identified in common carp. [...] Read more.
Phosphoinositide 3-kinases (PI3Ks) are a class of key regulatory factors in eukaryotes that can inhibit viral replication by influencing autophagy. Currently, cyprinid herpesvirus 3 (CyHV-3) poses a serious threat to common carp culture. However, PI3K has not yet been identified in common carp. In this study, full-length PI3KC3 from common carp (CcPI3KC3), consisting of an open reading frame (ORF) of 2664 bp encoding a polypeptide of 887 amino acids, with a predicted molecular mass of 101.19 kDa and a theoretical isoelectric point (pI) of 5.97, was cloned. The amino acid and nucleotide sequences of CcPI3KC3 displayed high similarity to yellow catfish’s (Tachysurus fulvidraco) PI3KC3. The tissue expression profile revealed that the mRNA levels of CcPI3KC3 in the liver, spleen, and head kidney were significantly greater than those in the brain, heart, intestines, gills, eyes, testes, and ovaries of common carp. We compared the expression patterns of CcPI3KC3 between “Longke-11” mirror carp (CyHV-3-resistant carp) and German mirror carp (non-resistant to CyHV-3) at different times (0, 48, 96, 144 h, 192, 240, 288 h post-infection (hpi)) after CyHV-3 infection. The results revealed that CcPI3KC3 mRNA expression significantly increased in the early infection stage. In the CyHV-3-resistant mirror carp variety, the relative expression of CcPI3KC3 was significantly greater at 48, 96, and 144 hpi compared with the nonbreeding strain groups after infection (p < 0.001). These results indicate that the full-length CcPI3KC3 sequence was successfully cloned from common carp for the first time, and it might play an important role in the immune system of common carp against CyHV-3 infection. This study provides a theoretical basis for the molecular mechanism of CyHV-3 resistance. Full article
(This article belongs to the Special Issue Research on Virus-Induced Cellular and Molecular Responses)
Show Figures

Figure 1

Back to TopTop