Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = Mekong River Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6238 KiB  
Article
Climate Change Contributions to Water Conservation Capacity in the Upper Mekong River Basin
by Yuanyuan Luo, Zhaodan Cao, Xiaoer Zhao and Chengqiu Wu
Water 2024, 16(18), 2601; https://doi.org/10.3390/w16182601 - 13 Sep 2024
Viewed by 1603
Abstract
Investigations into the impacts of climate change on water conservation capacity in the upper Mekong River Basin (UMRB) are important for the region’s sustainability. However, quantitative studies on isolating the individual contribution of climate change to water conservation capacity are lacking. In this [...] Read more.
Investigations into the impacts of climate change on water conservation capacity in the upper Mekong River Basin (UMRB) are important for the region’s sustainability. However, quantitative studies on isolating the individual contribution of climate change to water conservation capacity are lacking. In this study, various data-driven SWAT models were developed to quantitatively analyze the unique impact of climate change on water conservation capacity in the UMRB. The results reveal the following: (1) From 1981 to 2020, the annual water conservation capacity ranged from 191.6 to 392.9 mm, showing significant seasonal differences with the values in the rainy season (218.6–420.3 mm) significantly higher than that in the dry season (−57.0–53.2 mm). (2) The contribution of climate change to water conservation capacity is generally negative, with the highest contribution (−65.2%) in the dry season, followed by the annual (−8.7%) and the rainy season (−8.1%). (3) Precipitation, followed by evaporation and surface runoff, emerged as the critical factor affecting water conservation capacity changes in the UMRB. This study can provide insights for water resources management and climate change adaptations in the UMRB and other similar regions in the world. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

13 pages, 4291 KiB  
Article
The Impacts of Dams on Streamflow in Tributaries to the Lower Mekong Basin
by Romduol Khoeun, Ratha Sor, Kimsan Chann, Sophea Rom Phy, Chantha Oeurng and Ty Sok
Sustainability 2024, 16(15), 6700; https://doi.org/10.3390/su16156700 - 5 Aug 2024
Cited by 2 | Viewed by 1891
Abstract
The Lower Mekong Basin has had extensive hydropower dam development, which changes its hydrologic conditions and threatens the exceptional aquatic biodiversity. This study quantifies the degree of hydrologic change between pre-impact (1965–1968) and post-impact (2018–2021) peak hydropower development in two major tributaries of [...] Read more.
The Lower Mekong Basin has had extensive hydropower dam development, which changes its hydrologic conditions and threatens the exceptional aquatic biodiversity. This study quantifies the degree of hydrologic change between pre-impact (1965–1968) and post-impact (2018–2021) peak hydropower development in two major tributaries of the Lower Mekong Basin—the Sekong River, with the fewest dams, and the Sesan River, with the most dams. Both rivers have historically supported migratory fishes. We used daily pre- and post-impact data and the Indicators of Hydrologic Alteration framework to evaluate streamflow changes from dam development. We found significant changes in low- and high-magnitude flows in the pre- and post-impact periods of dam development. For the Sekong River, minimum flow had large fluctuations, with increases of 290% to 412% compared to the pre-impact period, while the Sesan River’s minimum flow ranged from 120% to 160% more than pre-impact. Dry season flows increased by 200 ± 63% on average in the Sekong River, which was caused by releases from upstream dams. Meanwhile, the Sesan River’s dry season flows increased by 100 ± 55% on average. This study indicates that seasonal flow changes and extreme flow events occurred more frequently in the two basins following dam construction, which may threaten the ecosystem’s function. Full article
(This article belongs to the Special Issue Global Hydrological Studies and Ecological Sustainability)
Show Figures

Figure 1

19 pages, 9845 KiB  
Article
Delineation of Intermittent Rivers and Ephemeral Streams Using a Hybrid Method
by Ning Wang, Fang Chen, Bo Yu, Haiying Zhang, Huichen Zhao and Lei Wang
Remote Sens. 2024, 16(13), 2489; https://doi.org/10.3390/rs16132489 - 7 Jul 2024
Viewed by 1649
Abstract
Intermittent rivers and ephemeral streams are crucial for the water cycle and ecosystem services, yet they are often neglected by managers and researchers, especially in headwater areas. This oversight has caused a lack of comprehensive basemaps for these vital river systems. In headwater [...] Read more.
Intermittent rivers and ephemeral streams are crucial for the water cycle and ecosystem services, yet they are often neglected by managers and researchers, especially in headwater areas. This oversight has caused a lack of comprehensive basemaps for these vital river systems. In headwater regions, water bodies are typically sparse and disconnected, with narrow and less distinct channels. Therefore, we propose a novel hybrid method that integrates topographic data and remote sensing imagery to delineate river networks. Our method reestablishes connectivity among sparsely distributed water bodies through topographic pairs, enhances less distinct channel features using the gamma function, and converts topographic and water indices data into a weighted graph to determine optimal channels with the A* algorithm. The topographic and water indices data are derived from the Multi-Error-Removed Improved-Terrain DEM (MERIT DEM) and an average composite of the Modified Normalized Difference Water Index (MNDWI), respectively. In the upper Lancang-Mekong River basin, our method outperformed five publicly available DEM datasets, achieving over 91% positional accuracy within a 30 m buffer. This hybrid method enhances positional accuracy and effectively connects sparse water bodies in headwater areas, offering promising applications for delineating intermittent rivers and ephemeral streams and providing baseline information for these river systems. Full article
Show Figures

Figure 1

30 pages, 11077 KiB  
Article
Assessing the Impacts of Changing Connectivity of Hydropower Dams on the Distribution of Fish Species in the 3S Rivers, a Tributary of the Lower Mekong
by Peter-John Meynell, Marc J. Metzger and Neil Stuart
Water 2024, 16(11), 1505; https://doi.org/10.3390/w16111505 - 24 May 2024
Cited by 1 | Viewed by 1631
Abstract
Hydropower plants (HPPs) create barriers across rivers and fragment aquatic ecosystems, river reaches and habitats. The reservoirs they create slow the flowing water and convert the riverine into lacustrine ecosystems. The barriers created by HPPs interrupt the seasonal migrations of many fish species, [...] Read more.
Hydropower plants (HPPs) create barriers across rivers and fragment aquatic ecosystems, river reaches and habitats. The reservoirs they create slow the flowing water and convert the riverine into lacustrine ecosystems. The barriers created by HPPs interrupt the seasonal migrations of many fish species, while the reservoirs drive away fish species that are dependent on flowing water habitats. This paper assesses the distribution of fish species in the 3S rivers—Sekong, Sesan and Sre Pok, in Cambodia, Laos and Viet Nam—using IUCN Red List-assessed species distribution by HydroBasin Level 8 from the freshwater reports of the Integrated Biodiversity Assessment Tool (IBAT) and their connectivity with the Mekong. There are currently 61 commissioned dams in the 3S basins and a further 2 under construction, 23 of which are larger than the 30 MW installed capacity. A further 24 HPPs are proposed or planned in these basins. The changes in connectivity caused by the dams are measured by adapting the River Class Connectivity Index (RCICLASS); the original connectivity of the 3S basin taking into account the two major waterfalls in the Sesan and Sre Pok rivers was estimated at 80.9%. With existing dams, the connectivity has been reduced to 23.5%, and with all planned dams, it is reduced further to 10.9%. The resulting re-distribution of fish species occurring throughout the 3S basins is explored, by focusing on migratory guilds and threatened and endemic fish species. With all dams built, it is predicted that the total numbers of species in HydroBasins above the dams will be reduced by 40–50%. The Threatened Species Index is estimated to fall from over 30 near the confluence of the three rivers to less than 10 above the lowest dams on the 3S rivers. The analysis demonstrates how widely available global and regional datasets can be used to assess the impacts of dams on fish biodiversity in this region. Full article
Show Figures

Figure 1

15 pages, 1518 KiB  
Article
Scenarios for a Scaling-up System for Organic Cassava Production in the Mekong River Basin: A Foresight Approach
by Benjamas Kumsueb, Sukit Rattanasriwong, Siviengkhek Phommalath, Nareth Nut, Jun Fan, Hong Xuan Do and Attachai Jintrawet
Agriculture 2024, 14(4), 600; https://doi.org/10.3390/agriculture14040600 - 10 Apr 2024
Viewed by 1370
Abstract
Organic cassava flour and products are in high demand. However, the expansion of organic cassava (OCS) production is rather slow. To increase OCS production, extension workers, cassava flour mills, farmers, and researchers have been collaborating to support the farmers, but the planted areas [...] Read more.
Organic cassava flour and products are in high demand. However, the expansion of organic cassava (OCS) production is rather slow. To increase OCS production, extension workers, cassava flour mills, farmers, and researchers have been collaborating to support the farmers, but the planted areas have remained limited. This research aimed at understanding the current issues in scaling up the organic cassava production. The findings were subsequently used to formulate scenarios and recommendations for the collaborative scale-up of organic cassava production in the Mekong River Basin (MRB). We carried out a six-step foresight process with leaders of organic cassava farmers, the staff of organic cassava flour mills and factories, extension workers, the staff of research agencies, and local policy makers in Thailand. The results revealed two key factors or drivers of changes, namely, the degree of collaboration among stakeholders using multiple-view scenarios or a single-view situation and the degree of learning and communication about OCS that future stakeholders are likely to experience. Four possible scenarios for a scaling-up system of OCS production in the MRB were developed. The foresight process allowed for recognizing multiple views and opinions about the OCS production scaling-up process, considered as a whole system. The system was found to consist of various interdependent components. The process highlighted the need to increase the capacity and opportunities for productive collaboration in research and development. We concluded that the MRB members should issue a policy formulating a joint task force to coordinate the existing institutions’ plans and resources towards an actionable OCS production scaling-up system for the MRB in 2030. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

14 pages, 3697 KiB  
Article
DNA of Music: Identifying Relationships among Different Versions of the Composition Sadhukarn from Thailand, Laos, and Cambodia Using Multivariate Statistics
by Sumetus Eambangyung, Gretel Schwörer-Kohl and Witoon Purahong
Cited by 1 | Viewed by 2113
Abstract
Sadhukarn, a sacred music composition performed ritually to salute and invite divine powers to open a ceremony or feast, is played in Thailand, Cambodia, and Laos. Different countries have unique versions, arranged based on musicians’ skills and en vogue styles. This study presents [...] Read more.
Sadhukarn, a sacred music composition performed ritually to salute and invite divine powers to open a ceremony or feast, is played in Thailand, Cambodia, and Laos. Different countries have unique versions, arranged based on musicians’ skills and en vogue styles. This study presents the results of multivariate statistical analyses of 26 different versions of Sadhukarn main melodies using non-metric multidimensional scaling (NMDS) and cluster analysis. The objective was to identify the optimal number of parameters for identifying the origin and relationships among Sadhukarn versions, including rhyme structures, pillar tone, rhythmic and melodic patterns, intervals, pitches, and combinations of these parameters. The data were analyzed using both full and normalized datasets (32 phrases) to avoid biases due to differences in phrases among versions. Overall, the combination of six parameters is the best approach for data analysis in both full and normalized datasets. The analysis of the ‘full version’ shows the separation of Sadhukarn versions from different countries of origin, while the analysis of the ‘normalized version’ reveals the rhyme structure, rhythmic structure, and pitch as crucial parameters for identifying Sadhukarn versions. We conclude that multivariate statistics are powerful tools for identifying relationships among different versions of Sadhukarn compositions from Thailand, Laos, and Cambodia and within the same countries of origin. Full article
(This article belongs to the Special Issue Data Analysis for Audio-Visual Stimuli and Learning Algorithms)
Show Figures

Figure 1

20 pages, 4013 KiB  
Article
Are Transboundary Water Events Reported Differently in French and English News for Conflict and Cooperation Dynamics?
by Jiale Wang, Jing Wei and Fuqiang Tian
Water 2024, 16(5), 759; https://doi.org/10.3390/w16050759 - 2 Mar 2024
Cited by 1 | Viewed by 1838
Abstract
Media coverage of water events in transboundary river basins reflects the views of both riparian countries and beyond, and the conflict and cooperation dynamics could be biased due to the linguistic diversity. The aim of this study is to investigate whether any deviation [...] Read more.
Media coverage of water events in transboundary river basins reflects the views of both riparian countries and beyond, and the conflict and cooperation dynamics could be biased due to the linguistic diversity. The aim of this study is to investigate whether any deviation exists in the depiction of water conflict and cooperation dynamics as reflected in the sentiments of French and English news articles, taking the Lancang–Mekong River basin and the Nile River basin as case studies. The results showed that news articles in English itself can reflect the trends of the cooperative or conflictive sentiments of the water events occurring within the basin, but French news is complementary in examining the attitudes and values of a few countries towards the shared river. The study would serve as an important reference for the perspective analysis of all riparian countries, as well as a basis for comprehending water conflict/cooperation dynamics in multiple languages. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 5721 KiB  
Article
Spatio-Temporal Patterns of Land Use and Cover Change in the Lancang–Mekong River Basin during 2000–2020
by Fansi Lang, Yutian Liang, Shangqian Li, Zhaofeng Cheng, Guanfeng Li and Zijing Guo
Cited by 5 | Viewed by 1724
Abstract
Exploring the mechanisms that drive land use and cover change (LUCC) is essential for informing the formulation and implementation of effective policies aimed at optimizing land use patterns. In this study, we examined the spatial and temporal patterns of LUCC within the Lancang–Mekong [...] Read more.
Exploring the mechanisms that drive land use and cover change (LUCC) is essential for informing the formulation and implementation of effective policies aimed at optimizing land use patterns. In this study, we examined the spatial and temporal patterns of LUCC within the Lancang–Mekong River Basin (LMRB) using Globeland30 data for the years 2000, 2010, and 2020. Firstly, we analyzed the quantitative characteristics of LUCC within the LMRB in terms of the value of change and rate of change. Additionally, we investigated the converting characteristics of LUCC within the LMRB by employing land use transition matrices and land use transition probability matrices. Furthermore, we depicted the spatial distribution of LUCC within the LMRB through land use mapping and statistical analysis. The results indicate a substantial decline in forests, coupled with a notable expansion in cultivated land. Given the vital role of forests as carbon sinks, reforestation can enhance ecological services and address challenges related to climate change. Converting cultivated land to forests is an effective human intervention promoting forest transition. This study applies binary logistic models to explore the mechanisms that influence the conversion from cultivated land to forests. The results reveal that slopes ranging from 5° to 15° have the lowest probability of conversion, whereas distances between the cultivated land and the nearest tourist attraction ranging from 9 km to 18 km have the highest probability. Moreover, the conversion process is positively associated with traffic conditions and significantly influenced by human interventions. Within the study area, China, Laos, and Myanmar show a tendency to convert cultivated land into natural LULC types, while Cambodia, Thailand, and Vietnam tend to encroach on cultivated land and expand artificial surfaces. Promoting ecological restoration in the LMRB requires cooperation among these countries. Full article
Show Figures

Figure 1

26 pages, 5322 KiB  
Article
Quantifying Spatio-Temporal River Morphological Change and Its Consequences in the Vietnamese Mekong River Delta Using Remote Sensing and Geographical Information System Techniques
by Thi Huong Vu, Doan Van Binh, Huan Ngoc Tran, Muhammad Adnan Khan, Duong Du Bui and Jürgen Stamm
Remote Sens. 2024, 16(4), 707; https://doi.org/10.3390/rs16040707 - 17 Feb 2024
Cited by 3 | Viewed by 2237
Abstract
The evolution of delta and riverbank erosion within the river basin can significantly impact the environment, ecosystems, and lives of those residing along rivers. The Vietnamese Mekong Delta (VMD), counted among the world’s largest deltas, has undergone significant morphological alterations via natural processes [...] Read more.
The evolution of delta and riverbank erosion within the river basin can significantly impact the environment, ecosystems, and lives of those residing along rivers. The Vietnamese Mekong Delta (VMD), counted among the world’s largest deltas, has undergone significant morphological alterations via natural processes and human activities. This research aims to examine these morphological alterations and their impacts on local economic and social conditions in the VMD. This study utilized satellite data from 1988 to 2020, coupled with population density and land use/land cover (LULC) maps from 2002, 2008, and 2015. The findings reveal that the VMD experienced widespread erosion over the past three decades, covering an area of 66.8 km2 and affecting 48% of the riverbank length (682 km). In contrast to riverbanks, islets showed an accretion trend with an additional area of 13.3 km2, resulting in a decrease in river width over the years. Riverbank and islet erosion has had a profound impact on the LULC, population, and economy of the provinces along the VMD. From 2002 to 2020, eight different land use types were affected, with agricultural land being the most severely eroded, constituting over 86% of the total lost land area (3235.47 ha). The consequences of land loss due to erosion affected 31,273 people and resulted in substantial economic damages estimated at VND 19,409.90 billion (USD 799.50 million) across nine provinces along the VMD. Notably, even though built-up land represented a relatively small portion of the affected area (6.58%), it accounted for the majority of the economic damage at 70.6% (USD 564.45 million). This study underscores the crucial role of satellite imagery and GIS in monitoring long-term morphological changes and assessing their primary impacts. Such analysis is essential for formulating effective plans and strategies for the sustainable management of river environments. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

22 pages, 3007 KiB  
Article
Teleconnections of Atmospheric Circulations to Meteorological Drought in the Lancang-Mekong River Basin
by Lei Fan, Yi Wang, Chenglin Cao and Wen Chen
Atmosphere 2024, 15(1), 89; https://doi.org/10.3390/atmos15010089 - 10 Jan 2024
Cited by 2 | Viewed by 1500
Abstract
The Lancang-Mekong River Basin (LMRB) is one of the major transboundary basins globally, facing ongoing challenges due to flood and drought disasters. Particularly in the past two decades, the basin has experienced an increased frequency of meteorological drought events, posing serious threats to [...] Read more.
The Lancang-Mekong River Basin (LMRB) is one of the major transboundary basins globally, facing ongoing challenges due to flood and drought disasters. Particularly in the past two decades, the basin has experienced an increased frequency of meteorological drought events, posing serious threats to the local socio-economic structures and ecological systems. Thus, this study aimed to analyze the meteorological drought characteristics in the LMRB and identify the impact and correlation of atmospheric circulation on the meteorological drought in the basin. Specifically, the different levels of meteorological drought events were defined using the Run Theory based on the seasonal and annual SPEI from 1980 to 2018. The time lag correlation between meteorological drought events and the EI Nino-Southern Oscillation (ENSO), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO), were analyzed in the LMRB. Our results indicated that, from a temporal perspective, the period from November to April of the following year was particularly prone to meteorological droughts in the basin. In terms of spatial distribution, the primary agricultural regions within the basin, including Thailand, Eastern Cambodia, and Vietnam, were highly susceptible to meteorological droughts. Further analysis revealed a teleconnection between drought events in the LMRB and atmospheric circulation factors. The sensitivity of the basin’s drought timing to its response decreased in the order of the ENSO > AO > NAO > PDO. In general, the ENSO had the most substantial influence on drought events in the basin, with the strongest response relationship, while the upper reaches of the basin displayed the most significant response to the AO; the occurrence and progression of meteorological droughts in this area synchronized with the AO. These findings enhance our understanding of drought-prone areas in the LMRB, including the meteorological factors and driving mechanisms involved. This information is valuable for effectively mitigating and managing drought risks in the region. Full article
(This article belongs to the Special Issue Drought Monitoring, Prediction and Impacts)
Show Figures

Figure 1

15 pages, 1749 KiB  
Article
Performance of the PERSIANN Family of Products over the Mekong River Basin and Their Application for the Analysis of Trends in Extreme Precipitation Indices
by Claudia Jimenez Arellano, Vu Dao, Vesta Afzali Gorooh, Raied Saad Alharbi and Phu Nguyen
Atmosphere 2023, 14(12), 1832; https://doi.org/10.3390/atmos14121832 - 16 Dec 2023
Viewed by 1225
Abstract
Near-real-time satellite precipitation estimation is indispensable in areas where ground-based measurements are not available. In this study, an evaluation of two near-real-time products from the Center for Hydrometeorology and Remote Sensing at the University of California, Irvine—PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information [...] Read more.
Near-real-time satellite precipitation estimation is indispensable in areas where ground-based measurements are not available. In this study, an evaluation of two near-real-time products from the Center for Hydrometeorology and Remote Sensing at the University of California, Irvine—PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System) and PDIR-Now (PERSIANN-Dynamic Infrared Rain Rate near-real-time)—were compared to each other and evaluated against IMERG Final (Integrated Multi-satellite Retrievals for Global Precipitation Measurement—Final Run) from 2015 to 2020 over the Mekong River Basin and Delta (MRB) using a spatial resolution of 0.1 by 0.1 and at a daily scale. PERSIANN-CDR (PERSIANN-Climate Data Record) was also included in the evaluation but was not compared against the real-time products. In this evaluation, PDIR-Now exhibited a superior performance to that of PERSIANN-CCS, and the performance of PERSIANN-CDR was deemed satisfactory. The second part of the study entailed performing a Mann–Kendall trend test of extreme precipitation indices using 38 years of PERSIANN-CDR data over the MRB. This annual trend analysis showed that extreme precipitation over the 95th and 99th percentiles has decreased over the Upper Mekong River Basin, and the consecutive number of wet days has increased over the Lower Mekong River Basin. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 2386 KiB  
Article
Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development
by Yanting Zheng, Jing He, Wenxiang Zhang and Aifeng Lv
Sustainability 2023, 15(24), 16880; https://doi.org/10.3390/su152416880 - 15 Dec 2023
Cited by 4 | Viewed by 1536
Abstract
Water security is crucial for the sustainable development of regional water resources. Here, we utilize the Driver-Pressure-State-Impact-Response (DPSIR) framework to construct an indicator system for assessing water security in the Lancang–Mekong River Basin (LMRB). This study also delves into the level of development [...] Read more.
Water security is crucial for the sustainable development of regional water resources. Here, we utilize the Driver-Pressure-State-Impact-Response (DPSIR) framework to construct an indicator system for assessing water security in the Lancang–Mekong River Basin (LMRB). This study also delves into the level of development in the coupling coordination between the economic and social systems and the water resources systems in the basin. The findings reveal that the overall water security situation in the LMRB is satisfactory, with three countries (China, Laos, and Vietnam) surpassing the “safe” threshold and three countries (Thailand, Cambodia, and Myanmar) “Basically safe”. However, water security issues persist, particularly in relation to water pollution and scarcity. Seasonal water shortages and water-related disasters arise due to uneven rainfall distribution throughout the year and inadequate regulating facilities such as wetlands and reservoirs. In addition, the overall coupling coordination level in the LMRB is low, ranging between 0.3 and 0.4, corresponding to a moderate imbalance level in the assessment criteria system. Specifically, Laos and China exhibit the highest coupling coordination level, with a degree of 0.36, whereas Thailand and Myanmar demonstrate the lowest level, with degrees of 0.33 and 0.31, respectively. Overall, our results offer a scientific foundation for the sustainable development of countries within the LMRB. Full article
Show Figures

Figure 1

25 pages, 24658 KiB  
Article
Propagation of Meteorological Drought to Agricultural and Hydrological Droughts in the Tropical Lancang–Mekong River Basin
by Ganlin Feng, Yaoliang Chen, Lamin R. Mansaray, Hongfeng Xu, Aoni Shi and Yanling Chen
Remote Sens. 2023, 15(24), 5678; https://doi.org/10.3390/rs15245678 - 9 Dec 2023
Cited by 8 | Viewed by 2863
Abstract
In the past several decades, drought events have occurred frequently around the world. However, research on the propagation of drought events has not been adequately explored. This study investigated the drought propagation process from meteorological drought to agricultural drought (PMAD) and from meteorological [...] Read more.
In the past several decades, drought events have occurred frequently around the world. However, research on the propagation of drought events has not been adequately explored. This study investigated the drought propagation process from meteorological drought to agricultural drought (PMAD) and from meteorological drought to hydrological drought (PMHD) using a 72-year reanalysis dataset in the tropical Lancang–Mekong River Basin. Firstly, we used a new method—Standardized Drought Analysis Toolbox—to construct drought indices. Then, a linear method (Pearson correlation analysis) and a nonlinear method (mutual information) were used to investigate the drought propagation process. Cross-wavelet analysis and wavelet coherence analysis were employed to explore the statistical relationship among the three drought types. Finally, the random forest method was applied to quantify the major factors in drought response time (DRT). The results revealed the following: (1) both linear and nonlinear methods exhibited strong temporal and spatial consistency for both PMAD and PMHD, with linear relationships being stronger than nonlinear ones. (2) The DRTs of PMAD and PMHD were around 1–2 months and 3–5 months, respectively. Significant differences existed in the DRT between the dry season and the rainy season. (3) A divergent spatial pattern of the proportion of DRT was observed between PMAD and PMHD. (4) Significant statistical correlations between meteorological drought and agricultural drought and between meteorological drought and hydrological drought were observed in specific periods for each sub-region; (5) Hydrometeorological factors contributed the most to DRT, followed by terrain factors and the land cover types. The findings of this study deepened our understanding of the spatial–temporal relationship of multiple drought propagation types in this transboundary river basin. Full article
Show Figures

Figure 1

29 pages, 8610 KiB  
Article
Spatiotemporal Projections of Precipitation in the Lancang–Mekong River Basin Based on CMIP6 Models
by Zhouliang Sun, Yanli Liu, Jianyun Zhang, Hua Chen, Junliang Jin, Cuishan Liu, Guoqing Wang and Liushan Tang
Remote Sens. 2023, 15(18), 4502; https://doi.org/10.3390/rs15184502 - 13 Sep 2023
Cited by 3 | Viewed by 1713
Abstract
The Lancang–Mekong River Basin (LMRB) is the largest international river in Southeast Asia, supporting a population of about 70 million people. Precipitation is the main source of water resources in the basin, with significant impacts on ecology, production, and livelihoods in the basin. [...] Read more.
The Lancang–Mekong River Basin (LMRB) is the largest international river in Southeast Asia, supporting a population of about 70 million people. Precipitation is the main source of water resources in the basin, with significant impacts on ecology, production, and livelihoods in the basin. In this study, future precipitation was projected using the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models. The initial bias of each model was corrected using the daily bias-correction (DBC) method, and then the models were ensembled using the Bayesian model-averaging (BMA) method. The evaluation, based on metrics such as climatology bias, root-mean-square error (RMSE), mean absolute error (MAE), and correlation coefficient (COR), showed that the ensemble precipitation performs better than the individual models. Precipitation under four future Shared Socioeconomic Pathway scenarios (SSP126, SSP245, SSP370, SSP585) displayed an increasing trend throughout the LMRB. The anomalies in annual precipitation in 2061–2090 under each scenario are 136 mm, 142 mm, 114 mm, and 227 mm, in that order. Precipitation in spring and winter shows a trend of increasing in the northern LMRB and decreasing in the southern LMRB, and precipitation in summer and autumn shows a significant trend of increasing in almost the whole basin (significance level 0.05). Spring precipitation in the Mekong Delta decreases in all scenarios. The ratio of wet-season precipitation to dry-season precipitation shows an increasing trend for all scenarios, indicating that the difference between wet-season precipitation and dry-season precipitation will increase in the future. For daily precipitation, the Lancang River Basin (LRB) is dominated by a 3–5% increase in the number of days with 5–10 mm/d of precipitation and the Mekong River Basin (MRB) by a 3–5% increase in the number of days with 10–20 mm/d of precipitation under four SSP scenarios in 2061–2090. There are important changes in the spatial distribution of future precipitation, with the 2500 mm isohyet expanding outwards in a circular pattern and the center of the 1500 mm isohyet moving westwards; i.e., areas with annual precipitation exceeding 2500 mm and 1500 mm will expand. For dry-season precipitation, the 500 mm isohyet shrinks, mainly in a circular pattern towards the center, while the 300 mm isohyet moves mainly towards the east, indicating that areas of dry-season precipitation below 500 mm and 300 mm will expand. In the future, the LMRB will generally become wetter in the wet season and drier in the dry season. Full article
Show Figures

Figure 1

19 pages, 3545 KiB  
Article
Declines in the Mekong’s Megadiverse Larval Fish Assemblages: Implications for Sustainable Development
by Samol Chhuoy, Zeb S. Hogan, Bunyeth Chan, Sudeep Chandra, Bunthang Touch, Ratha Sor, Sovan Lek and Peng Bun Ngor
Sustainability 2023, 15(18), 13535; https://doi.org/10.3390/su151813535 - 11 Sep 2023
Cited by 4 | Viewed by 1844
Abstract
Migratory fishes of the Mekong Basin are facing challenges from human-induced stressors. Quantifying the patterns of fish’s early life stages provides important information on spawning seasons, spawning and nursery habitats, reproductive strategies, migration and dispersal patterns, and stock status. However, the ecology of [...] Read more.
Migratory fishes of the Mekong Basin are facing challenges from human-induced stressors. Quantifying the patterns of fish’s early life stages provides important information on spawning seasons, spawning and nursery habitats, reproductive strategies, migration and dispersal patterns, and stock status. However, the ecology of the Mekong larval fishes, including patterns and drivers of larval fish dispersal, is not well understood. Here, we investigate the temporal variability of drifting larval and juvenile fish assemblages in the Cambodian Mekong River and identify their environmental drivers using long-term (10 year) daily fish larval/juvenile data collections. We found that, in the Mekong main channel, the larval and juvenile assemblages were dominated by longitudinal migrants from the families Cyprinidae and Pangasiidae. Peak abundance and richness were found to occur in July and August, respectively. We detected a significant decline in larval and juvenile abundance and richness over the study period. Cross-wavelet analysis revealed that water levels always lead larval abundance, but lag richness. In addition, cross-correlation analysis observed that peak abundance and richness occurred eight weeks and one week, respectively, before the peak water level. We also discovered that species abundance and richness had a strongly positive relationship with maximum water levels. Variation in fish larval and juvenile abundance and richness was also related to total phosphorus, nitrate, alkalinity, and conductivity. Maximum water levels and the key water quality parameters (e.g., phosphorus, nitrate, alkalinity, and conductivity) significantly influence larval and juvenile fish abundance and richness patterns. Therefore, safeguarding natural seasonal flows, especially maximum flows associated with the peak flood pulse, as well as maintaining good water quality, are key to the reproductive success of many migratory fishes and effective dispersal of offspring to the lower floodplain for nursing, rearing, and growth. Clean and unregulated rivers support productive and diverse fisheries. Full article
Show Figures

Figure 1

Back to TopTop