Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = N-vynilcaprolactam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5363 KiB  
Article
Lignocellulosic Membranes Grafted with N-Vinylcaprolactam Using Radiation Chemistry: Load and Release Capacity of Vancomycin
by Maite Rentería-Urquiza, Guadalupe Gabriel Flores-Rojas, Belén Gómez-Lázaro, Felipe López-Saucedo, Ricardo Vera-Graziano, Eduardo Mendizabal and Emilio Bucio
Polymers 2024, 16(4), 551; https://doi.org/10.3390/polym16040551 - 18 Feb 2024
Viewed by 1264
Abstract
Radiation chemistry presents a unique avenue for developing innovative polymeric materials with desirable properties, eliminating the need for chemical initiators, which can be potentially detrimental, especially in sensitive sectors like medicine. In this investigation, we employed a radiation-induced graft polymerization process with N-vinylcaprolactam [...] Read more.
Radiation chemistry presents a unique avenue for developing innovative polymeric materials with desirable properties, eliminating the need for chemical initiators, which can be potentially detrimental, especially in sensitive sectors like medicine. In this investigation, we employed a radiation-induced graft polymerization process with N-vinylcaprolactam (NVCL) to modify lignocellulosic membranes derived from Agave salmiana, commonly known as maguey. The membranes underwent thorough characterization employing diverse techniques, including contact angle measurement, degree of swelling, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), nuclear magnetic resonance (CP-MAS 13C-NMR), X-ray photoelectron spectroscopy (XPS), and uniaxial tensile mechanical tests. The membranes’ ability to load and release an antimicrobial glycopeptide drug was assessed, revealing significant enhancements in both drug loading and sustained release. The grafting of PNVCL contributed to prolonged sustained release by decreasing the drug release rate at temperatures above the LCST. The release profiles were analyzed using the Higuchi, Peppas–Sahlin, and Korsmeyer–Peppas models, suggesting a Fickian transport mechanism as indicated by the Korsmeyer–Peppas model. Full article
(This article belongs to the Special Issue Polymers in Pharmaceutical Technology II)
Show Figures

Graphical abstract

Back to TopTop