Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = attosecond chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 5068 KiB  
Article
Electron Symmetry Breaking during Attosecond Charge Migration Induced by Laser Pulses: Point Group Analyses for Quantum Dynamics
by Dietrich Haase, Gunter Hermann, Jörn Manz, Vincent Pohl and Jean Christophe Tremblay
Symmetry 2021, 13(2), 205; https://doi.org/10.3390/sym13020205 - 27 Jan 2021
Cited by 13 | Viewed by 3542
Abstract
Quantum simulations of the electron dynamics of oriented benzene and Mg-porphyrin driven by short (<10 fs) laser pulses yield electron symmetry breaking during attosecond charge migration. Nuclear motions are negligible on this time domain, i.e., the point group symmetries G = D6h [...] Read more.
Quantum simulations of the electron dynamics of oriented benzene and Mg-porphyrin driven by short (<10 fs) laser pulses yield electron symmetry breaking during attosecond charge migration. Nuclear motions are negligible on this time domain, i.e., the point group symmetries G = D6h and D4h of the nuclear scaffolds are conserved. At the same time, the symmetries of the one-electron densities are broken, however, to specific subgroups of G for the excited superposition states. These subgroups depend on the polarization and on the electric fields of the laser pulses. They can be determined either by inspection of the symmetry elements of the one-electron density which represents charge migration after the laser pulse, or by a new and more efficient group-theoretical approach. The results agree perfectly with each other. They suggest laser control of symmetry breaking. The choice of the target subgroup is restricted, however, by a new theorem, i.e., it must contain the symmetry group of the time-dependent electronic Hamiltonian of the oriented molecule interacting with the laser pulse(s). This theorem can also be applied to confirm or to falsify complementary suggestions of electron symmetry breaking by laser pulses. Full article
(This article belongs to the Special Issue Symmetry in Quantum Systems)
Show Figures

Graphical abstract

13 pages, 1544 KiB  
Article
Probing Attosecond Electron Coherence in Molecular Charge Migration by Ultrafast X-Ray Photoelectron Imaging
by Kai-Jun Yuan and André D Bandrauk
Appl. Sci. 2019, 9(9), 1941; https://doi.org/10.3390/app9091941 - 11 May 2019
Cited by 9 | Viewed by 4115
Abstract
Electron coherence is a fundamental quantum phenomenon in today’s ultrafast physics and chemistry research. Based on attosecond pump–probe schemes, ultrafast X-ray photoelectron imaging of molecules was used to monitor the coherent electron dynamics which is created by an XUV pulse. We performed simulations [...] Read more.
Electron coherence is a fundamental quantum phenomenon in today’s ultrafast physics and chemistry research. Based on attosecond pump–probe schemes, ultrafast X-ray photoelectron imaging of molecules was used to monitor the coherent electron dynamics which is created by an XUV pulse. We performed simulations on the molecular ion H 2 + by numerically solving time-dependent Schrödinger equations. It was found that the X-ray photoelectron angular and momentum distributions depend on the time delay between the XUV pump and soft X-ray probe pulses. Varying the polarization and helicity of the soft X-ray probe pulse gave rise to a modulation of the time-resolved photoelectron distributions. The present results provide a new approach for exploring ultrafast coherent electron dynamics and charge migration in reactions of molecules on the attosecond time scale. Full article
(This article belongs to the Special Issue Science at X-ray Free Electron Lasers)
Show Figures

Graphical abstract

22 pages, 1856 KiB  
Article
From Symmetry Breaking via Charge Migration to Symmetry Restoration in Electronic Ground and Excited States: Quantum Control on the Attosecond Time Scale
by ChunMei Liu, Jörn Manz and Jean Christophe Tremblay
Appl. Sci. 2019, 9(5), 953; https://doi.org/10.3390/app9050953 - 6 Mar 2019
Cited by 9 | Viewed by 3152
Abstract
This article starts with an introductory survey of previous work on breaking and restoring the electronic structure symmetry of atoms and molecules by means of two laser pulses. Accordingly, the first pulse breaks the symmetry of the system in its ground state with [...] Read more.
This article starts with an introductory survey of previous work on breaking and restoring the electronic structure symmetry of atoms and molecules by means of two laser pulses. Accordingly, the first pulse breaks the symmetry of the system in its ground state with irreducible representation I R R E P g by exciting it to a superposition of the ground state and an excited state with different I R R E P e . The superposition state is non-stationary, representing charge migration with period T in the sub- to few femtosecond time domains. The second pulse stops charge migration and restores symmetry by de-exciting the superposition state back to the ground state. Here, we present a new strategy for symmetry restoration: The second laser pulse excites the superposition state to the excited state, which has the same symmetry as the ground state, but different I R R E P e . The success depends on perfect time delay between the laser pulses, with precision of few attoseconds. The new strategy is demonstrated by quantum dynamics simulation for an oriented model system, benzene. Full article
(This article belongs to the Special Issue Attosecond Science and Technology: Principles and Applications)
Show Figures

Figure 1

Back to TopTop