Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (304)

Search Parameters:
Keywords = eavesdropper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1071 KiB  
Article
Optimal Reconfigurable Intelligent Surface Deployment for Secure Communication in Cell-Free Massive Multiple-Input Multiple-Output Systems with Coverage Area
by Jie Zhao, Qi Zhang, Tianyu Ai, Xianhu Wei and Fengqiang Peng
Abstract
This paper investigates the secure communication in the reconfigurable intelligent surface (RIS)-aided cell-free massive multiple-input multiple-output (CF-mMIMO) system in the presence of an eavesdropper (Eve). Since the RIS can only reflect the incident signal from its front, we define the RIS coverage and [...] Read more.
This paper investigates the secure communication in the reconfigurable intelligent surface (RIS)-aided cell-free massive multiple-input multiple-output (CF-mMIMO) system in the presence of an eavesdropper (Eve). Since the RIS can only reflect the incident signal from its front, we define the RIS coverage and non-coverage area based on whether the incident signals can be reflected. The RIS coverage area is affected by the deployment position and rotation angle, and thus, we take both of these two factors into account and a closed-form approximation for the ergodic secrecy rate of the legitimate user is derived. Based on it, the optimal RIS deployment position and phase shift are obtained through an alternating iteration method, and the optimal RIS angle is achieved through an exhaustive enumeration of angles with a certain interval. Simulations confirm that our optimal RIS deployment can achieve a superior secrecy rate. We find that to guarantee the best secrecy rate, the RIS should be placed near the target user, and its rotation angle should be adjusted to make as many access points (APs) as possible within the RIS coverage area. Full article
(This article belongs to the Special Issue Empowering IoT with AI: AIoT for Smart and Autonomous Systems)
Show Figures

Figure 1

22 pages, 2042 KiB  
Article
Secrecy Rate Performance Analysis of Jammer-Aided Symbiotic Radio with Sensing Errors for Fifth Generation Wireless Networks
by Muhammed Yusuf Onay
Appl. Sci. 2025, 15(1), 289; https://doi.org/10.3390/app15010289 - 31 Dec 2024
Viewed by 315
Abstract
Symbiotic radio (SR), which has recently been introduced as an effective solution for 5G wireless networks, stands out with system models that include hybrid devices that share the frequency spectrum and transmit information to the same receiver. However, the low bit rate and [...] Read more.
Symbiotic radio (SR), which has recently been introduced as an effective solution for 5G wireless networks, stands out with system models that include hybrid devices that share the frequency spectrum and transmit information to the same receiver. However, the low bit rate and the small amount of energy harvested in SR, where backscatter communication systems are integrated, make the system vulnerable to eavesdropping. To ensure security, the secrecy rate is defined as the difference between the number of bits transmitted to the receiver over the information channel and the number of bits reaching the eavesdropper (ED) over the wiretap channel. This paper is the first work that aims to maximize the secrecy rate for friendly jammer-aided SR networks with EDs over time allocation and power reflection coefficient in the presence of sensing errors. The proposed model consists of a base station (BS), a hybrid transmitter (HT) in symbiotic relationship with the BS, a WiFi access point used by the HT for energy harvesting, a jammer cooperating with the HT and BS, an information receiver, and EDs trying to access the information of the HT and BS. The simulation results provide valuable insights into the impact of system parameters on secrecy rate performance. Although taking the sensing error into account degrades the system performance, the real-world applicability of the system with sensing error is more realistic. It is also observed that the proposed system has higher performance compared to the wireless powered communication networks in the literature, which only use the energy harvest-then-transmit protocol and the power reflection coefficient is assumed to be zero. Full article
Show Figures

Figure 1

16 pages, 3804 KiB  
Article
Ring Oscillators with Additional Phase Detectors as a Random Source in a Random Number Generator
by Łukasz Matuszewski, Mieczysław Jessa and Jakub Nikonowicz
Entropy 2025, 27(1), 15; https://doi.org/10.3390/e27010015 - 28 Dec 2024
Viewed by 350
Abstract
In this paper, we propose a method to enhance the performance of a random number generator (RNG) that exploits ring oscillators (ROs). Our approach employs additional phase detectors to extract more entropy; thus, RNG uses fewer resources to produce bit sequences that pass [...] Read more.
In this paper, we propose a method to enhance the performance of a random number generator (RNG) that exploits ring oscillators (ROs). Our approach employs additional phase detectors to extract more entropy; thus, RNG uses fewer resources to produce bit sequences that pass all statistical tests proposed by National Institute of Standards and Technology (NIST). Generating a specified number of bits is on-demand, eliminating the need for continuous RNG operation. This feature enhances the security of the produced sequences, as eavesdroppers are unable to observe the continuous random bit generation process, such as through monitoring power lines. Furthermore, our research demonstrates that the proposed RNG’s perfect properties remain unaffected by the manufacturer of the field-programmable gate arrays (FPGAs) used for implementation. This independence ensures the RNG’s reliability and consistency across various FPGA manufacturers. Additionally, we highlight that the tests recommended by the NIST may prove insufficient in assessing the randomness of the output bit streams produced by RO-based RNGs. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

18 pages, 1484 KiB  
Article
Noise-Based Active Defense Strategy for Mitigating Eavesdropping Threats in Internet of Things Environments
by Abdallah Farraj and Eman Hammad
Viewed by 364
Abstract
Establishing robust cybersecurity for Internet of Things (IoT) ecosystems poses significant challenges for system operators due to IoT resource constraints, trade-offs between security and performance, diversity of applications, and their security requirements, usability, and scalability. This article introduces a physical-layer security (PLS) approach [...] Read more.
Establishing robust cybersecurity for Internet of Things (IoT) ecosystems poses significant challenges for system operators due to IoT resource constraints, trade-offs between security and performance, diversity of applications, and their security requirements, usability, and scalability. This article introduces a physical-layer security (PLS) approach that enables IoT devices to maintain specified levels of information confidentiality against wireless channel eavesdropping threats. This work proposes applying PLS active defense mechanisms utilizing spectrum-sharing schemes combined with fair scheduling and power management algorithms to mitigate the risk of eavesdropping attacks on resource-constrained IoT environments. Specifically, an IoT device communicating over an insecure wireless channel will utilize intentional noise signals transmitted alongside the actual IoT information signal. The intentional noise signal will appear to an eavesdropper (EVE) as additional noise, reducing the EVE’s signal-to-interference-plus-noise ratio (SINR) and increasing the EVE’s outage probability, thereby restricting their capacity to decode the transmitted IoT information, resulting in better protection for the confidentiality of the IoT device’s transmission. The proposed communication strategy serves as a complementary solution to existing security methods. Analytical and numerical analyses presented in this article validate the effectiveness of the proposed strategy, demonstrating that IoT devices can achieve the desired levels of confidentiality. Full article
(This article belongs to the Special Issue Using New Technologies in Cyber Security Solutions (2nd Edition))
Show Figures

Figure 1

15 pages, 442 KiB  
Article
Performance Analysis of Artificial-Noise-Based Secure Transmission in Wiretap Channel
by Hyukmin Son
Mathematics 2025, 13(1), 32; https://doi.org/10.3390/math13010032 - 26 Dec 2024
Viewed by 353
Abstract
Artificial noise (AN)-aided techniques have been considered to be promising and practical candidates for enhancing physical layer security. However, there has been a lack of analysis regarding the AN effect on the eavesdropper (EV) from the perspective of the signal-to-interference plus noise ratio [...] Read more.
Artificial noise (AN)-aided techniques have been considered to be promising and practical candidates for enhancing physical layer security. However, there has been a lack of analysis regarding the AN effect on the eavesdropper (EV) from the perspective of the signal-to-interference plus noise ratio (SINR) regarding the existence of the EV’s channel state information (CSI) at the legitimate transmitter. In this paper, we analyze the performance of AN-aided secure transmission from the SINR perspective when a legitimate transmitter has and does not have the EV’s CSI. Based on the analyzed EV’s SINRs for the above two cases, the secrecy gap, which is the difference between the two secrecy capacities, is defined and analyzed. Based on the derived secrecy gap, we have analyzed the asymptotic performances of the secrecy capacity and gap when the number of antennas of the legitimate transmitter and the number of antennas of the EV have large values. Through asymptotic analysis, it is demonstrated that the AN-aided secure transmission under the practical environment (i.e., the case that the EV’s CSI is not available at the legitimate transmitter) can nearly achieve an ideal performance (i.e., the performance when the EV’s CSI is available at the legitimate transmitter) in a massive antenna system. Full article
Show Figures

Figure 1

12 pages, 592 KiB  
Article
Unmanned-Aerial-Vehicle-Assisted Secure Free Space Optical Transmission in Internet of Things: Intelligent Strategy for Optimal Fairness
by Fang Xu and Mingda Dong
Sensors 2024, 24(24), 8070; https://doi.org/10.3390/s24248070 - 18 Dec 2024
Viewed by 320
Abstract
In this article, we consider an UAV (unmanned aerial vehicle)-assisted free space optical (FSO) secure communication network. Since FSO signal is impossible to detect by eavesdroppers without proper beam alignment and security authentication, a BS employs FSO technique to transfer information to multiple [...] Read more.
In this article, we consider an UAV (unmanned aerial vehicle)-assisted free space optical (FSO) secure communication network. Since FSO signal is impossible to detect by eavesdroppers without proper beam alignment and security authentication, a BS employs FSO technique to transfer information to multiple authenticated sensors, to improve the transmission security and reliability with the help of an UAV relay with decode and forward (DF) mode. All the sensors need to first send information to the UAV to obtain security authentication, and then the UAV forwards corresponding information to them. Successive interference cancellation (SIC) is used to decode the information received at the UAV and all authenticated sensors. With consideration of fairness, we introduce a statistical metric for evaluating the network performance, i.e., the maximum decoding outage probability for all authenticated sensors. In particular, applying an intelligent approach, we obtain a near-optimal scheme for secure transmit power allocation. With a well-trained allocation scheme, approximate closed-form expressions for optimal transmit power levels can be obtained. Through some numerical examples, we illustrate the various design trade-offs for such a system. Additionally, the validity of our approach was verified by comparing with the result from exhaustive search. In particular, the result with DRL was only 0.3% higher than that with exhaustive search. These results can provide some important guidelines for the fairness-aware design of UAV-assisted secure FSO communication networks. Full article
(This article belongs to the Special Issue Advances in Security for Emerging Intelligent Systems)
Show Figures

Figure 1

28 pages, 1958 KiB  
Article
An Optimal Secure Key Distribution Scheme for Internet of Things Devices in Multi-Session Network Communications
by Farhan Alshammari, Lawrence Ong and Jin Yeong Tan
Electronics 2024, 13(24), 4951; https://doi.org/10.3390/electronics13244951 - 16 Dec 2024
Viewed by 549
Abstract
Communication network security has become increasingly vital in an era of rapidly developing technology, and protecting against unauthorized access is essential. This paper introduces a server-aided approach for secure key distribution to users participating in multiple sessions. This paper presents a system model [...] Read more.
Communication network security has become increasingly vital in an era of rapidly developing technology, and protecting against unauthorized access is essential. This paper introduces a server-aided approach for secure key distribution to users participating in multiple sessions. This paper presents a system model in which each user is assigned a unique private key, enabling them to derive session keys from codewords broadcast by the server. These session keys are essential for facilitating the secure transmission of session messages within their respective sessions. The system model ensures that an eavesdropper cannot derive any session keys, despite having access to broadcast codewords, due to their lack of private keys. Our results show that our coding scheme is optimal by proving the necessary conditions for secure key distribution, indicating that secure key distribution is achievable if and only if the length of a user’s private key is at least equal to the total size of session messages across all the sessions in which they participate. This paper further illustrates the proposed secure key distribution and session message transmission mechanism through examples, emphasizing the necessity of user-specific private keys tailored to the sessions in which users are involved. Full article
(This article belongs to the Special Issue Physical Layer Security for Future Wireless Systems)
Show Figures

Figure 1

13 pages, 505 KiB  
Article
Two Novel Semi-Quantum Secure Direct Communication Protocols in IoT
by Yuan Tian, Nanyijia Zhang and Jian Li
Sensors 2024, 24(24), 7990; https://doi.org/10.3390/s24247990 - 14 Dec 2024
Viewed by 383
Abstract
As Internet of Things (IoT) technology continues to advance, there is a growing awareness of IoT security within the industry. Quantum communication technology can potentially significantly improve the communication security of IoT devices. Based on semi-quantum cryptography and utilizing single photons, this paper [...] Read more.
As Internet of Things (IoT) technology continues to advance, there is a growing awareness of IoT security within the industry. Quantum communication technology can potentially significantly improve the communication security of IoT devices. Based on semi-quantum cryptography and utilizing single photons, this paper introduces two semi-quantum secure direct communication (SQSDC) protocols for use in smart door locks. Protocol 1 is more efficient, and the efficiency analysis shows that the communication efficiency is as high as 28.57%. Security analysis demonstrates the asymptotic security of the protocols, effectively resisting intercept–measure–resend attacks and entangle–measure attacks from potential eavesdroppers. The extended SQSDC protocol (protocol 2) builds upon protocol 1 by enabling a single qubit to transmit two bits of information, resulting in a double efficiency outcome. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

21 pages, 629 KiB  
Article
Quantum PSO-Based Optimization of Secured IRS-Assisted Wireless-Powered IoT Networks
by Abid Afridi, Iqra Hameed and Insoo Koo
Appl. Sci. 2024, 14(24), 11677; https://doi.org/10.3390/app142411677 - 13 Dec 2024
Viewed by 671
Abstract
In this paper, we explore intelligent reflecting surface (IRS)-assisted physical layer security (PLS) in a wireless-powered Internet of Things (IoT) network (WPIN) by combining an IRS, a friendly jammer, and energy harvesting (EH) to maximize sum secrecy throughput in the WPIN. Specifically, we [...] Read more.
In this paper, we explore intelligent reflecting surface (IRS)-assisted physical layer security (PLS) in a wireless-powered Internet of Things (IoT) network (WPIN) by combining an IRS, a friendly jammer, and energy harvesting (EH) to maximize sum secrecy throughput in the WPIN. Specifically, we propose a non-line-of-sight system where a hybrid access point (H-AP) has no direct link with the users, and a secure uplink transmission scheme utilizes the jammer to combat malicious eavesdroppers. The proposed scheme consists of two stages: wireless energy transfer (WET) on the downlink (DL) and wireless information transmission (WIT) on the uplink (UL). In the first phase, the H-AP sends energy to users and the jammer, and they then harvest energy with the help of the IRS. Consequently, during WIT, the user transmits information to the H-AP while the jammer emits signals to confuse the eavesdropper without interfering with the legitimate transmission. The phase-shift matrix of the IRS and the time allocation for DL and UL are jointly optimized to maximize the sum secrecy throughput of the network. To tackle the non-convex problem, an alternating optimization method is employed, and the problem is reformulated into two sub-problems. First, the IRS phase shift is solved using quantum particle swarm optimization (QPSO). Then, the time allocation for DL and UL are optimized using the bisection method. Simulation results demonstrate that the proposed method achieves significant performance improvements as compared to other baseline schemes. Specifically, for IRS elements N = 35, the proposed scheme achieves a throughput of 19.4 bps/Hz, which is 85% higher than the standard PSO approach and 143% higher than the fixed time, random phase (8 bps/Hz) approach. These results validate the proposed approach’s effectiveness in improving network security and overall performance. Full article
(This article belongs to the Special Issue 5G and Beyond: Technologies and Communications)
Show Figures

Figure 1

16 pages, 7435 KiB  
Article
Reconfigurable Intelligent Surface-Aided Security Enhancement for Vehicle-to-Vehicle Visible Light Communications
by Xiaoqiong Jing, Yating Wu, Fei Yu, Yuru Xu and Xiaoyong Wang
Photonics 2024, 11(12), 1151; https://doi.org/10.3390/photonics11121151 - 6 Dec 2024
Viewed by 544
Abstract
Vehicle-to-vehicle (V2V) visible light communication (VLC) systems are increasingly being deployed for real-time data exchange in intelligent transportation systems (ITS). However, these systems are highly vulnerable to eavesdropping, especially in scenarios such as road intersections where signals may be exposed to unauthorized receivers. [...] Read more.
Vehicle-to-vehicle (V2V) visible light communication (VLC) systems are increasingly being deployed for real-time data exchange in intelligent transportation systems (ITS). However, these systems are highly vulnerable to eavesdropping, especially in scenarios such as road intersections where signals may be exposed to unauthorized receivers. To address these security challenges, we propose a novel reconfigurable intelligent surface (RIS)-assisted security enhancement scheme for V2V VLC networks. The proposed scheme leverages RIS to improve the reception of legitimate signals at the destination vehicle while simultaneously introducing artificial noise (AN) to interfere with potential eavesdroppers. Optimization problems are formulated to maximize the SINR of the destination vehicle and simultaneously minimize the worst-case SINR of eavesdroppers. The simulation results demonstrate that the proposed scheme achieves a notable improvement in the system’s secrecy rate by 1.64 bit/s/Hz and enhances the overall security performance, offering a robust solution to the security challenges in V2V VLC systems. Full article
Show Figures

Figure 1

14 pages, 4275 KiB  
Article
Physical Layer Security Based on Non-Orthogonal Communication Technique with Coded FTN Signaling
by Myung-Sun Baek and Hyoung-Kyu Song
Mathematics 2024, 12(23), 3800; https://doi.org/10.3390/math12233800 - 30 Nov 2024
Viewed by 550
Abstract
In recent years, ensuring communication security at the physical layer has become increasingly important due to the transmission of sensitive information over various networks. Traditional approaches to physical layer security often rely on artificial noise generation, which may not offer robust solutions against [...] Read more.
In recent years, ensuring communication security at the physical layer has become increasingly important due to the transmission of sensitive information over various networks. Traditional approaches to physical layer security often rely on artificial noise generation, which may not offer robust solutions against advanced interception techniques. This study addresses these limitations by proposing a novel security technique based on non-orthogonal signaling using Faster-than-Nyquist (FTN) signaling. Unlike conventional FTN methods that utilize fixed symbol intervals, the proposed technique employs variable symbol intervals encoded as secure information, shared only with legitimate receivers. This encoding enables effective interference cancellation and symbol detection at the receiver, while preventing eavesdroppers from deciphering transmitted signals. The performance of the proposed technique was evaluated using the DVB-S2X system, a practical digital video broadcasting standard. Simulation results demonstrated that the proposed method maintains smooth communication with minimal performance degradation compared to traditional methods. Furthermore, eavesdroppers were unable to decode the transmitted signals, confirming the enhanced security. This research presents a new approach to physical layer security that does not depend on generating artificial noise, offering a path to more secure and efficient communication systems. Full article
Show Figures

Figure 1

24 pages, 444 KiB  
Article
A Distributed and Parallel (k, n) QSS Scheme with Verification Capability
by Theodore Andronikos
Mathematics 2024, 12(23), 3782; https://doi.org/10.3390/math12233782 - 29 Nov 2024
Viewed by 446
Abstract
This paper presents a new quantum secret sharing scheme featuring a (k, n) threshold and built-in verification. This innovative protocol takes advantage of entanglement and unfolds in three distinct phases. In anticipation of the coming of the distributed quantum [...] Read more.
This paper presents a new quantum secret sharing scheme featuring a (k, n) threshold and built-in verification. This innovative protocol takes advantage of entanglement and unfolds in three distinct phases. In anticipation of the coming of the distributed quantum computing era, this protocol is designed to function entirely in parallel within a fully distributed environment, where the spymaster and her agents are located in different places. This is a significant shift from most similar protocols that assume that all information recipients are in one location. The spymaster can send all necessary information to her agents at once, streamlining the process. Each phase runs simultaneously, which helps to reduce the overall execution cost. Given its complexity, we offer a thorough analysis to ensure its information-theoretic security, protecting against both external eavesdroppers and internal rogue agents. The protocol does away with the need for quantum signatures or pre-shared keys, making it simpler and less complex. Lastly, its potential for implementation on current quantum computers looks promising since it relies only on CNOT and Hadamard gates, with all participants using similar or identical quantum circuits. Full article
(This article belongs to the Special Issue Quantum Cryptography and Applications)
Show Figures

Figure 1

15 pages, 874 KiB  
Article
Deep Reinforcement Learning-Driven Jamming-Enhanced Secure Unmanned Aerial Vehicle Communications
by Zhifang Xing, Yunhui Qin, Changhao Du, Wenzhang Wang and Zhongshan Zhang
Sensors 2024, 24(22), 7328; https://doi.org/10.3390/s24227328 - 16 Nov 2024
Cited by 1 | Viewed by 612
Abstract
Despite its flexibility, unmanned aerial vehicle (UAV) communications are susceptible to eavesdropping due to the open nature of wireless channels and the broadcasting nature of wireless signals. This paper studies secure UAV communications and proposes a method to optimize the minimum secrecy rate [...] Read more.
Despite its flexibility, unmanned aerial vehicle (UAV) communications are susceptible to eavesdropping due to the open nature of wireless channels and the broadcasting nature of wireless signals. This paper studies secure UAV communications and proposes a method to optimize the minimum secrecy rate of the system by using interference technology to enhance it. To this end, the system not only deploys multiple UAV base stations (BSs) to provide services to legitimate users but also assigns dedicated UAV jammers to send interference signals to active or potential eavesdroppers to disrupt their eavesdropping effectiveness. Based on this configuration, we formulate the optimization process of parameters such as the user association variables, UAV trajectory, and output power as a sequential decision-making problem and use the single-agent soft actor-critic (SAC) algorithm and twin delayed deep deterministic policy gradient (TD3) algorithm to achieve joint optimization of the core parameters. In addition, for specific scenarios, we also use the multi-agent soft actor-critic (MASAC) algorithm to solve the joint optimization problem mentioned above. The numerical results show that the normalized average secrecy rate of the MASAC algorithm increased by more than 6.6% and 14.2% compared with that of the SAC and TD3 algorithms, respectively. Full article
(This article belongs to the Special Issue Novel Signal Processing Techniques for Wireless Communications)
Show Figures

Figure 1

15 pages, 588 KiB  
Article
Physical Layer Security in RIS-NOMA-Assisted IoV Systems with Uncertain RIS Deployment
by Jinyuan Gu, Zhao Zhang, Wei Duan, Feifei Song and Huaiping Zhang
Electronics 2024, 13(22), 4437; https://doi.org/10.3390/electronics13224437 - 12 Nov 2024
Viewed by 596
Abstract
Reconfigurable intelligent surfaces (RISs), as an emerging radio technology, are widely used to expand the transmission distance and structure cascade channels to improve the performance of communication systems. However, based on the continuous development of wireless communication technology, as Internet of Vehicles (IoV) [...] Read more.
Reconfigurable intelligent surfaces (RISs), as an emerging radio technology, are widely used to expand the transmission distance and structure cascade channels to improve the performance of communication systems. However, based on the continuous development of wireless communication technology, as Internet of Vehicles (IoV) communication systems assisted with RIS and non-orthogonal multiple access (NOMA) can improve the overall transmission rate and system performance, the physical layer security (PLS) issue has gradually attracted attention and has become more and more important in the application of the system. In this paper, our aim is to investigate the potential threats for PLS, where an RIS is utilized in order to improve the security of wireless communications. In particular, we consider the non-fixed RIS location and wiretapping behavior of eavesdroppers on the data in this work, and further analyze the maximum safe-rate for above location assumptions. Numerical results reveal that RIS provides significant advantages on security performance, as well as providing a useful reference for the security design of future wireless communication systems, which verify the correctness of our analysis and the effectiveness of the proposed scheme. Full article
Show Figures

Figure 1

19 pages, 4856 KiB  
Article
Modeling Analysis for Downlink RIS-UAV-Assisted NOMA over Air-to-Ground Line-of-Sight Rician Channels
by Suoping Li, Xiangyu Liu, Jaafar Gaber and Guodong Pan
Viewed by 606
Abstract
This paper proposes a drone-assisted NOMA communication system equipped with a reconfigurable intelligent surface (RIS). Given the Line-of-Sight nature of the Air-to-Ground link, a more realistic Rician fading environment is chosen for the study of system performance. The user’s outage performance and secrecy [...] Read more.
This paper proposes a drone-assisted NOMA communication system equipped with a reconfigurable intelligent surface (RIS). Given the Line-of-Sight nature of the Air-to-Ground link, a more realistic Rician fading environment is chosen for the study of system performance. The user’s outage performance and secrecy outage probability of the RIS-UAV-assisted NOMA downlink communication under the Rician channels are investigated. Jointly considering the Line-of-Sight and Non-Line-of-Sight links, the closed-form expressions of each user’s outage probability are derived by approximating the composite channels as Rician distributions to characterize the channel coefficients of the system’s links. Considering the physical layer security in the presence of the eavesdropper, the secrecy outage probability of two users is further studied. The relationship between the system outage performance and the Rician factor of the channel, the number of RIS elements, and other factors are analyzed. The results of this study show that compared with Rayleigh fading, the Rician fading is more practical with the actual Air-to-Ground links; the user’s outage probability and the secrecy outage probability are lower over the Rician channels. The number of RIS elements and the power allocation factor by the base station for the users are inversely proportional to the user’s outage probability, and RIS element number, path loss index, and distance factor also have a greater impact on the outage probability. Compared with OMA, NOMA has a certain enhancement to the system performance. Full article
(This article belongs to the Special Issue Space–Air–Ground Integrated Networks for 6G)
Show Figures

Figure 1

Back to TopTop