Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = UAS-based data acquisition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7893 KiB  
Article
Modern SCADA for CSP Systems Based on OPC UA, Wi-Fi Mesh Networks, and Open-Source Software
by Jose Antonio Carballo, Javier Bonilla, Jesús Fernández-Reche, Antonio Luis Avila-Marin and Blas Díaz
Energies 2024, 17(24), 6284; https://doi.org/10.3390/en17246284 - 13 Dec 2024
Viewed by 474
Abstract
This study presents a methodology for the development of modern Supervisory Control and Data Acquisition (SCADA) systems aimed at improving the operation and management of concentrated solar power (CSP) plants, leveraging the tools provided by industrial digitization. This approach is exemplified by its [...] Read more.
This study presents a methodology for the development of modern Supervisory Control and Data Acquisition (SCADA) systems aimed at improving the operation and management of concentrated solar power (CSP) plants, leveraging the tools provided by industrial digitization. This approach is exemplified by its application to the CESA-I central tower heliostat field at the Plataforma Solar de Almería (PSA), one of the oldest CSP facilities in the world. The goal was to upgrade the control and monitoring capabilities of the heliostat field by integrating modern technologies such as OPC (Open Platform Communications)) Unified Architecture (UA), a Wi-Fi mesh communication network, and a custom Python-based gateway for interfacing with legacy MODBUS systems. Performance tests demonstrated stable, scalable communication, efficient real-time control, and seamless integration of new developments (smart heliostat) into the existing infrastructure. The SCADA system also introduced a user-friendly Python-based interface developed with PySide6, significantly enhancing operational efficiency and reducing task complexity for system operators. The results show that this low-cost methodology based on open-source software provides a flexible and robust SCADA architecture, suitable for future CSP applications, with potential for further optimization through the incorporation of artificial intelligence (AI) and machine learning. Full article
(This article belongs to the Special Issue Advances in Solar Thermal Energy Harvesting, Storage and Conversion)
Show Figures

Graphical abstract

21 pages, 30819 KiB  
Article
Multisensor Analysis for Biostimulants Effect Detection in Sustainable Viticulture
by Alberto Sassu, Alessandro Deidda, Luca Mercenaro, Beatrice Virgillito and Filippo Gambella
Agriculture 2024, 14(12), 2221; https://doi.org/10.3390/agriculture14122221 - 5 Dec 2024
Viewed by 587
Abstract
Biostimulants are organic agents employed for crop yield enhancement, quality improvement, and environmental stress mitigation, reducing, at the same time, reliance on inorganic inputs. With advancements in sustainable agriculture, data acquisition technologies have become crucial for monitoring the effects of such inputs. This [...] Read more.
Biostimulants are organic agents employed for crop yield enhancement, quality improvement, and environmental stress mitigation, reducing, at the same time, reliance on inorganic inputs. With advancements in sustainable agriculture, data acquisition technologies have become crucial for monitoring the effects of such inputs. This study evaluates the impact of four increasing rates of Biopromoter biostimulant application on grapevines: 0, 100 g plant−1, 100 g plant−1 with additional foliar fertilizers, and 150 g plant−1 with additional foliar fertilizers. The biostimulant was applied via foliar or ground methods, and its effects were assessed using vegetation indices derived from unmanned aerial systems (UAS), as well as proximal and manual sensing tools, alongside qualitative and quantitative production metrics. The research was conducted over two seasons in a Malvasia Bianca vineyard in Sardinia, Italy. Results indicated that UAS-derived vegetation indices, consistent with traditional ground-based measurements, effectively monitored vegetative growth over time but revealed no significant differences between treatments, suggesting either an insufficient vegetative indices sensitivity or that the applied biostimulant rates were insufficient to elicit a measurable response in the cultivar. Among the tools employed, only the SPAD 502 m demonstrated the sensitivity required to detect treatment differences, primarily reflected in grape production outcomes, especially in the second year and in the two groups managed with the highest amounts of biostimulants distributed by foliar and soil application. The use of biostimulants promoted, although only in the second year, a greener canopy and higher productivity in treatments where it was delivered to the soil. Further agronomic experiments are required to improve knowledge about biostimulants’ composition and mode of action, which are essential to increasing their effectiveness against specific abiotic stresses. Future research will focus on validating these technologies for precision viticulture, particularly concerning the long-term benefits. Full article
Show Figures

Figure 1

31 pages, 17989 KiB  
Article
IoT-Cloud, VPN, and Digital Twin-Based Remote Monitoring and Control of a Multifunctional Robotic Cell in the Context of AI, Industry, and Education 4.0 and 5.0
by Adrian Filipescu, Georgian Simion, Dan Ionescu and Adriana Filipescu
Sensors 2024, 24(23), 7451; https://doi.org/10.3390/s24237451 - 22 Nov 2024
Viewed by 872
Abstract
The monitoring and control of an assembly/disassembly/replacement (A/D/R) multifunctional robotic cell (MRC) with the ABB 120 Industrial Robotic Manipulator (IRM), based on IoT (Internet of Things)-cloud, VPN (Virtual Private Network), and digital twin (DT) technology, are presented in this paper. The approach integrates [...] Read more.
The monitoring and control of an assembly/disassembly/replacement (A/D/R) multifunctional robotic cell (MRC) with the ABB 120 Industrial Robotic Manipulator (IRM), based on IoT (Internet of Things)-cloud, VPN (Virtual Private Network), and digital twin (DT) technology, are presented in this paper. The approach integrates modern principles of smart manufacturing as outlined in Industry/Education 4.0 (automation, data exchange, smart systems, machine learning, and predictive maintenance) and Industry/Education 5.0 (human–robot collaboration, customization, robustness, and sustainability). Artificial intelligence (AI), based on machine learning (ML), enhances system flexibility, productivity, and user-centered collaboration. Several IoT edge devices are engaged, connected to local networks, LAN-Profinet, and LAN-Ethernet and to the Internet via WAN-Ethernet and OPC-UA, for remote and local processing and data acquisition. The system is connected to the Internet via Wireless Area Network (WAN) and allows remote control via the cloud and VPN. IoT dashboards, as human–machine interfaces (HMIs), SCADA (Supervisory Control and Data Acquisition), and OPC-UA (Open Platform Communication-Unified Architecture), facilitate remote monitoring and control of the MRC, as well as the planning and management of A/D/R tasks. The assignment, planning, and execution of A/D/R tasks were carried out using an augmented reality (AR) tool. Synchronized timed Petri nets (STPN) were used as a digital twin akin to a virtual reality (VR) representation of A/D/R MRC operations. This integration of advanced technology into a laboratory mechatronic system, where the devices are organized in a decentralized, multilevel architecture, creates a smart, flexible, and scalable environment that caters to both industrial applications and educational frameworks. Full article
(This article belongs to the Special Issue Intelligent Robotics Sensing Control System)
Show Figures

Figure 1

23 pages, 14450 KiB  
Article
Side-Scan Sonar Image Generation Under Zero and Few Samples for Underwater Target Detection
by Liang Li, Yiping Li, Hailin Wang, Chenghai Yue, Peiyan Gao, Yuliang Wang and Xisheng Feng
Remote Sens. 2024, 16(22), 4134; https://doi.org/10.3390/rs16224134 - 6 Nov 2024
Viewed by 965
Abstract
The acquisition of side-scan sonar (SSS) images is complex, expensive, and time-consuming, making it difficult and sometimes impossible to obtain rich image data. Therefore, we propose a novel image generation algorithm to solve the problem of insufficient training datasets for SSS-based target detection. [...] Read more.
The acquisition of side-scan sonar (SSS) images is complex, expensive, and time-consuming, making it difficult and sometimes impossible to obtain rich image data. Therefore, we propose a novel image generation algorithm to solve the problem of insufficient training datasets for SSS-based target detection. For zero-sample detection, we proposed a two-step style transfer approach. The ray tracing method was first used to obtain an optically rendered image of the target. Subsequently, UA-CycleGAN, which combines U-net, soft attention, and HSV loss, was proposed for generating high-quality SSS images. A one-stage image-generation approach was proposed for few-sample detection. The proposed ADA-StyleGAN3 incorporates an adaptive discriminator augmentation strategy into StyleGAN3 to solve the overfitting problem of the generative adversarial network caused by insufficient training data. ADA-StyleGAN3 generated high-quality and diverse SSS images. In simulation experiments, the proposed image-generation algorithm was evaluated subjectively and objectively. We also compared the proposed algorithm with other classical methods to demonstrate its advantages. In addition, we applied the generated images to a downstream target detection task, and the detection results further demonstrated the effectiveness of the image generation algorithm. Finally, the generalizability of the proposed algorithm was verified using a public dataset. Full article
Show Figures

Graphical abstract

18 pages, 13828 KiB  
Article
Automated Derivation of Vine Objects and Ecosystem Structures Using UAS-Based Data Acquisition, 3D Point Cloud Analysis, and OBIA
by Stefan Ruess, Gernot Paulus and Stefan Lang
Appl. Sci. 2024, 14(8), 3264; https://doi.org/10.3390/app14083264 - 12 Apr 2024
Viewed by 1228
Abstract
This study delves into the analysis of a vineyard in Carinthia, Austria, focusing on the automated derivation of ecosystem structures of individual vine parameters, including vine heights, leaf area index (LAI), leaf surface area (LSA), and the geographic positioning of single plants. For [...] Read more.
This study delves into the analysis of a vineyard in Carinthia, Austria, focusing on the automated derivation of ecosystem structures of individual vine parameters, including vine heights, leaf area index (LAI), leaf surface area (LSA), and the geographic positioning of single plants. For the derivation of these parameters, intricate segmentation processes and nuanced UAS-based data acquisition techniques are necessary. The detection of single vines was based on 3D point cloud data, generated at a phenological stage in which the plants were in the absence of foliage. The mean distance from derived vine locations to reference measurements taken with a GNSS device was 10.7 cm, with a root mean square error (RMSE) of 1.07. Vine height derivation from a normalized digital surface model (nDSM) using photogrammetric data showcased a strong correlation (R2 = 0.83) with real-world measurements. Vines underwent automated classification through an object-based image analysis (OBIA) framework. This process enabled the computation of ecosystem structures at the individual plant level post-segmentation. Consequently, it delivered comprehensive canopy characteristics rapidly, surpassing the speed of manual measurements. With the use of uncrewed aerial systems (UAS) equipped with optical sensors, dense 3D point clouds were computed for the derivation of canopy-related ecosystem structures of vines. While LAI and LSA computations await validation, they underscore the technical feasibility of obtaining precise geometric and morphological datasets from UAS-collected data paired with 3D point cloud analysis and object-based image analysis. Full article
Show Figures

Figure 1

22 pages, 5870 KiB  
Article
Hierarchical Integration of UAS and Sentinel-2 Imagery for Spruce Bark Beetle Grey-Attack Detection by Vegetation Index Thresholding Approach
by Grigorijs Goldbergs and Emīls Mārtiņš Upenieks
Forests 2024, 15(4), 644; https://doi.org/10.3390/f15040644 - 2 Apr 2024
Viewed by 2960
Abstract
This study aimed to examine the efficiency of the vegetation index (VI) thresholding approach for mapping deadwood caused by spruce bark beetle outbreak. For this, the study used upscaling from individual dead spruce detection by unmanned aerial (UAS) imagery as reference data for [...] Read more.
This study aimed to examine the efficiency of the vegetation index (VI) thresholding approach for mapping deadwood caused by spruce bark beetle outbreak. For this, the study used upscaling from individual dead spruce detection by unmanned aerial (UAS) imagery as reference data for continuous spruce deadwood mapping at a stand/landscape level by VI thresholding binary masks calculated from satellite Sentinel-2 imagery. The study found that the Normalized Difference Vegetation Index (NDVI) was most effective for distinguishing dead spruce from healthy trees, with an accuracy of 97% using UAS imagery. The study results showed that the NDVI minimises cloud and dominant tree shadows and illumination differences during UAS imagery acquisition, keeping the NDVI relatively stable over sunny and cloudy weather conditions. Like the UAS case, the NDVI calculated from Sentinel-2 (S2) imagery was the most reliable index for spruce deadwood cover mapping using a binary threshold mask at a landscape scale. Based on accuracy assessment, the summer leaf-on period (June–July) was found to be the most appropriate for spruce deadwood mapping by S2 imagery with an accuracy of 85% and a deadwood detection rate of 83% in dense, close-canopy mixed conifer forests. The study found that the spruce deadwood was successfully classified by S2 imagery when the spatial extent of the isolated dead tree cluster allocated at least 5–7 Sentinel-2 pixels. Full article
(This article belongs to the Special Issue Forest Structure Monitoring Based on Remote Sensing)
Show Figures

Figure 1

16 pages, 12570 KiB  
Article
New Concept of Smart UAS-GCP: A Tool for Precise Positioning in Remote-Sensing Applications
by Nicola Angelo Famiglietti, Pietro Miele, Antonino Memmolo, Luigi Falco, Angelo Castagnozzi, Raffaele Moschillo, Carmine Grasso, Robert Migliazza, Giulio Selvaggi and Annamaria Vicari
Cited by 1 | Viewed by 1826
Abstract
Today, ground control points (GCPs) represent indispensable tools for products’ georeferencing in all the techniques concerning remote sensing (RS), particularly in monitoring activities from unmanned aircraft system (UAS) platforms. This work introduces an innovative tool, smart GCPs, which combines different georeferencing procedures, offering [...] Read more.
Today, ground control points (GCPs) represent indispensable tools for products’ georeferencing in all the techniques concerning remote sensing (RS), particularly in monitoring activities from unmanned aircraft system (UAS) platforms. This work introduces an innovative tool, smart GCPs, which combines different georeferencing procedures, offering a range of advantages. It can serve three fundamental purposes concurrently: (1) as a drone takeoff platform; (2) as a base station, allowing the acquisition of raw global navigation satellite system (GNSS) data for post-processed kinematic (PPK) surveys or by providing real-time GNSS corrections for precision positioning; (3) as a rover in the network real-time kinematic (NRTK) mode, establishing its position in real time with centimetric precision. The prototype has undergone testing in a dedicated study area, yielding good results for all three geodetic correction techniques: PPK, RTK, and GCP, achieving centimeter-level accuracy. Nowadays, this versatile prototype represents a unique external instrument, which is also easily transportable and able to connect to the GNSS RING network, obtaining real-time positioning corrections for a wide range of applications that require precise positioning. This capability is essential for environmental applications that require a multitemporal UAS-based study. When the real-time RING data are accessible to the scientific community operating in RS surveying, this work could be a helpful guide for researchers approaching such investigations. Full article
(This article belongs to the Special Issue UAV Positioning: From Ground to Sky)
Show Figures

Figure 1

20 pages, 9115 KiB  
Article
Supervisory Monitoring and Control Solution on Android Mobile Devices for the Water Industry 4.0
by Ana-Maria Mateoiu, Adrian Korodi, Anka Stoianovici and Radu Tira
Sustainability 2023, 15(22), 16022; https://doi.org/10.3390/su152216022 - 16 Nov 2023
Cited by 1 | Viewed by 1097
Abstract
The capacity for using mobile devices for monitoring and controlling local processes has seen rapid growth in industry for maintenance operations before and after deployment. This is especially important in the case of geographically widely-dispersed locations, such as in the case of the [...] Read more.
The capacity for using mobile devices for monitoring and controlling local processes has seen rapid growth in industry for maintenance operations before and after deployment. This is especially important in the case of geographically widely-dispersed locations, such as in the case of the water sector, where processes, technologies, and local automation solutions are widely spread. Usually, the available mobile solutions are dependent on Supervisory Control and Data Acquisition (SCADA) software installed in the control rooms of water and wastewater facilities, usually without configuration possibilities. Considering the various SCADA control rooms, each focusing on a specific system, and hundreds of smaller locations accessible only with PLC and eventually a small touch screen, the dependence on local SCADA software is proving increasingly impractical. This paper presents the implementation of an easy-to-use SCADA system for the Android operating system, conceived following Industry 4.0 concepts. An OPC UA client-based architecture is proposed to cope with current interoperability standards, mobility and security across industrial processes in various domains. The design relies on a foreground service for uninterrupted communication between the application and the OPC UA client. The system is envisaged to provide notifications to alert the user when alarms are triggered, including both an independent application level alarming module and a new Alarms and Conditions based protocol level module, increasing visibility and response time for technical issues or faults, and being adaptable to both legacy and modern OPC UA specifications. The solution was tested first in the laboratory to validate the communication system with as many OPC UA structures as possible, and then in real scenarios with drinking water and wastewater systems interfacing PLC, HMI and SCADA level OPC UA servers. The tests in the real scenarios included a second-level test for water operators and engineers which accessed and monitored various processes with the developed solution, and all results proved to be satisfactory. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

19 pages, 20699 KiB  
Article
Applying High-Resolution Satellite and UAS Imagery for Detecting Coldwater Inputs in Temperate Streams of the Iowa Driftless Region
by Niti B. Mishra, Michael J. Siepker and Greg Simmons
Remote Sens. 2023, 15(18), 4445; https://doi.org/10.3390/rs15184445 - 9 Sep 2023
Viewed by 2031
Abstract
Coldwater streams are crucial habitats for many biota including Salmonidae and Cottidae species that are unable to tolerate warmer water temperatures. Accurate classification of coldwater streams is essential for their conservation, restoration, and management, especially in light of increasing human disturbance and climate [...] Read more.
Coldwater streams are crucial habitats for many biota including Salmonidae and Cottidae species that are unable to tolerate warmer water temperatures. Accurate classification of coldwater streams is essential for their conservation, restoration, and management, especially in light of increasing human disturbance and climate change. Coldwater streams receive cooler groundwater inputs and, as a result, typically remain ice-free during the winter. Based on this empirical thermal evidence, we examined the potential of very high-resolution (VHR) satellite and uncrewed aerial system (UAS) imagery to (i) detect coldwater streams using semi-automatic classification versus visual interpretation approaches, (ii) examine the physical factors that contribute to inaccuracies in detecting coldwater habitats, and (iii) use the results to identify inaccuracies in existing thermal stream classification datasets and recommend coverage updates. Due to complex site conditions, semi-automated classification was time consuming and produced low mapping accuracy, while visual interpretation produced better results. VHR imagery detected only the highest quality coldwater streams while lower quality streams that still met the thermal and biological criteria to be classified as coldwater remained undetected. Complex stream and site variables (narrow stream width, canopy cover, terrain shadow, stream covered by ice and drifting snow), image quality (spatial resolution, solar elevation angle), and environmental conditions (ambient temperature prior to image acquisition) make coldwater detection challenging; however, UAS imagery is uniquely suited for mapping very narrow streams and can bridge the gap between field data and satellite imagery. Field-collected water temperatures and stream habitat and fish community inventories may be necessary to overcome these challenges and allow validation of remote sensing results. We detected >30 km of coldwater streams that are currently misclassified as warmwater. Overall, visual interpretation of VHR imagery it is a relatively quick and inexpensive approach to detect the location and extent of coldwater stream resources and could be used to develop field monitoring programs to confirm location and extent of coldwater aquatic resources. Full article
Show Figures

Figure 1

15 pages, 2530 KiB  
Article
Enhancing Data Discretization for Smoother Drone Input Using GAN-Based IMU Data Augmentation
by Dmytro Petrenko, Yurii Kryvenchuk and Vitaliy Yakovyna
Cited by 1 | Viewed by 1861
Abstract
This study investigates the use of generative adversarial network (GAN)-based data augmentation to enhance data discretization for smoother drone input. The goal is to improve unmanned aerial vehicles’ (UAVs) performance and maneuverability by incorporating synthetic inertial measurement unit (IMU) data. The GAN model [...] Read more.
This study investigates the use of generative adversarial network (GAN)-based data augmentation to enhance data discretization for smoother drone input. The goal is to improve unmanned aerial vehicles’ (UAVs) performance and maneuverability by incorporating synthetic inertial measurement unit (IMU) data. The GAN model is employed to generate synthetic IMU data that closely resemble real-world IMU measurements. The methodology involves training the GAN model using a dataset of real IMU data and then using the trained model to generate synthetic IMU data. The generated synthetic data are then combined with the real data for data discretization. The resulting improved data discretization is evaluated using statistical metrics and a similarity evaluation. The improved data discretization demonstrates enhanced drone performance in terms of flight stability, control accuracy, and smoothness of movements when compared to standard data discretization methods. These results highlight the potential of GAN-based data augmentation for enhancing data discretization and improving drone performance. The proposition of improved data discretization offers a tangible benefit for the successful integration of Advanced Air Mobility (AAM) systems. Enhancing the accuracy and reliability of data acquisition and processing in UAS makes UAS operations safer and more reliable. This improvement is crucial for achieving the goal of automated and autonomous operations in diverse settlement environments, encompassing multiple mobility modes such as ground and air transportation. Full article
(This article belongs to the Special Issue AAM Integration: Strategic Insights and Goals)
Show Figures

Figure 1

24 pages, 2642 KiB  
Article
Influence of On-Site Camera Calibration with Sub-Block of Images on the Accuracy of Spatial Data Obtained by PPK-Based UAS Photogrammetry
by Kalima Pitombeira and Edson Mitishita
Remote Sens. 2023, 15(12), 3126; https://doi.org/10.3390/rs15123126 - 15 Jun 2023
Cited by 1 | Viewed by 1561
Abstract
Unmanned Aerial Systems (UAS) Photogrammetry has become widely used for spatial data acquisition. Nowadays, RTK (Real Time Kinematic) and PPK (Post Processed Kinematic) are the main correction methods for accurate positioning used for direct measurements of camera station coordinates in UAS imagery. Thus, [...] Read more.
Unmanned Aerial Systems (UAS) Photogrammetry has become widely used for spatial data acquisition. Nowadays, RTK (Real Time Kinematic) and PPK (Post Processed Kinematic) are the main correction methods for accurate positioning used for direct measurements of camera station coordinates in UAS imagery. Thus, 3D camera coordinates are commonly used as additional observations in Bundle Block Adjustment to perform Global Navigation Satellite System-Assisted Aerial Triangulation (GNSS-AAT). This process requires accurate Interior Orientation Parameters to ensure the quality of photogrammetric intersection. Therefore, this study investigates the influence of on-site camera calibration with a sub-block of images on the accuracy of spatial data obtained by PPK-based UAS Photogrammetry. For this purpose, experiments of on-the-job camera self-calibration in the Metashape software with the SfM approach were performed. Afterward, experiments of GNSS-Assisted Aerial Triangulation with on-site calibration in the Erdas Imagine software were performed. The outcomes show that only the experiment of GNSS-AAT with three Ground Control Points yielded horizontal and vertical accuracies close to nominal precisions of the camera station positions by GNSS-PPK measurements adopted in this study, showing horizontal RMSE (Root-Mean Square Error) of 0.222 m and vertical RMSE of 0.154 m. Furthermore, the on-site camera calibration with a sub-block of images significantly improved the vertical accuracy of the spatial information extraction. Full article
Show Figures

Figure 1

28 pages, 40628 KiB  
Article
Characterizing and Mapping Volcanic Flow Deposits on Mount St. Helens via Dual-Band SAR Imagery
by Nikola Rogic, Sylvain J. Charbonnier, Franco Garin, Guy W. Dayhoff II, Eric Gagliano, Mel Rodgers, Charles B. Connor, Sameer Varma and David Shean
Remote Sens. 2023, 15(11), 2791; https://doi.org/10.3390/rs15112791 - 27 May 2023
Cited by 2 | Viewed by 2213
Abstract
Mapping volcanic flow deposits can be achieved by considering backscattering characteristics as a metric of surface roughness. In this study, we developed an approach to extract a measure of surface roughness from dual-band airborne Synthetic Aperture Radar (ASAR) backscattering data to characterize and [...] Read more.
Mapping volcanic flow deposits can be achieved by considering backscattering characteristics as a metric of surface roughness. In this study, we developed an approach to extract a measure of surface roughness from dual-band airborne Synthetic Aperture Radar (ASAR) backscattering data to characterize and map various volcanic flow deposits—namely, debris avalanches, lahars, lava flows, and pyroclastic density currents. We employed ASAR and Indian Space Research Organization (ISRO) airborne SAR datasets, from a joint project (ASAR-ISRO), acquired in December 2019 at 2 m spatial resolution, to assess the role and importance of incorporating dual-band data, i.e., L-band and S-band, into surface roughness models. Additionally, we derived and analyzed surface roughness from a digital surface model (DSM) generated from unoccupied aircraft systems (UAS) acquisitions using Structure from Motion (SfM) photogrammetry techniques. These UAS-derived surface roughness outputs served as meter-scale calibration products to validate the radar roughness data over targeted areas. Herein, we applied our method to a region in the United States over the Mount St. Helens volcano in the Cascade Range of Washington state. Our results showed that dual-band systems can be utilized to characterize different types of volcanic deposits and range of terrain roughness. Importantly, we found that a combination of radar wavelengths (i.e., 9 and 24 cm), in tandem with high-spatial-resolution backscatter measurements, yields improved surface roughness maps, compared to single-band, satellite-based approaches at coarser resolution. The L-band (24 cm) can effectively differentiate small, medium, and large-scale structures, namely, blocks/boulders from fine-grained lahar deposits and hummocks from debris avalanche deposits. Additionally, variation in the roughness estimates of lahar and debris avalanche deposits can be identified and quantified individually. In contrast, the S-band (9 cm) can distinguish different soil moisture conditions across variable terrain; for example, identify wet active channels. In principle, this dual-band approach can also be employed with time series of various other SAR data of higher coherence (such as satellite SAR), using different wavelengths and polarizations, encompassing a wider range of surface roughness, and ultimately enabling additional applications at other volcanoes worldwide and even beyond volcanology. Full article
(This article belongs to the Special Issue Assessment and Prediction of Volcano Hazard Using Remote Sensing)
Show Figures

Graphical abstract

20 pages, 5666 KiB  
Article
Exploration of Vehicle Target Detection Method Based on Lightweight YOLOv5 Fusion Background Modeling
by Qian Zhao, Wenyue Ma, Chao Zheng and Lu Li
Appl. Sci. 2023, 13(7), 4088; https://doi.org/10.3390/app13074088 - 23 Mar 2023
Cited by 9 | Viewed by 2030
Abstract
Due to the explosive increase per capita in vehicle ownership in China brought about by the continuous development of the economy and society, many negative impacts have arisen, making it necessary to establish the smart city system that has rapidly developing vehicle detection [...] Read more.
Due to the explosive increase per capita in vehicle ownership in China brought about by the continuous development of the economy and society, many negative impacts have arisen, making it necessary to establish the smart city system that has rapidly developing vehicle detection technology as its data acquisition system. This paper proposes a lightweight detection model based on an improved version of YOLOv5 to address the problem of missed and false detections caused by occlusion during rush hour vehicle detection in surveillance videos. The proposed model replaces the BottleneckCSP structure with the Ghostnet structure and prunes the network model to speed up inference. Additionally, the Coordinate Attention Mechanism is introduced to enhance the network’s feature extraction and improve its detection and recognition ability. Distance-IoU Non-Maximum Suppression replaces Non-Maximum Suppression to address the issue of false detection and omission when detecting congested targets. Lastly, the combination of the five-frame differential method with VIBE and MD-SILBP operators is used to enhance the model’s feature extraction capabilities for vehicle contours. The experimental results show that the proposed model outperforms the original model in terms of the number of parameters, inference ability, and accuracy when applied to both the expanded UA-DETRAC and a self-built dataset. Thus, this method has significant industrial value in intelligent traffic systems and can effectively improve vehicle detection indicators in traffic monitoring scenarios. Full article
(This article belongs to the Topic Peaceful and Secure Cities)
Show Figures

Figure 1

17 pages, 2978 KiB  
Article
Proteomic Landscape of Human Spermatozoa: Optimized Extraction Method and Application
by Mengqi Luo, Tao Su, Shisheng Wang, Jianhai Chen, Tianhai Lin, Qingyuan Cheng, Younan Chen, Meng Gong, Hao Yang, Fuping Li and Yong Zhang
Cells 2022, 11(24), 4064; https://doi.org/10.3390/cells11244064 - 15 Dec 2022
Cited by 7 | Viewed by 2935
Abstract
Human spermatozoa proteomics exposed to some physical, biological or chemical stressors is being explored. However, there is a lack of optimized sample preparation methods to achieve in-depth protein coverage for sperm cells. Meanwhile, it is not clear whether antibiotics can regulate proteins to [...] Read more.
Human spermatozoa proteomics exposed to some physical, biological or chemical stressors is being explored. However, there is a lack of optimized sample preparation methods to achieve in-depth protein coverage for sperm cells. Meanwhile, it is not clear whether antibiotics can regulate proteins to affect sperm quality. Here, we systematically compared a total of six different protein extraction methods based the combination of three commonly used lysis buffers and physical lysis strategies. The urea buffer combined with ultrasonication (UA-ultrasonication) produced the highest protein extraction rate, leading to the deepest coverage of human sperm proteome (5685 protein groups) from healthy human sperm samples. Since the antibiotics, amoxicillin and clarithromycin, have been widely used against H. pylori infection, we conduct a longitudinal study of sperm proteome via data-independent acquisition tandem mass spectrometry (DIA-MS/MS) on an infected patient during on and off therapy with these two drugs. The semen examination and morphological analysis were performed combined with proteomics analysis. Our results indicated that antibiotics may cause an increase in the sperm concentration and the rate of malformed sperm and disrupt proteome expression in sperm. This work provides an optimized extraction method to characterize the in-depth human sperm proteome and to extend its clinical applications. Full article
Show Figures

Graphical abstract

24 pages, 9653 KiB  
Article
Feature Analysis of Scanning Point Cloud of Structure and Research on Hole Repair Technology Considering Space-Ground Multi-Source 3D Data Acquisition
by Xinming Pu, Shu Gan, Xiping Yuan and Raobo Li
Sensors 2022, 22(24), 9627; https://doi.org/10.3390/s22249627 - 8 Dec 2022
Cited by 6 | Viewed by 2584
Abstract
As one of the best means of obtaining the geometry information of special shaped structures, point cloud data acquisition can be achieved by laser scanning or photogrammetry. However, there are some differences in the quantity, quality, and information type of point clouds obtained [...] Read more.
As one of the best means of obtaining the geometry information of special shaped structures, point cloud data acquisition can be achieved by laser scanning or photogrammetry. However, there are some differences in the quantity, quality, and information type of point clouds obtained by different methods when collecting point clouds of the same structure, due to differences in sensor mechanisms and collection paths. Thus, this study aimed to combine the complementary advantages of multi-source point cloud data and provide the high-quality basic data required for structure measurement and modeling. Specifically, low-altitude photogrammetry technologies such as hand-held laser scanners (HLS), terrestrial laser scanners (TLS), and unmanned aerial systems (UAS) were adopted to collect point cloud data of the same special-shaped structure in different paths. The advantages and disadvantages of different point cloud acquisition methods of special-shaped structures were analyzed from the perspective of the point cloud acquisition mechanism of different sensors, point cloud data integrity, and single-point geometric characteristics of the point cloud. Additionally, a point cloud void repair technology based on the TLS point cloud was proposed according to the analysis results. Under the premise of unifying the spatial position relationship of the three point clouds, the M3C2 distance algorithm was performed to extract the point clouds with significant spatial position differences in the same area of the structure from the three point clouds. Meanwhile, the single-point geometric feature differences of the multi-source point cloud in the area with the same neighborhood radius was calculated. With the kernel density distribution of the feature difference, the feature points filtered from the HLS point cloud and the TLS point cloud were fused to enrich the number of feature points in the TLS point cloud. In addition, the TLS point cloud voids were located by raster projection, and the point clouds within the void range were extracted, or the closest points were retrieved from the other two heterologous point clouds, to repair the top surface and façade voids of the TLS point cloud. Finally, high-quality basic point cloud data of the special-shaped structure were generated. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop