Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = OSNMA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1120 KiB  
Article
An Enhanced FGI-GSRx Software-Defined Receiver for the Execution of Long Datasets
by Muwahida Liaquat, Mohammad Zahidul H. Bhuiyan, Saiful Islam, Into Pääkkönen and Sanna Kaasalainen
Sensors 2024, 24(12), 4015; https://doi.org/10.3390/s24124015 - 20 Jun 2024
Viewed by 1169
Abstract
The Global Navigation Satellite System (GNSS) software-defined receivers offer greater flexibility, cost-effectiveness, customization, and integration capabilities compared to traditional hardware-based receivers, making them essential for a wide range of applications. The continuous evolution of GNSS research and the availability of new features require [...] Read more.
The Global Navigation Satellite System (GNSS) software-defined receivers offer greater flexibility, cost-effectiveness, customization, and integration capabilities compared to traditional hardware-based receivers, making them essential for a wide range of applications. The continuous evolution of GNSS research and the availability of new features require these software-defined receivers to upgrade continuously to facilitate the latest requirements. The Finnish Geospatial Research Institute (FGI) has been supporting the GNSS research community with its open-source implementations, such as a MATLAB-based GNSS software-defined receiver `FGI-GSRx’ and a Python-based implementation `FGI-OSNMA’ for utilizing Galileo’s Open Service Navigation Message Authentication (OSNMA). In this context, longer datasets are crucial for GNSS software-defined receivers to support adaptation, optimization, and facilitate testing to investigate and develop future-proof receiver capabilities. In this paper, we present an updated version of FGI-GSRx, namely, FGI-GSRx-v2.0.0, which is also available as an open-source resource for the research community. FGI-GSRx-v2.0.0 offers improved performance as compared to its previous version, especially for the execution of long datasets. This is carried out by optimizing the receiver’s functionality and offering a newly added parallel processing feature to ensure faster capabilities to process the raw GNSS data. This paper also presents an analysis of some key design aspects of previous and current versions of FGI-GSRx for a better insight into the receiver’s functionalities. The results show that FGI-GSRx-v2.0.0 offers about a 40% run time execution improvement over FGI-GSRx-v1.0.0 in the case of the sequential processing mode and about a 59% improvement in the case of the parallel processing mode, with 17 GNSS satellites from GPS and Galileo. In addition, an attempt is made to execute v2.0.0 with MATLAB’s own parallel computing toolbox. A detailed performance comparison reveals an improvement of about 43% in execution time over the v2.0.0 parallel processing mode for the same GNSS scenario. Full article
(This article belongs to the Special Issue GNSS Software-Defined Radio Receivers: Status and Perspectives)
Show Figures

Figure 1

17 pages, 5610 KiB  
Article
RTK+OSNMA Positioning for Road Applications: An Experimental Performance Analysis in Finland
by José M. Vallet García and M. Zahidul H. Bhuiyan
Sensors 2024, 24(2), 621; https://doi.org/10.3390/s24020621 - 18 Jan 2024
Cited by 2 | Viewed by 1544
Abstract
We compare the performance of dual-band (GPS L1/L2 and Galileo E1/E5a) real-time kinematic (RTK) positioning in an open sky and urban scenarios in southern Finland using two different authentication schemes: one using only satellites authenticated by Galileo’s open service navigation message authentication (OSNMA) [...] Read more.
We compare the performance of dual-band (GPS L1/L2 and Galileo E1/E5a) real-time kinematic (RTK) positioning in an open sky and urban scenarios in southern Finland using two different authentication schemes: one using only satellites authenticated by Galileo’s open service navigation message authentication (OSNMA) service (which at the moment of our tests led to using only authenticated Galileo satellites) and the other with no authentication. The results show the actual trade-off between accuracy and availability vs. authenticity associated with using only OSNMA-authenticated satellites, while the authentication of only Galileo satellites is possible (e.g., a drop of RTK positioning availability from 96.67 to 86.01% in our open sky and from 73.55 to 18.65% in our urban scenarios, respectively), and an upper bound of the potential performance that could be reached in similar experimental conditions had the authentication of GPS satellites been supported (e.g., an overall 14 cm and 10.20 m 95% horizontal accuracy in our open sky and urban scenarios, with below 30, 20 and 10 cm during 97.39, 96.03 and 92.43% of the time in the open sky and 49.12, 45.96 and 39.63% in the urban scenarios, respectively). Full article
(This article belongs to the Special Issue GNSS Signals and Precise Point Positioning)
Show Figures

Figure 1

15 pages, 1575 KiB  
Article
An Experimental Performance Assessment of Galileo OSNMA
by Toni Hammarberg, José M. Vallet García, Jarno N. Alanko and M. Zahidul H. Bhuiyan
Sensors 2024, 24(2), 404; https://doi.org/10.3390/s24020404 - 9 Jan 2024
Cited by 2 | Viewed by 1582
Abstract
We present Galileo Open Service Navigation Message Authentication (OSNMA) observed operational information and key performance indicators (KPIs) from the analysis of a ten-day-long dataset collected in static open-sky conditions in southern Finland and using our in-house-developed OSNMA implementation. In particular, we present a [...] Read more.
We present Galileo Open Service Navigation Message Authentication (OSNMA) observed operational information and key performance indicators (KPIs) from the analysis of a ten-day-long dataset collected in static open-sky conditions in southern Finland and using our in-house-developed OSNMA implementation. In particular, we present a timeline with authentication-related events, such as authentication status and type, dropped navigation pages, and failed cyclic redundancy checks. We also report other KPIs, such as the number of simultaneously authenticated satellites over time, time to first authenticated fix, and percentage of authenticated fixes, and we evaluate the accuracy of the authenticated position solution. We also study how satellite visibility affects these figures. Finally, we analyze situations where it was not possible to reach an authenticated fix, and offer our findings on the observed patterns. Full article
Show Figures

Figure 1

10 pages, 3931 KiB  
Proceeding Paper
A Comparative Experimental Performance Assessment of RTK+OSNMA-Based Positioning for Road Vehicle Applications
by Roman Lesjak, Susanne Schweitzer, José M. Vallet García, Karl Diengsleder-Lambauer and Selim Solmaz
Eng. Proc. 2023, 54(1), 45; https://doi.org/10.3390/ENC2023-15434 - 20 Dec 2023
Cited by 3 | Viewed by 944
Abstract
To realize the societal need for greener, safer, and smarter mobility, ambitious technical challenges need to be addressed. With this aim, the H2020-EUSPA project ESRIUM investigates various aspects of highly accurate, reliable, and assured EGNSS localization information for road vehicles with a particular [...] Read more.
To realize the societal need for greener, safer, and smarter mobility, ambitious technical challenges need to be addressed. With this aim, the H2020-EUSPA project ESRIUM investigates various aspects of highly accurate, reliable, and assured EGNSS localization information for road vehicles with a particular focus on automated vehicles. To analyze the achievable accuracy, reliability, and availability of multi-frequency and multi-GNSS mass-market receivers, we have conducted test drives under different GNSS reception conditions. In the tests, special focus was placed on using the Galileo Open Service Navigation Message Authentication (OSNMA) service, offering an additional feature for assured PVT (position, velocity, and time) information with respect to spoofing. We analyzed the performance of three Septentrio Mosaic-X5 receivers operated with different OSNMA settings. It could be shown that strict use of OSNMA provides very good positioning accuracy as long as sufficient suitable satellites are available. However, the overall performance suffers from a reduced satellite number and is therefore limited. The performance of a receiver using authenticated Galileo with GPS signals (final status of Galileo OSNMA) is very good for a mass-market receiver: 92.55% of the solutions had a 2D position error below 20 cm during 8.5 h of driving through different environments. Full article
(This article belongs to the Proceedings of European Navigation Conference ENC 2023)
Show Figures

Figure 1

1212 KiB  
Proceeding Paper
E1-E6 SDR Platform Based on BladeRF for Testing Galileo-Assisted Commercial Authentication Service
by Rafael Terris-Gallego, Ignacio Fernandez-Hernandez, José A. López-Salcedo and Gonzalo Seco-Granados
Eng. Proc. 2023, 54(1), 29; https://doi.org/10.3390/ENC2023-15428 - 29 Oct 2023
Cited by 2 | Viewed by 1337
Abstract
To enhance the robustness of the Global Navigation Satellite System (GNSS) against malicious attacks (e.g., spoofing), the European Galileo is working on new services, like Open Service Navigation Message Authentication (OSNMA), which provides authentication on the navigation bits, or Commercial Authentication Service (CAS), [...] Read more.
To enhance the robustness of the Global Navigation Satellite System (GNSS) against malicious attacks (e.g., spoofing), the European Galileo is working on new services, like Open Service Navigation Message Authentication (OSNMA), which provides authentication on the navigation bits, or Commercial Authentication Service (CAS), which aims to encrypt the spreading code chips. An assisted mode of the latter, named Assisted Commercial Authentication Service (ACAS), is currently under definition by the Galileo program. It uses the Timed Efficient Stream Loss-tolerant Authentication (TESLA) keys provided by OSNMA on the E1-B signal to re-encrypt some fragments of the encrypted E6-C signal, known as Re-Encrypted Code Sequences (RECSs), that are made available in the GNSS Service Centre (GSC). Once downloaded by a compatible receiver, they can be decrypted using the corresponding key and used to perform the correlation with the broadcasted E6-C signal. If that results in a correlation peak, the signal can be authenticated under certain circumstances. However, the probability of detecting this peak depends on the length of these fragments and their periodicity, since they are only provided for certain predefined instants. Indeed, if the receiver relies solely on E6-C signal and has no accurate time reference, this probability is severely degraded. This is why the nominal operating mode proposed for ACAS is to use the estimates provided by E1-B to reduce the uncertainty on the E6-C signal, so that the receiver can know precisely where these fragments are located. In the context of the PAULA project, we have developed a low-cost hardware platform based on bladeRF that allows acquiring both E1-B and E6-C samples synchronously. In this paper, we describe how to set up this platform and we characterise the alignment between the E1-B and E6-C estimates (code phase and Doppler frequency) using the real datasets obtained with such a platform, which is of key importance for the ACAS nominal mode. The results confirm the convenience of using the estimates from the E1-B signal for ACAS. Full article
(This article belongs to the Proceedings of European Navigation Conference ENC 2023)
Show Figures

Figure 1

1700 KiB  
Proceeding Paper
Development of a Global Navigation Satellite System Receiver for Specific Category Unmanned Aerial Systems Operations
by Sergi Dueñas Pedrosa, Samuele Fantinato, Laura García-Junceda del Rio, Esther Lopez, David Abia, Jacopo Marangoni and Sara Molinari
Eng. Proc. 2023, 54(1), 52; https://doi.org/10.3390/ENC2023-15467 - 29 Oct 2023
Cited by 1 | Viewed by 588
Abstract
The DEGREE project is focused on the development of a cutting-edge dual-frequency GNSS receiver intended to achieve optimum performance and take advantage of the EGNSS (European Global Navigation Satellite System), which allows the leveraging of several differentiators in order to safely integrate UASs [...] Read more.
The DEGREE project is focused on the development of a cutting-edge dual-frequency GNSS receiver intended to achieve optimum performance and take advantage of the EGNSS (European Global Navigation Satellite System), which allows the leveraging of several differentiators in order to safely integrate UASs into non-segregated airspace and into the U-Space. In order to meet the requirements for commercial operations purposes, the objective of the DEGREE project is to develop a receiver that could meet the requirements for the high level of robustness required for SAIL IV and beyond, thus unlocking all possible risk levels for operations in the specific category. Full article
(This article belongs to the Proceedings of European Navigation Conference ENC 2023)
Show Figures

Figure 1

17 pages, 665 KiB  
Article
Authenticated Timing Protocol Based on Galileo ACAS
by Francesco Ardizzon, Laura Crosara, Nicola Laurenti, Stefano Tomasin and Nicola Montini
Sensors 2022, 22(16), 6298; https://doi.org/10.3390/s22166298 - 21 Aug 2022
Cited by 7 | Viewed by 2958
Abstract
Global navigation satellite systems (GNSSs) provide accurate positioning and timing services in a large gamut of sectors, including financial institutions, Industry 4.0, and Internet of things (IoT). Any industrial system involving multiple devices interacting and/or coordinating their functionalities needs accurate, dependable, and trustworthy [...] Read more.
Global navigation satellite systems (GNSSs) provide accurate positioning and timing services in a large gamut of sectors, including financial institutions, Industry 4.0, and Internet of things (IoT). Any industrial system involving multiple devices interacting and/or coordinating their functionalities needs accurate, dependable, and trustworthy time synchronization, which can be obtained by using authenticated GNSS signals. However, GNSS vulnerabilities to time-spoofing attacks may cause security issues for their applications. Galileo is currently developing new services aimed at providing increased security and robustness against attacks, such as the open service navigation message authentication (OS-NMA) and commercial authentication service (CAS). In this paper, we propose a robust and secure timing protocol that is independent of external time sources, and solely relies on assisted commercial authentication service (ACAS) and OS-NMA features. We analyze the performance of the proposed timing protocol and discuss its security level in relation to malicious attacks. Lastly, experimental tests were conducted to validate the proposed protocol. Full article
(This article belongs to the Special Issue 800 Years of Research at Padova University)
Show Figures

Figure 1

21 pages, 2758 KiB  
Article
Computational Load Analysis of a Galileo OSNMA-Ready Receiver for ARM-Based Embedded Platforms
by Micaela Troglia Gamba, Mario Nicola and Beatrice Motella
Sensors 2021, 21(2), 467; https://doi.org/10.3390/s21020467 - 11 Jan 2021
Cited by 16 | Viewed by 2772
Abstract
Many GNSS applications have been experiencing some constantly growing needs in terms of security and reliability. To address some of them, both GPS and Galileo are proposing evolutions of their legacy civil signals, embedding features of authentication. This paper focuses on the Galileo [...] Read more.
Many GNSS applications have been experiencing some constantly growing needs in terms of security and reliability. To address some of them, both GPS and Galileo are proposing evolutions of their legacy civil signals, embedding features of authentication. This paper focuses on the Galileo Open Signal Navigation Message Authentication (OSNMA) and describes its implementation within a real-time software receiver for ARM-based embedded platforms. The innovative contributions of the paper include the software profiling analysis for the OSNMA add on, along with the comparison among performances obtained with different platforms. In addition, specific evaluations on the computational load of the whole receiver complete the analysis. The receiver used for the implementation belongs to the NGene receivers family—real-time fully-software GPS and Galileo receivers, tailored for different platforms and sharing the same core processing. In detail, the paper deals with the introduction of the OSNMA support inside the eNGene, the version of the receiver executable by ARM-based embedded platforms. Full article
Show Figures

Figure 1

Back to TopTop