Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = divergence angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12918 KiB  
Article
Structural Designing of Supersonic Swirling Devices Based on Computational Fluid Dynamics Theory
by Qian Huang, Huirong Huang, Xueyuan Long, Yuan Tian and Jiang Meng
Appl. Sci. 2025, 15(1), 151; https://doi.org/10.3390/app15010151 - 27 Dec 2024
Viewed by 304
Abstract
The supersonic swirling device is a new apparatus that can be used for natural-gas liquefaction. The structure of the supersonic swirling device has an important impact on the liquefaction efficiency. Therefore, this study presents a structural design method for supersonic cyclones based on [...] Read more.
The supersonic swirling device is a new apparatus that can be used for natural-gas liquefaction. The structure of the supersonic swirling device has an important impact on the liquefaction efficiency. Therefore, this study presents a structural design method for supersonic cyclones based on CFD theory. Using the production parameters of a liquefied natural gas (LNG) peak-shaving station as the study case, a detailed design and design comparison of each part of the supersonic swirling separator are carried out. An optimum LNG supersonic swirling separator design was obtained. To ensure that the designed supersonic swirling separator achieved better liquefaction effectiveness, it was ascertained that no large shockwaves were generated in the de Laval nozzle, the pressure loss on the swirler was small, and the swirler was able to produce a large centripetal acceleration. The opening angle of the diffuser and the length of the straight tube were designed considering the location at which normal shockwaves were generated. The location at which shockwaves are generated and the friction effect are important parameters that determine the gap size. With this design guidance, the optimal structural dimensions of the supersonic swirling device for a given processing capacity were determined as follows: a swirler with six vanes and an 8 mm wide channel; a 10D-long straight tube, an opening angle of 20° between the straight tube and the divergent section, and a gap size of 2 mm. Compared with “Twister II”, the new device has better liquefaction efficiency. Full article
Show Figures

Figure 1

12 pages, 1814 KiB  
Article
Comparative Analysis of Physiological Vergence Angle Calculations from Objective Measurements of Gaze Position
by Linda Krauze, Karola Panke, Gunta Krumina and Tatjana Pladere
Sensors 2024, 24(24), 8198; https://doi.org/10.3390/s24248198 - 22 Dec 2024
Viewed by 515
Abstract
Eccentric photorefractometry is widely used to measure eye refraction, accommodation, gaze position, and pupil size. While the individual calibration of refraction and accommodation data has been extensively studied, gaze measurements have received less attention. PowerRef 3 does not incorporate individual calibration for gaze [...] Read more.
Eccentric photorefractometry is widely used to measure eye refraction, accommodation, gaze position, and pupil size. While the individual calibration of refraction and accommodation data has been extensively studied, gaze measurements have received less attention. PowerRef 3 does not incorporate individual calibration for gaze measurements, resulting in a divergent offset between the measured and expected gaze positions. To address this, we proposed two methods to calculate the physiological vergence angle based on the visual vergence data obtained from PowerRef 3. Twenty-three participants aged 25 ± 4 years viewed Maltese cross stimuli at distances of 25, 30, 50, 70, and 600 cm. The expected vergence angles were calculated considering the individual interpupillary distance at far. Our results demonstrate that the PowerRef 3 gaze data deviated from the expected vergence angles by 9.64 ± 2.73° at 25 cm and 9.25 ± 3.52° at 6 m. The kappa angle calibration method reduced the discrepancy to 3.93 ± 1.19° at 25 cm and 3.70 ± 0.36° at 600 cm, whereas the linear regression method further improved the accuracy to 3.30 ± 0.86° at 25 cm and 0.26 ± 0.01° at 600 cm. Both methods improved the gaze results, with the linear regression calibration method showing greater overall accuracy. Full article
(This article belongs to the Special Issue Advanced Optics and Photonics Technologies for Sensing Applications)
Show Figures

Figure 1

19 pages, 4996 KiB  
Article
Experimental Study on the Size Effect of Compression-Shear Fracture Characteristics of Rock-like Materials Containing Open Cracks
by Zixuan Li, Shiyuan Huang, Chuan Lv, Cheng Liao, Xudong Li and Hongbo Du
Materials 2024, 17(23), 5941; https://doi.org/10.3390/ma17235941 - 4 Dec 2024
Viewed by 480
Abstract
Understanding fracture mechanics in rock-like materials under compression-shear condition is critical for predicting failure mechanisms in various engineering applications, such as mining and civil infrastructure. This study conducted uniaxial compression tests on cubic gypsum specimens of varying sizes (side lengths of 75 mm, [...] Read more.
Understanding fracture mechanics in rock-like materials under compression-shear condition is critical for predicting failure mechanisms in various engineering applications, such as mining and civil infrastructure. This study conducted uniaxial compression tests on cubic gypsum specimens of varying sizes (side lengths of 75 mm, 100 mm, 125 mm, and 150 mm) and crack inclination angles (ranging from 0° to 90°) to assess the size effect on fracture behavior. The effects of specimen size and crack inclination on fracture characteristics, including strength, failure mode, and crack initiation angle, were analyzed based on the maximum tangential stress (MTS) criterion and the generalized maximum tangential stress (GMTS) criterion, with relative critical size (α) and relative openness (η). Results indicate that the crack initiation angle increases with crack inclination, while compressive strength decreases significantly with increasing specimen size. For example, at a 30° crack inclination, the peak compressive strength of 75 mm specimens was 2.53 MPa, whereas that of 150 mm specimens decreased to 1.05 MPa. Crack type and failure mode were found to be primarily influenced by crack inclination rather than specimen size. The experimental crack initiation angle aligned with the theoretical crack initiation angle at inclinations below 50° but diverged at higher inclinations. A linear relationship was established between rc and specimen size (L) under compression-shear stress, expressed as rc=0.01772L+3.54648; larger specimens exhibited increased tangential stress at the crack tip, leading to earlier macroscopic crack formation, while rc decreased as specimen size increased. These results underscore the significant influence of size on fracture behavior in quasi-brittle materials under compression-shear stress, providing essential insights for predicting material failure in rock-like structures. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

19 pages, 1177 KiB  
Article
Joint Divergence Angle of Free Space Optics (FSO) Link and UAV Trajectory Design in FSO-Based UAV-Enabled Wireless Power Transfer Relay Systems
by Jinho Kang
Photonics 2024, 11(12), 1136; https://doi.org/10.3390/photonics11121136 - 2 Dec 2024
Viewed by 674
Abstract
Free Space Optics (FSO)-based UAV-enabled wireless power transfer (WPT) relay systems have emerged as a key technology for 6G networks, efficiently providing continuous power to Internet of Things (IoT) devices even in remote areas such as disaster recovery zones, maritime regions, and military [...] Read more.
Free Space Optics (FSO)-based UAV-enabled wireless power transfer (WPT) relay systems have emerged as a key technology for 6G networks, efficiently providing continuous power to Internet of Things (IoT) devices even in remote areas such as disaster recovery zones, maritime regions, and military networks, while addressing the limited battery capacity of UAVs through the FSO fronthaul link. However, the harvested power at the ground devices depends on the displacement and diameter of the FSO beam spot reaching the UAV, as well as the UAV trajectory, which affects both the FSO link and the radio-frequency (RF) link simultaneously. In this paper, we propose a joint design of the divergence angle in the FSO link and the UAV trajectory, in order to maximize the power transfer efficiency. Driven by the analysis of the optimal condition for the divergence angle, we develop a hybrid BS-PSO-based method to jointly optimize them while improving optimization performance. Numerical results demonstrate that the proposed method substantially increases power transfer efficiency and improves the optimization capability. Full article
Show Figures

Figure 1

8 pages, 6624 KiB  
Article
HfO2/Al2O3 Multilayer on Parabolic Cylinder Substrate to Monochromatize and Collimate Divergent X-Ray Beam
by Huibin Zhao, Tianyu Yuan, Yanli Li, Xiangdong Kong, Xuepeng Sun and Li Han
Coatings 2024, 14(12), 1489; https://doi.org/10.3390/coatings14121489 - 27 Nov 2024
Viewed by 520
Abstract
A monochromatic parallel X-ray beam is essential for some X-ray applications and a multilayer on a parabolic cylinder substrate is a good choice to obtain it. In this work, an HfO2/Al2O3 multilayer with a period of 3.80 nm [...] Read more.
A monochromatic parallel X-ray beam is essential for some X-ray applications and a multilayer on a parabolic cylinder substrate is a good choice to obtain it. In this work, an HfO2/Al2O3 multilayer with a period of 3.80 nm and a bilayer number of 60 is grown on a smooth, flat Si substrate via atomic layer deposition for a monochromatizing Cu kα 0.154 nm X-ray and the first-order peak of the X-ray reflectivity is about 45%. The multilayer-coated Si substrate is then glued on a pre-made stainless steel body with a designed parabolic cylinder profile to convert divergent X-rays from a laboratory X-ray source into a parallel beam. The surface profiles before and after gluing Si on the stainless steel body are almost the same and basically consistent with the designed one. The results show that a monochromatic parallel X-ray (0.154 nm) beam can be acquired by an HfO2/Al2O3 multilayer on a parabolic cylinder substrate and the divergence angle of the reflected beam is 0.67 mrad. Full article
(This article belongs to the Special Issue Functional Coatings and Surface Science for Precision Engineering)
Show Figures

Figure 1

16 pages, 7121 KiB  
Article
Experimental Aerodynamics of a Small Fixed-Wing Unmanned Aerial Vehicle Coated with Bio-Inspired Microfibers Under Static and Dynamic Stall
by Dioser Santos, Guilherme D. Fernandes, Ali Doosttalab and Victor Maldonado
Aerospace 2024, 11(11), 947; https://doi.org/10.3390/aerospace11110947 - 17 Nov 2024
Viewed by 592
Abstract
A passive flow control technique in the form of microfiber coatings with a diverging pillar cross-section area was applied to the wing suction surface of a small tailless unmanned aerial vehicle (UAV). The coatings are inspired from ‘gecko feet’ surfaces, and their impact [...] Read more.
A passive flow control technique in the form of microfiber coatings with a diverging pillar cross-section area was applied to the wing suction surface of a small tailless unmanned aerial vehicle (UAV). The coatings are inspired from ‘gecko feet’ surfaces, and their impact on steady and unsteady aerodynamics is assessed through wind tunnel testing. Angles of attack from −2° to 17° were used for static experiments, and for some cases, the elevon control surface was deflected to study its effectiveness. In forced oscillation, various combinations of mean angle of attack, frequency and amplitude were explored. The aerodynamic coefficients were calculated from load cell measurements for experimental variables such as microfiber size, the region of the wing coated with microfibers, Reynolds number and angle of attack. Microfibers with a 140 µm pillar height reduce drag by a maximum of 24.7% in a high-lift condition and cruise regime, while 70 µm microfibers work best in the stall flow regime, reducing the drag by 24.2% for the same high-lift condition. Elevon deflection experiments showed that pitch moment authority is significantly improved near stall when microfibers cover the control surface and upstream, with an increase in CM magnitude of up to 22.4%. Dynamic experiments showed that microfibers marginally increase dynamic damping in pitch, improving load factor production in response to control surface actuation at low angles of attack, but reducing it at higher angles. In general, the microfiber pillars are within the laminar boundary layer, and they create a periodic slip condition on the top surface of the pillars, which increases the near-wall momentum over the wing surface. This mechanism is particularly effective in mitigating flow separation at high angles of attack, reducing pressure drag and restoring pitching moment authority provided by control surfaces. Full article
Show Figures

Figure 1

11 pages, 2683 KiB  
Communication
A Low-Cost Modulated Laser-Based Imaging System Using Square Ring Laser Illumination for Depressing Underwater Backscatter
by Yansheng Hao, Yaoyao Yuan, Hongman Zhang, Shao Zhang and Ze Zhang
Photonics 2024, 11(11), 1070; https://doi.org/10.3390/photonics11111070 - 14 Nov 2024
Viewed by 694
Abstract
Underwater vision data facilitate a variety of underwater operations, including underwater ecosystem monitoring, topographical mapping, mariculture, and marine resource exploration. Conventional laser-based underwater imaging systems with complex system architecture rely on high-cost laser systems with high power, and software-based methods can not enrich [...] Read more.
Underwater vision data facilitate a variety of underwater operations, including underwater ecosystem monitoring, topographical mapping, mariculture, and marine resource exploration. Conventional laser-based underwater imaging systems with complex system architecture rely on high-cost laser systems with high power, and software-based methods can not enrich the physical information captured by cameras. In this manuscript, a low-cost modulated laser-based imaging system is proposed with a spot in the shape of a square ring to eliminate the overlap between the illumination light path and the imaging path, which could reduce the negative effect of backscatter on the imaging process and enhance imaging quality. The imaging system is able to achieve underwater imaging at long distance (e.g., 10 m) with turbidity in the range of 2.49 to 7.82 NTUs, and the adjustable divergence angle of the laser tubes enables the flexibility of the proposed system to image on the basis of application requirements, such as the overall view or partial detail information of targets. Compared with a conventional underwater imaging camera (DS-2XC6244F, Hikvision, Hangzhou, China), the developed system could provide better imaging performance regarding visual effects and quantitative evaluation (e.g., UCIQUE and IE). Through integration with the CycleGAN-based method, the imaging results can be further improved, with the UCIQUE increased by 0.4. The proposed low-cost imaging system with a compact system structure and low consumption of energy could be equipped with platforms, such as underwater robots and AUVs, to facilitate real-world underwater applications. Full article
Show Figures

Figure 1

17 pages, 6110 KiB  
Article
Simulation Study of High-Precision Characterization of MeV Electron Interactions for Advanced Nano-Imaging of Thick Biological Samples and Microchips
by Xi Yang, Liguo Wang, Victor Smaluk, Timur Shaftan, Tianyi Wang, Nathalie Bouet, Gabriele D’Amen, Weishi Wan and Pietro Musumeci
Nanomaterials 2024, 14(22), 1797; https://doi.org/10.3390/nano14221797 - 8 Nov 2024
Viewed by 709
Abstract
The resolution of a mega-electron-volt scanning transmission electron microscope (MeV-STEM) is primarily governed by the properties of the incident electron beam and angular broadening effects that occur within thick biological samples and microchips. A precise understanding and mitigation of these constraints require detailed [...] Read more.
The resolution of a mega-electron-volt scanning transmission electron microscope (MeV-STEM) is primarily governed by the properties of the incident electron beam and angular broadening effects that occur within thick biological samples and microchips. A precise understanding and mitigation of these constraints require detailed knowledge of beam emittance, aberrations in the STEM column optics, and energy-dependent elastic and inelastic critical angles of the materials being examined. This simulation study proposes a standardized experimental framework for comprehensively assessing beam intensity, divergence, and size at the sample exit. This framework aims to characterize electron-sample interactions, reconcile discrepancies among analytical models, and validate Monte Carlo (MC) simulations for enhanced predictive accuracy. Our numerical findings demonstrate that precise measurements of these parameters, especially angular broadening, are not only feasible but also essential for optimizing imaging resolution in thick biological samples and microchips. By utilizing an electron source with minimal emittance and tailored beam characteristics, along with amorphous ice and silicon samples as biological proxies and microchip materials, this research seeks to optimize electron beam energy by focusing on parameters to improve the resolution in MeV-STEM/TEM. This optimization is particularly crucial for in situ imaging of thick biological samples and for examining microchip defects with nanometer resolutions. Our ultimate goal is to develop a comprehensive mapping of the minimum electron energy required to achieve a nanoscale resolution, taking into account variations in sample thickness, composition, and imaging mode. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

21 pages, 8999 KiB  
Article
An MPC-DCM Control Method for a Forward-Bending Biped Robot Based on Force and Moment Control
by Zhongshan Wei, Wenyan Deng, Zhengyong Feng, Tao Wang and Xinxiang Huang
Electronics 2024, 13(22), 4374; https://doi.org/10.3390/electronics13224374 - 8 Nov 2024
Viewed by 799
Abstract
For a forward-bending biped robot with 10 degrees of freedom on its legs, a new control framework of MPC-DCM based on force and moment is proposed in this paper. Specifically, the Diverging Component of Motion (DCM) is a stability criterion for biped robots [...] Read more.
For a forward-bending biped robot with 10 degrees of freedom on its legs, a new control framework of MPC-DCM based on force and moment is proposed in this paper. Specifically, the Diverging Component of Motion (DCM) is a stability criterion for biped robots based on linear inverted pendulum, and Model Predictive Control (MPC) is an optimization solution strategy using rolling optimization. In this paper, DCM theory is applied to the state transition matrix of the system, combined with simplified rigid body dynamics, the mathematical description of the biped robot system is established, the classical MPC method is used to optimize the control input, and DCM constraints are added to the constraints of MPC, making the real-time DCM approximate to a straight line in the walking single gait. At the same time, the linear angle and friction cone constraints are considered to enhance the stability of the robot during walking. In this paper, MATLAB/Simulink is used to simulate the robot. Under the control of this algorithm, the robot can reach a walking speed of 0.75 m/s and has a certain anti-disturbance ability and ground adaptability. In this paper, the Model-H16 robot is used to deploy the physical algorithm, and the linear walking and obstacle walking of the physical robot are realized. Full article
Show Figures

Figure 1

12 pages, 5154 KiB  
Article
A Long-Range Lidar Optical Collimation System Based on a Shaped Laser Source
by Shanshan Feng, Yuanhui Mu, Luyin Liu, Ruzhang Liu, Enlin Cai and Shuying Wang
Appl. Sci. 2024, 14(21), 9662; https://doi.org/10.3390/app14219662 - 23 Oct 2024
Viewed by 949
Abstract
Semiconductor near-infrared lasers have been widely used in lidar systems. However, various source types have different shapes and divergence angles, causing more difficulties for long-distance detection. In this paper, an optical collimation system is designed for a long-range lidar system with a shaped [...] Read more.
Semiconductor near-infrared lasers have been widely used in lidar systems. However, various source types have different shapes and divergence angles, causing more difficulties for long-distance detection. In this paper, an optical collimation system is designed for a long-range lidar system with a shaped laser source (the wavelength is 905 nm, the emitted spot size is 50 µm long by 10 µm wide, and the divergence angles are 33°and 15°, respectively, which are unconventional). On the basis of the traditional method of aspheric lens setting, a pair of asymmetric aspherical lenses were designed using an extended polynomial. The simulation results show that the spot shapes are all close to circular from 100 mm to 30 m and the spot size always remains the same value. The corrected optical system is put into the designed lidar system for verification. It results show that the average divergence angles in the long and short axis directions are 0.06°and 0.07°, which satisfy the project requirements. This optical system designed provides a collimation scheme and expands the application of vehicle-mounted lidar in the field of long-range detection. Full article
Show Figures

Figure 1

17 pages, 3863 KiB  
Article
One-Dimensional Numerical Cascade Model of Runoff and Soil Loss on Convergent and Divergent Plane Soil Surfaces: Laboratory Assessment and Numerical Simulations
by Babar Mujtaba, João L. M. P. de Lima and M. Isabel P. de Lima
Water 2024, 16(20), 2955; https://doi.org/10.3390/w16202955 - 17 Oct 2024
Viewed by 682
Abstract
A one-dimensional numerical overland flow model based on the cascade plane theory was developed to estimate rainfall-induced runoff and soil erosion on converging and diverging plane surfaces. The model includes three components: (i) soil infiltration using Horton’s infiltration equation, (ii) overland flow using [...] Read more.
A one-dimensional numerical overland flow model based on the cascade plane theory was developed to estimate rainfall-induced runoff and soil erosion on converging and diverging plane surfaces. The model includes three components: (i) soil infiltration using Horton’s infiltration equation, (ii) overland flow using the kinematic wave approximation of the one-dimensional Saint-Venant shallow water equations for a cascade of planes, and (iii) soil erosion based on the sediment transport continuity equation. The model’s performance was evaluated by comparing numerical results with laboratory data from experiments using a rainfall simulator and a soil flume. Four independent experiments were conducted on converging and diverging surfaces under varying slope and rainfall conditions. Overall, the numerically simulated hydrographs and sediment graphs closely matched the laboratory results, showing the efficiency of the model for the tested controlled laboratory conditions. The model was then used to numerically explore the impact of different plane soil surface geometries on runoff and soil loss. Seven geometries were studied: one rectangular, three diverging, and three converging. A constant soil surface area, the rainfall intensity, and the slope gradient were maintained in all simulations. Results showed that increasing convergence angles led to a higher peak and total soil loss, while decreasing divergence angles reduced them. Full article
Show Figures

Figure 1

10 pages, 5511 KiB  
Article
Polishing Ceramic Samples with Fast Argon Atoms at Different Angles of Their Incidence on the Sample Surface
by Sergey N. Grigoriev, Alexander S. Metel, Marina A. Volosova, Enver S. Mustafaev and Yury A. Melnik
Plasma 2024, 7(4), 816-825; https://doi.org/10.3390/plasma7040043 - 17 Oct 2024
Viewed by 844
Abstract
Mechanical polishing of a product makes it possible to decrease the roughness of its surface to Ra = 0.001 µm by rubbing it with a fine abrasive contained in a fabric or other soft material. This method takes too much time and is [...] Read more.
Mechanical polishing of a product makes it possible to decrease the roughness of its surface to Ra = 0.001 µm by rubbing it with a fine abrasive contained in a fabric or other soft material. This method takes too much time and is associated with abrasive particles and microscopic scratches remaining after the processing. As such, a non-contact treatment with plasma and accelerated particles has been chosen in the present work to study polishing of ceramic samples. The small angular divergence of fast argon atoms made it possible to obtain the dependence of the sample roughness on the angle α of the atom’s incidence on its surface. It was found that the roughness weakly depends on the angle α, if not exceeding the threshold value αo ~ 50°, and rapidly decreases with increasing α > αo. Polishing with fast argon atoms leads to a noticeable decrease in friction of ceramic samples. Full article
Show Figures

Figure 1

16 pages, 6436 KiB  
Article
Double-Layer Metasurface Integrated with Micro-LED for Naked-Eye 3D Display
by Qinyue Sun, Zhenhuan Tian, Chuangcheng Xu, Angsu Yu, Feng Li and Feng Yun
Nanomaterials 2024, 14(20), 1624; https://doi.org/10.3390/nano14201624 - 10 Oct 2024
Viewed by 903
Abstract
Naked-eye 3D micro-LED display combines the characteristics of 3D display with the advantages of micro-LED. However, the 3D micro-LED display is still at the conceptual stage, limited by its intrinsic emission properties of large divergence angle and non-coherence, as well as difficulties in [...] Read more.
Naked-eye 3D micro-LED display combines the characteristics of 3D display with the advantages of micro-LED. However, the 3D micro-LED display is still at the conceptual stage, limited by its intrinsic emission properties of large divergence angle and non-coherence, as well as difficulties in achieving large viewing angles with high luminous efficiency. In this work, we propose a double-layer metasurface film integrating functions of collimation with multiple deflections, constituting a micro-LED naked-eye 3D display system. The system is characterized through numerical simulations using the 3D finite-difference time-domain method. The simulation results show that the double-layer metasurface film restricts 90% of the emitted light of the micro-LED to the vicinity of the 0° angle, improving its spatial coherence. Subsequently, a large-angle, low-crosstalk outgoing from −45° to 45° is achieved, while providing a deflection efficiency of over 80% and a pixel density of up to 605. We believe this design provides a feasible approach for realizing naked-eye 3D micro-LED displays with a large field of view, low crosstalk, and high resolution. Full article
(This article belongs to the Special Issue Semiconductor Nanomaterials for Optoelectronic Applications)
Show Figures

Figure 1

8 pages, 2251 KiB  
Proceeding Paper
Enhancing Microfluidic Systems’ Mixing Efficiency Using Design Models with Convergent–Divergent Sinusoidal Microchannel Walls: Experimental Investigations Based on Entropy Minimization Flow Structures
by Kingsley Safo, Joshua Anani and Ahmed H. El-Shazly
Eng. Proc. 2024, 67(1), 54; https://doi.org/10.3390/engproc2024067054 - 26 Sep 2024
Viewed by 382
Abstract
This study presents an innovative passive micromixer design featuring convergent–divergent sinusoidal walls, evaluated using the Villermaux–Dushman protocol. Five distinct designs were fabricated and tested, demonstrating superior mixing efficiency without additional obstructions. Testing of flow rates from 1000 to 50 mL/h revealed that the [...] Read more.
This study presents an innovative passive micromixer design featuring convergent–divergent sinusoidal walls, evaluated using the Villermaux–Dushman protocol. Five distinct designs were fabricated and tested, demonstrating superior mixing efficiency without additional obstructions. Testing of flow rates from 1000 to 50 mL/h revealed that the square-wave micromixer had the highest efficiency due to repeated fluid perturbations from its 90-degree angles. The loop-wave mixer performed the worst due to its lack of angles. The circular and box-wave mixers outperformed the loop-wave and backward arrow mixers due to their split and recombination effects. These designs, especially the circular and box-wave designs, offer optimal mixing for short-length applications, improving the efficiency and manufacturing simplicity for biomedical and biochemical analyses. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Graphical abstract

16 pages, 3371 KiB  
Article
Impact of Hydrodynamic Cavitation Pretreatment on Sodium Oleate Adsorption onto Diaspore and Kaolinite Surfaces
by Weiguang Zhou, Haobin Wei, Yangge Zhu, Yufeng Long, Yanfei Chen and Yuesheng Gao
Compounds 2024, 4(3), 571-586; https://doi.org/10.3390/compounds4030035 - 18 Sep 2024
Viewed by 832
Abstract
To investigate how hydrodynamic cavitation (HC) affects the adsorption of sodium oleate (NaOl) on diaspore and kaolinite surfaces, a comparative study on NaOl adsorption was conducted under different conditions. The flotation and separation of the minerals were also examined with and without HC [...] Read more.
To investigate how hydrodynamic cavitation (HC) affects the adsorption of sodium oleate (NaOl) on diaspore and kaolinite surfaces, a comparative study on NaOl adsorption was conducted under different conditions. The flotation and separation of the minerals were also examined with and without HC pretreatment of NaOl. The results show that short-term HC pretreatment of NaOl solutions did not induce a measurable change in the chemical structure of NaOl, but produced micro-nanobubbles (MNBs) and resulted in decreases in the surface tension and viscosity of liquids. When MNBs interacted with minerals, their anchor on solids could affect the contact angles, zeta potentials, and surface NaOl adsorption toward minerals. At low NaOl concentrations, the presence of MNBs reduced the NaOl adsorption capacity and particles’ zeta potential while increasing the minerals’ contact angle. At higher NaOl concentrations, the presence of MNBs promoted NaOl adsorption, further increased the minerals’ contact angle, and further decreases the particles’ zeta potential. Additionally, the flotation and separation of minerals can be enhanced at low NaOl concentrations, largely due to the enhanced bubble mineralization through the selective surface-anchoring of MNBs on diaspore. However, the separation efficiency might deteriorate at high NaOl concentrations, though the presence of MNBs amplified the divergences in minerals’ surface wettability and zeta potentials. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2024))
Show Figures

Figure 1

Back to TopTop