Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = TMAH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3526 KiB  
Article
Effect of Oxidizing Agent on the Synthesis of ZnO Nanoparticles for Inverted Phosphorescent Organic Light-Emitting Devices without Multiple Interlayers
by Se-Jin Lim, Hyeon Kim, Hyun-A Hwang, Hee-Jin Park and Dae-Gyu Moon
Nanomaterials 2024, 14(7), 622; https://doi.org/10.3390/nano14070622 - 2 Apr 2024
Viewed by 1434
Abstract
Inverted organic light-emitting devices (OLEDs) have been aggressively developed because of their superiorities such as their high stability, low driving voltage, and low drop of brightness in display applications. The injection of electrons is a critical issue in inverted OLEDs because the ITO [...] Read more.
Inverted organic light-emitting devices (OLEDs) have been aggressively developed because of their superiorities such as their high stability, low driving voltage, and low drop of brightness in display applications. The injection of electrons is a critical issue in inverted OLEDs because the ITO cathode has an overly high work function in injecting electrons into the emission layer from the cathode. We synthesized hexagonal wurtzite ZnO nanoparticles using different oxidizing agents for an efficient injection of electrons in the inverted OLEDs. Potassium hydroxide (KOH) and tetramethylammonium hydroxide pentahydrate (TMAH) were used as oxidizing agents for synthesizing ZnO nanoparticles. The band gap, surface defects, surface morphology, surface roughness, and electrical resistivity of the nanoparticles were investigated. The inverted devices with phosphorescent molecules were prepared using the synthesized nanoparticles. The inverted devices with ZnO nanoparticles using TMAH exhibited a lower driving voltage, lower leakage current, and higher maximum external quantum efficiency. The devices with TMAH-based ZnO nanoparticles exhibited the maximum external quantum efficiency of 19.1%. Full article
(This article belongs to the Special Issue Applications of Advanced Nanomaterials in Display)
Show Figures

Graphical abstract

14 pages, 5054 KiB  
Article
Piezoelectric Micromachined Ultrasonic Transducers with Micro-Hole Inter-Etch and Sealing Process on (111) Silicon Wafer
by Yunhao Wang, Sheng Wu, Wenjing Wang, Tao Wu and Xinxin Li
Micromachines 2024, 15(4), 482; https://doi.org/10.3390/mi15040482 - 30 Mar 2024
Cited by 2 | Viewed by 4074
Abstract
Piezoelectric micromachined ultrasound transducers (PMUTs) have gained significant popularity in the field of ultrasound ranging and medical imaging owing to their small size, low power consumption, and affordability. The scar-free “MIS” (micro-hole inter-etch and sealing) process, a novel bulk-silicon manufacturing technique, has been [...] Read more.
Piezoelectric micromachined ultrasound transducers (PMUTs) have gained significant popularity in the field of ultrasound ranging and medical imaging owing to their small size, low power consumption, and affordability. The scar-free “MIS” (micro-hole inter-etch and sealing) process, a novel bulk-silicon manufacturing technique, has been successfully developed for the fabrication of pressure sensors, flow sensors, and accelerometers. In this study, we utilize the MIS process to fabricate cavity diaphragm structures for PMUTs, resulting in the formation of a flat cavity diaphragm structure through anisotropic etching of (111) wafers in a 70 °C tetramethylammonium hydroxide (TMAH) solution. This study investigates the corrosion characteristics of the MIS technology on (111) silicon wafers, arranges micro-pores etched on bulk silicon around the desired cavity structure in a regular pattern, and takes into consideration the distance compensation for lateral corrosion, resulting in a fully connected cavity structure closely approximating an ortho-hexagonal shape. By utilizing a sputtering process to deposit metallic molybdenum as upper and lower electrodes, as well as piezoelectric materials above the cavity structure, we have successfully fabricated aluminum nitride (AlN) piezoelectric ultrasonic transducer arrays of various sizes and structures. The final hexagonal PMUT cells of various sizes that were fabricated achieved a maximum quality factor (Q) of 251 and a displacement sensitivity of 18.49 nm/V across a range of resonant frequencies from 6.28 MHz to 11.99 MHz. This fabrication design facilitates the achievement of IC-compatible and cost-effective mass production of PMUT array devices with high resonance frequencies. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

18 pages, 3487 KiB  
Article
Synthetic Haemostatic Sealants: Effectiveness, Safety, and In Vivo Applications
by Federica Curcio, Paolo Perri, Paolo Piro, Stefania Galassi, Roberta Sole, Sonia Trombino and Roberta Cassano
Pharmaceuticals 2024, 17(3), 288; https://doi.org/10.3390/ph17030288 - 23 Feb 2024
Cited by 4 | Viewed by 1723
Abstract
Rapid haemostasis during surgery is essential when one wants to reduce the duration of operations, reduce the need for transfusions, and above all when one wants to achieve better patient management. The use of haemostatic agents, sealants, and adhesives improves the haemostatic process [...] Read more.
Rapid haemostasis during surgery is essential when one wants to reduce the duration of operations, reduce the need for transfusions, and above all when one wants to achieve better patient management. The use of haemostatic agents, sealants, and adhesives improves the haemostatic process by offering several advantages, especially in vascular surgery. These agents vary widely in their mechanism of action, composition, ease of application, adhesion to wet or dry tissue, immunogenicity, and cost. The most used are cyanoacrylate-based glues (Glubran 2) or polysaccharide hydrogel-microsphere powder (AristaTMAH). This work is based on a retrospective study carried out on a sample of patients with different vascular diseases (FAV, pseudoaneurysm, and PICC application) in which two different haemostatic sealants were used. The aim was to assess the safety, the advantages, and the ability of both sealants to activate the haemostatic process at the affected site, also in relation to their chemical-physical characteristics. The obtained results showed that the application of Glubran 2 and AristaTMAH as surgical wound closure systems is effective and safe, as the success achieved was ≥94% on anastomoses of FAV, 100% on stabilization of PICC catheters, and ≤95% on pseudoaneurysms. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 3812 KiB  
Article
Multi-Elemental Analysis of Hair and Fingernails Using Energy-Dispersive X-ray Fluorescence (ED XRF) Method Supported by Inductively Coupled Plasma Mass Spectrometry (ICP MS)
by Zofia Mierzyńska, Maria Niemirska, Kacper Zgonina, Tomasz Bieńkowski, Krzysztof Hryniów, Paweł Świder and Katarzyna Pawlak
Viewed by 2128
Abstract
This work compared the multi-element analysis of human hair and nails using inductively coupled plasma mass spectrometry (ICP MS) with an easy, fast, cheap, non-destructive method using energy-dispersive x-ray fluorescence (ED XRF). The ICP MS-based method was more sensitive (over 30 elements could [...] Read more.
This work compared the multi-element analysis of human hair and nails using inductively coupled plasma mass spectrometry (ICP MS) with an easy, fast, cheap, non-destructive method using energy-dispersive x-ray fluorescence (ED XRF). The ICP MS-based method was more sensitive (over 30 elements could be quantified) and costly (requiring more time, samples, and chemicals). The EDX-based method required laboratory and certified reference materials made of hair for instrument calibration. It was less sensitive (16 elements could be quantified: S, Si, Ca, Br, Fe, Cu, Cr, Mg, Si, K, Mn, Ni, Zn, Se, Sr, Pb), but it allowed us to replace troublesome grinding with the dissolution of keratin-based material with an alkalic agent (tetramethylammonium hydroxide, TMAH) and the formation of stable-for-days pellets. This method is simple, enables automation, and, due to the modification of wells in the autosampler of the EDX system via the immersion of home-designed inserts, it requires smaller amounts of biological material and binder (down to 70 mg instead of 500 mg required by commercially available instrument) to perform analysis. It was concluded that the EDX-based method offers complementary selectivity and sensitivity to ICP MS with the possibility of sample reuse for further analysis. Full article
Show Figures

Graphical abstract

14 pages, 3975 KiB  
Article
Influence of Silane Coupling Agent and Anionic Dispersant on the Dispersion Effect of Silicon Carbide Particles
by Zheng Zheng, Min Li, Wenxiao Zhang, Xuhui Zhang, Jiaxiang Liu and Tianyu Yang
Materials 2024, 17(2), 425; https://doi.org/10.3390/ma17020425 - 15 Jan 2024
Cited by 2 | Viewed by 1359
Abstract
Silicon carbide (SiC), as a widely used material, has great properties. To improve the flowability of ultrafine silicon carbide slurry, this study used sodium humate, tetramethylammonium hydroxide (TMAH), and N-(β-monoaminoethyl)-γ-aminopropyltrimethyl(ethoxysilane) (KH792) to modify the ultrafine silicon carbide powder produced by Qingzhou Micro Powder [...] Read more.
Silicon carbide (SiC), as a widely used material, has great properties. To improve the flowability of ultrafine silicon carbide slurry, this study used sodium humate, tetramethylammonium hydroxide (TMAH), and N-(β-monoaminoethyl)-γ-aminopropyltrimethyl(ethoxysilane) (KH792) to modify the ultrafine silicon carbide powder produced by Qingzhou Micro Powder Company. The effects of different modifiers on improving the flowability of ultrafine silicon carbide slurry were investigated by means of viscosity tests, sedimentation experiments, and SEM observations. Their modification mechanisms were investigated by means of zeta potential tests, XPS tests, and so on. In this paper, the initial modification of SiC was carried out with KH792, followed by the secondary modification with anionic and cationic modifiers (tetramethylammonium hydroxide and sodium humate), and the optimal modification conditions were investigated by means of a viscosity test, which showed that the lowest viscosity of the modified SiC reached 0.076 Pa·s and that the absolute maximum value of the zeta potential increased from 47.5 at the time of no modification to 63.7 (maximum values) at the time of modification. This means it has an improved surface charge, which improves dispersion. The adsorption results of the modifier on the silicon carbide surface were also demonstrated by the XPS test results. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 2831 KiB  
Article
Collaborative Study for Iodine Monitoring in Mandatory Direct-Iodized Sauce in Thailand
by Juntima Photi, Kunchit Judprasong, Sueppong Gowachirapant, Premmin Srisakda, Jutharat Supanuwat and Christophe Zeder
Foods 2023, 12(18), 3513; https://doi.org/10.3390/foods12183513 - 21 Sep 2023
Viewed by 1517
Abstract
Direct iodization in fish sauce, soy sauce, and seasoning sauces plays a crucial role in optimizing the iodine intake of Thailand’s people. However, determining the iodine content to ensure that these sauces meet the standard of Thailand’s Food and Drug Administration (FDA) is [...] Read more.
Direct iodization in fish sauce, soy sauce, and seasoning sauces plays a crucial role in optimizing the iodine intake of Thailand’s people. However, determining the iodine content to ensure that these sauces meet the standard of Thailand’s Food and Drug Administration (FDA) is challenging. In this study, all local laboratories equipped with inductively coupled plasma–mass spectrometry (ICP-MS) and with experience in iodine analysis by any analytical method were invited to participate in a hands-on training workshop and two rounds of interlaboratory comparison. The aim was to improve laboratory performance and assess the potential for iodine monitoring for mandatory direct-iodized sauces. All target laboratories participated in this study. The hands-on training workshop harmonized the analytical method and increased the capacity of participating laboratories. Most laboratories (7/8) achieved satisfactory performance for six test samples based on interlaboratory comparison. Samples were extracted by tetramethylammonium hydroxide (TMAH), with the presence of 6% 2-propanol, 0.01% triton X-100, internal standard, and iodine determination in direct-iodized sauces by ICP-MS. The reproducibility standard deviation (SL), after the removal of outlier results for iodine content, was 7–22% iodine at a level of 0.03–4.81 mg/L. Moreover, the Thai FDA’s judgment range for official control activities should expand the range of 2–3 mg per 1 L (ppm) by at least 22%. Full article
Show Figures

Figure 1

15 pages, 706 KiB  
Article
New Ultrasound-Assisted Extraction Sample Preparation Procedure for the Fast Determination of Total Sn in Canned Tomatoes by HG-ICP OES
by Maja Welna, Anna Szymczycha-Madeja and Pawel Pohl
Processes 2023, 11(8), 2428; https://doi.org/10.3390/pr11082428 - 11 Aug 2023
Cited by 1 | Viewed by 1318
Abstract
An analytical method with no need for laborious sample preparation before determining the total Sn in canned tomatoes by hydride generation (HG) coupled to inductively coupled plasma optical emission spectrometry (ICP OES) was developed. The ultrasound-assisted extraction with various reagents (acidic media: HCl, [...] Read more.
An analytical method with no need for laborious sample preparation before determining the total Sn in canned tomatoes by hydride generation (HG) coupled to inductively coupled plasma optical emission spectrometry (ICP OES) was developed. The ultrasound-assisted extraction with various reagents (acidic media: HCl, HNO3, CH3COOH or aqua regia and alkaline: TMAH) that could replace the traditional wet sample digestion in the presence of a concentrated HNO3-H2O2 mixture was tested and compared. Tin hydride was generated directly from the prepared sample solution in the reaction with 1% NaBH4 or via prior acidification with a 1 mol L−1 HCl. The effect of the sample pretreatment before HG-ICP OES measurements on the Sn signal was also examined. The best results were obtained with aqua regia as the extraction medium, followed by a simple two-fold dilution of the sample extract combined with the addition of L-cysteine. The developed method was characterized by a detection limit of Sn at 0.74 ng g−1, a precision of better than 6%, and a trueness, verified by the analyte spike-and-recovery test, of 98.4–104%. Its usefulness was demonstrated by the determination of Sn in seven canned tomatoes. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 7386 KiB  
Article
Synthesis and Characterization of Magnetite/Gold Core Shell Nanoparticles Stabilized with a β-Cyclodextrin Nanosponge to Develop a Magneto-Plasmonic System
by Sebastián Salazar Sandoval, Daniel Santibáñez, Ana Riveros, Fabián Araneda, Tamara Bruna, Nataly Silva, Nicolás Yutronic, Marcelo J. Kogan and Paul Jara
Magnetochemistry 2023, 9(8), 202; https://doi.org/10.3390/magnetochemistry9080202 - 9 Aug 2023
Viewed by 2443
Abstract
Magnetite/gold core-shell nanoparticles (magnetite/gold NPs) have important optical and magnetic properties that provide potential for applications, especially biomedical ones. However, their preparation is not exempt from difficulties that might lead to unexpected or undesired structures. This work reports the synthesis and characterization of [...] Read more.
Magnetite/gold core-shell nanoparticles (magnetite/gold NPs) have important optical and magnetic properties that provide potential for applications, especially biomedical ones. However, their preparation is not exempt from difficulties that might lead to unexpected or undesired structures. This work reports the synthesis and characterization of magnetite/gold NPs using tetramethylammonium hydroxide (TMAH) to promote the formation of a continuous interface between the magnetite core and the thin gold shell. The synthesized magnetite/gold NPs were characterized using transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), field emission scanning electron microscope (FE-SEM), ζ-potential, vibrating sample magnetometer (VSM), selected area electron diffraction (SAED), UV-Visible spectroscopy, and dynamic light scattering (DLS), confirming the core-shell structure of the NPs with narrow size distribution while evidencing its plasmonic and superparamagnetic properties as well. Further, the magnetite/gold NPs were associated and stabilized with a β-cyclodextrin nanosponge (β-CDNSs), obtaining a versatile magneto-plasmonic system for potential applications in the encapsulation and controlled release of drugs. Full article
(This article belongs to the Special Issue Advances in Magnetic Nanomaterials and Nanostructures)
Show Figures

Figure 1

16 pages, 3678 KiB  
Article
An Approach Based on an Increased Bandpass for Enabling the Use of Internal Standards in Single Particle ICP-MS: Application to AuNPs Characterization
by Antonio Bazo, Maite Aramendía, Flávio V. Nakadi and Martín Resano
Nanomaterials 2023, 13(12), 1838; https://doi.org/10.3390/nano13121838 - 10 Jun 2023
Cited by 7 | Viewed by 1819
Abstract
This paper proposes a novel approach to implement an internal standard (IS) correction in single particle inductively coupled plasma mass spectrometry (SP ICP-MS), as exemplified for the characterization of Au nanoparticles (NPs) in complex matrices. This approach is based on the use of [...] Read more.
This paper proposes a novel approach to implement an internal standard (IS) correction in single particle inductively coupled plasma mass spectrometry (SP ICP-MS), as exemplified for the characterization of Au nanoparticles (NPs) in complex matrices. This approach is based on the use of the mass spectrometer (quadrupole) in bandpass mode, enhancing the sensitivity for the monitoring of AuNPs while also allowing for the detection of PtNPs in the same measurement run, such that they can serve as an internal standard. The performance of the method developed was proved for three different matrices: pure water, a 5 g L−1 NaCl water solution, and another water solution containing 2.5% (m/v) tetramethylammonium hydroxide (TMAH)/0.1% Triton X-100. It was observed that matrix-effects impacted both the sensitivity of the NPs and their transport efficiencies. To circumvent this problem, two methods were used to determine the TE: the particle size method for sizing and the dynamic mass flow method for the determination of the particle number concentration (PNC). This fact, together with the use of the IS, enabled us to attain accurate results in all cases, both for sizing and for the PNC determination. Additionally, the use of the bandpass mode provides additional flexibility for this characterization, as it is possible to easily tune the sensitivity achieved for each NP type to ensure that their distributions are sufficiently resolved. Full article
Show Figures

Figure 1

14 pages, 2178 KiB  
Article
Analysis of Silver Nanoparticles in Ground Beef by Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS)
by Alexandre Chalifoux, Madjid Hadioui, Nesrine Amiri and Kevin J. Wilkinson
Molecules 2023, 28(11), 4442; https://doi.org/10.3390/molecules28114442 - 30 May 2023
Cited by 6 | Viewed by 1814
Abstract
The regulation and characterization of nanomaterials in foods are of great interest due to the potential risks associated with their exposure and the increasing number of applications where they are used within the food industry. One factor limiting the scientifically rigorous regulation of [...] Read more.
The regulation and characterization of nanomaterials in foods are of great interest due to the potential risks associated with their exposure and the increasing number of applications where they are used within the food industry. One factor limiting the scientifically rigorous regulation of nanoparticles in foods is the lack of standardized procedures for the extraction of nanoparticles (NPs) from complex matrices without alteration of their physico-chemical properties. To this end, we tested and optimized two sample preparation approaches (enzymatic- and alkaline-based hydrolyses) in order to extract 40 nm of Ag NP, following their equilibration with a fatty ground beef matrix. NPs were characterized using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Fast sample processing times (<20 min) were achieved using ultrasonication to accelerate the matrix degradation. NP losses during the sample preparation were minimized by optimizing the choice of enzymes/chemicals, the use of surfactants, and the product concentration and sonication. The alkaline approach using TMAH (tetramethylammonium hydroxide) was found to have the highest recoveries (over 90%); however, processed samples were found to be less stable than the samples processed using an enzymatic digestion based upon pork pancreatin and lipase (≈60 % recovery). Low method detection limits (MDLs) of 4.8 × 106 particles g−1 with a size detection limit (SDL) of 10.9 nm were achieved for the enzymatic extraction whereas an MDL of 5.7 × 107 particles g−1 and an SDL of 10.5 nm were obtained for the alkaline hydrolysis. Full article
Show Figures

Graphical abstract

14 pages, 4544 KiB  
Article
Treatment of Semiconductor Wastewater Containing Tetramethylammonium Hydroxide (TMAH) Using Nanofiltration, Reverse Osmosis, and Membrane Capacitive Deionization
by Juyoung Lee, Song Lee, Yongjun Choi and Sangho Lee
Membranes 2023, 13(3), 336; https://doi.org/10.3390/membranes13030336 - 14 Mar 2023
Cited by 4 | Viewed by 4325
Abstract
As the semiconductor industry has grown tremendously over the last decades, its environmental impact has become a growing concern, including the withdrawal of fresh water and the generation of harmful wastewater. Tetramethylammonium hydroxide (TMAH), one of the toxic compounds inevitably found in semiconductor [...] Read more.
As the semiconductor industry has grown tremendously over the last decades, its environmental impact has become a growing concern, including the withdrawal of fresh water and the generation of harmful wastewater. Tetramethylammonium hydroxide (TMAH), one of the toxic compounds inevitably found in semiconductor wastewater, should be removed before the wastewater is discharged. However, there are few affordable technologies available to remove TMAH from semiconductor wastewater. Therefore, the objective of this study was to compare different treatment options, such as Membrane Capacitive Deionization (MCDI), Reverse Osmosis (RO), and Nanofiltration (NF), for the treatment of semiconductor wastewater containing TMAH. A series of bench-scale experimental setups were conducted to investigate the removal efficiencies of TMAH, TDS, and TOC. The results confirmed that the MCDI process showed its great ability as well as RO to remove them, while the NF could not make a sufficient removal under identical recovery conditions. MCDI showed higher removals of monovalent ions, including TMA+, than divalent ions. Moreover, the removal of TMA+ by MCDI was higher under the basic solution than under both neutral and acidic conditions. These results were the first to demonstrate that MCDI has significant potential for treating semiconductor wastewater that contains TMAH. Full article
(This article belongs to the Special Issue Selected Papers from the MELPRO 2022)
Show Figures

Figure 1

10 pages, 3448 KiB  
Article
InGaN Laser Diodes with Etched Facets for Photonic Integrated Circuit Applications
by Krzysztof Gibasiewicz, Anna Kafar, Dario Schiavon, Kiran Saba, Łucja Marona, Eliana Kamińska and Piotr Perlin
Micromachines 2023, 14(2), 408; https://doi.org/10.3390/mi14020408 - 9 Feb 2023
Cited by 7 | Viewed by 2519
Abstract
The main objective of this work is to demonstrate and validate the feasibility of fabricating (Al, In) GaN laser diodes with etched facets. The facets are fabricated using a two-step dry and wet etching process: inductively coupled plasma—reactive ion etching in chlorine, followed [...] Read more.
The main objective of this work is to demonstrate and validate the feasibility of fabricating (Al, In) GaN laser diodes with etched facets. The facets are fabricated using a two-step dry and wet etching process: inductively coupled plasma—reactive ion etching in chlorine, followed by wet etching in tetramethylammonium hydroxide (TMAH). For the dry etching stage, an optimized procedure was used. For the wet etching step, the TMAH temperature was set to a constant value of 80 °C, and the only variable parameter was time. The time was divided into individual steps, each of 20 min. To validate the results, electro-optical parameters were measured after each step and compared with a cleaved reference, as well as with scanning electron microscope imaging of the front surface. It was determined that the optimal wet etching time was 40 min. For this time, the laser tested achieved a fully comparable threshold current (within 10%) with the cleaved reference. The described technology is an important step for the future manufacturing of photonic integrated circuits with laser diodes integrated on a chip and for ultra-short-cavity lasers. Full article
(This article belongs to the Special Issue Gallium Nitride-Based Devices)
Show Figures

Figure 1

11 pages, 2496 KiB  
Article
Vertical Etching of Scandium Aluminum Nitride Thin Films Using TMAH Solution
by A. S. M. Zadid Shifat, Isaac Stricklin, Ravi Kiran Chityala, Arjun Aryal, Giovanni Esteves, Aleem Siddiqui and Tito Busani
Nanomaterials 2023, 13(2), 274; https://doi.org/10.3390/nano13020274 - 9 Jan 2023
Cited by 12 | Viewed by 3704
Abstract
A wide bandgap, an enhanced piezoelectric coefficient, and low dielectric permittivity are some of the outstanding properties that have made ScxAl1xN a promising material in numerous MEMS and optoelectronics applications. One of the substantial challenges of fabricating [...] Read more.
A wide bandgap, an enhanced piezoelectric coefficient, and low dielectric permittivity are some of the outstanding properties that have made ScxAl1xN a promising material in numerous MEMS and optoelectronics applications. One of the substantial challenges of fabricating ScxAl1xN devices is its difficulty in etching, specifically with higher scandium concentration. In this work, we have developed an experimental approach with high temperature annealing followed by a wet etching process using tetramethyl ammonium hydroxide (TMAH), which maintains etching uniformity across various Sc compositions. The experimental results of etching approximately 730 nm of ScxAl1xN (x = 0.125, 0.20, 0.40) thin films show that the etch rate decreases with increasing scandium content. Nevertheless, sidewall verticality of 85°~90° (±0.2°) was maintained for all Sc compositions. Based on these experimental outcomes, it is anticipated that this etching procedure will be advantageous in the fabrication of acoustic, photonic, and piezoelectric devices. Full article
Show Figures

Figure 1

15 pages, 7613 KiB  
Article
Remarkable Reduction in IG with an Explicit Investigation of the Leakage Conduction Mechanisms in a Dual Surface-Modified Al2O3/SiO2 Stack Layer AlGaN/GaN MOS-HEMT
by Soumen Mazumder, Parthasarathi Pal, Kuan-Wei Lee and Yeong-Her Wang
Materials 2022, 15(24), 9067; https://doi.org/10.3390/ma15249067 - 19 Dec 2022
Cited by 5 | Viewed by 2520
Abstract
We demonstrated the performance of an Al2O3/SiO2 stack layer AlGaN/GaN metal–oxide semiconductor (MOS) high-electron-mobility transistor (HEMT) combined with a dual surface treatment that used tetramethylammonium hydroxide (TMAH) and hydrochloric acid (HCl) with post-gate annealing (PGA) modulation at 400 [...] Read more.
We demonstrated the performance of an Al2O3/SiO2 stack layer AlGaN/GaN metal–oxide semiconductor (MOS) high-electron-mobility transistor (HEMT) combined with a dual surface treatment that used tetramethylammonium hydroxide (TMAH) and hydrochloric acid (HCl) with post-gate annealing (PGA) modulation at 400 °C for 10 min. A remarkable reduction in the reverse gate leakage current (IG) up to 1.5×1012 A/mm (@ VG = −12 V) was observed in the stack layer MOS-HEMT due to the combined treatment. The performance of the dual surface-treated MOS–HEMT was significantly improved, particularly in terms of hysteresis, gate leakage, and subthreshold characteristics, with optimized gate annealing treatment. In addition, an organized gate leakage conduction mechanism in the AlGaN/GaN MOS–HEMT with the Al2O3/SiO2 stack gate dielectric layer was investigated before and after gate annealing treatment and compared with the conventional Schottky gate. The conduction mechanism in the reverse gate bias was Poole–Frankel emission for the Schottky-gate HEMT and the MOS–HEMT before annealing. The dominant conduction mechanism was ohmic/Poole-Frankel at low/medium forward bias. Meanwhile, gate leakage was governed by the hopping conduction mechanism in the MOS–HEMT without gate annealing modulation at a higher forward bias. After post-gate annealing (PGA) treatment, however, the leakage conduction mechanism was dominated by trap-assisted tunneling at the low to medium forward bias region and by Fowler–Nordheim tunneling at the higher forward bias region. Moreover, a decent product of maximum oscillation frequency and gate length (fmax × LG) was found to reach 27.16 GHz∙µm for the stack layer MOS–HEMT with PGA modulation. The dual surface-treated Al2O3/SiO2 stack layer MOS–HEMT with PGA modulation exhibited decent performance with an IDMAX of 720 mA/mm, a peak extrinsic transconductance (GMMAX) of 120 mS/mm, a threshold voltage (VTH) of −4.8 V, a higher ION/IOFF ratio of approximately 1.2×109, a subthreshold swing of 82 mV/dec, and a cutoff frequency(ft)/maximum frequency of (fmax) of 7.5/13.58 GHz. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

18 pages, 3332 KiB  
Article
New MgFeAl-LDH Catalysts for Claisen–Schmidt Condensation
by Rodica Zăvoianu, Mădălina Tudorache, Vasile I. Parvulescu, Bogdan Cojocaru and Octavian D. Pavel
Molecules 2022, 27(23), 8391; https://doi.org/10.3390/molecules27238391 - 1 Dec 2022
Cited by 3 | Viewed by 2806
Abstract
A rapid, cheap and feasible new approach was used to synthesize the Mg0.375Fe0.375Al0.25-LDH in the presence of tetramethylammonium hydroxide (TMAH), as a nontraditional hydrolysis agent, applying both mechano-chemical (MC) and co-precipitation methods (CP). For comparison, these catalysts [...] Read more.
A rapid, cheap and feasible new approach was used to synthesize the Mg0.375Fe0.375Al0.25-LDH in the presence of tetramethylammonium hydroxide (TMAH), as a nontraditional hydrolysis agent, applying both mechano-chemical (MC) and co-precipitation methods (CP). For comparison, these catalysts were also synthesized using traditional inorganic alkalis. The mechano-chemical method brings several advantages since the number of steps and the energy involved are smaller than in the co-precipitation method, while the use of organic alkalis eliminates the possibility of contaminating the final solid with alkaline cations. The memory effect was also investigated. XRD studies showed Fe3O4 as stable phase in all solids. Regardless of the alkalis and synthesis methods used, the basicity of catalysts followed the trend: mixed oxides > parent LDH > hydrated LDH. The catalytic activity of the catalysts in the Claisen–Schmidt condensation between benzaldehyde and cyclohexanone showed a linear dependence to the basicity values. After 2 h, the calcined sample cLDH-CO32−/OH-CP provided a conversion value of 93% with a total selectivity toward 2,6-dibenzylidenecyclohexanone. The presence of these catalysts in the reaction media inhibited the oxidation of benzaldehyde to benzoic acid. Meanwhile, for the self-condensation of cyclohexanone, the conversions to mono- and di-condensed compounds did not exceed 3.8%. Full article
(This article belongs to the Special Issue Advances in Heterogeneous Catalysis)
Show Figures

Graphical abstract

Back to TopTop