Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = Meissner effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3783 KiB  
Article
Modeling and Estimation of the Pitch Angle for a Levitating Cart in a UAV Magnetic Catapult Under Stationary Conditions
by Edyta Ładyżyńska-Kozdraś, Bartosz Czaja, Sławomir Czubaj, Jan Tracz, Anna Sibilska-Mroziewicz and Leszek Baranowski
Viewed by 300
Abstract
The paper presents a method for modeling and estimating the orientation of a launch cart in the magnetic suspension system of an innovative UAV catapult. The catapult consists of stationary tracks lined with neodymium magnets, generating a trough-shaped magnetic field. The cart levitates [...] Read more.
The paper presents a method for modeling and estimating the orientation of a launch cart in the magnetic suspension system of an innovative UAV catapult. The catapult consists of stationary tracks lined with neodymium magnets, generating a trough-shaped magnetic field. The cart levitates above the tracks, supported by four containers housing high-temperature YBCO superconductors cooled with liquid nitrogen. The Meissner effect, characterized by the expulsion of magnetic fields from superconductors, ensures stable hovering of the cart. The main research challenge was to determine the cart’s orientation relative to the tracks, with a focus on the pitch angle, which is critical for collision-free operation and system efficiency. A dedicated measurement stand equipped with Hall sensors and Time-of-Flight (ToF) distance sensors was developed. Hall sensors mounted on the cart’s supports captured magnetic field data at specific points. To model the tracks, the CRISP-DM (Cross Industry Standard Process for Data Mining) methodology was employed—a structured framework consisting of six stages; from problem understanding and data preparation to model evaluation and deployment. This approach guided the analysis of data-driven models and facilitated accurate pitch angle estimation. Evaluation metrics, including mean squared error (MSE), were used to identify and select the optimal models. The final model achieved an MSE of 0.084°, demonstrating its effectiveness for precise orientation control. Full article
Show Figures

Figure 1

51 pages, 1013 KiB  
Article
The QCD Vacuum as a Disordered Chromomagnetic Condensate
by Paolo Cea
Cited by 3 | Viewed by 1241
Abstract
An attempt is made to describe from first principles the large-scale structure of the confining vacuum in quantum chromodynamics. Starting from our previous variational studies of the SU(2) pure gauge theory in an external Abelian chromomagnetic field and extending Feynman’s qualitative analysis in [...] Read more.
An attempt is made to describe from first principles the large-scale structure of the confining vacuum in quantum chromodynamics. Starting from our previous variational studies of the SU(2) pure gauge theory in an external Abelian chromomagnetic field and extending Feynman’s qualitative analysis in (2+1)-dimensional SU(2) gauge theory, we show that the SU(3) vacuum in three-space and one-time dimensions behaves like a disordered chromomagnetic condensate. Color confinement is assured by the presence of a mass gap together with the absence of color long-range correlations. We offer a clear physical picture for the formation of the flux tube between static quark charges that allows us to determine the color structure and the transverse profile of the flux-tube chromoelectric field. The transverse profile of the flux-tube chromoelectric field turns out to be in reasonable agreement with lattice data. We, also, show that our quantum vacuum allows for both the color and ordinary Meissner effect. We find that for massless quarks, the quantum vacuum can accommodate a finite non-zero density of fermion zero modes leading to the dynamical breaking of the chiral symmetry. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

16 pages, 1509 KiB  
Perspective
On Thermal and Electrodynamic Aspects of the Superconductive Transition Process
by J. E. Hirsch
Materials 2024, 17(1), 254; https://doi.org/10.3390/ma17010254 - 3 Jan 2024
Viewed by 1085
Abstract
In a classic paper of 1960, W. H. Cherry and J. I. Gittleman discussed various thermal and electrodynamic aspects of the superconductive transition process relevant to practical applications. In a section of the paper that has remained unnoticed, they proposed a physical model [...] Read more.
In a classic paper of 1960, W. H. Cherry and J. I. Gittleman discussed various thermal and electrodynamic aspects of the superconductive transition process relevant to practical applications. In a section of the paper that has remained unnoticed, they proposed a physical model for the Meissner effect. Earlier in 1940–1943, in work that has also remained unnoticed, K. M. Koch had introduced related physical ideas to explain the Meissner effect. Still earlier in 1937, J. C. Slater proposed a model to explain the perfect diamagnetism of superconductors. None of these ideas are part of the conventional London-BCS understanding of superconductivity, yet I will argue that they are essential to understand the Meissner effect, the most fundamental property of superconductors. The unconventional theory of hole superconductivity unifies and extends these ideas. A key missing element in the conventional theory as well as in these early theories is electron-hole asymmetry. A proper understanding of the Meissner effect may help with practical applications of superconductors, as well as to find new superconducting materials with desirable properties. Full article
(This article belongs to the Special Issue Characterization and Application of Superconducting Materials)
Show Figures

Figure 1

16 pages, 4940 KiB  
Article
Hybrid Superconducting/Superconducting Mesoscopic Heterostructure Studied by Modified Ginzburg–Landau Equations
by Jesús González, Angélica Melendez and Luis Camargo
Condens. Matter 2023, 8(4), 104; https://doi.org/10.3390/condmat8040104 - 1 Dec 2023
Cited by 1 | Viewed by 1525
Abstract
Studies involving vortexes in hybrid superconducting devices and their interactions with different components inside samples are important for reaching higher values of critical parameters in superconducting materials. The vortex distribution on each side of a sample with different fundamental parameters, such as temperature [...] Read more.
Studies involving vortexes in hybrid superconducting devices and their interactions with different components inside samples are important for reaching higher values of critical parameters in superconducting materials. The vortex distribution on each side of a sample with different fundamental parameters, such as temperature T, penetration depth λ, coherence length ξ, electron mass m, and the order parameter Ψ, may help to improve the superconducting properties. Thus, in this work, we used the modified Ginzburg–Landau theory to investigate a hybrid superconductor (HS), as well as to provide a highly tunable and adjustable theoretical tool for theoretically explaining the experimental results involving the HS in order to study the vortex behavior in superconductors of mesoscopic dimensions with extreme differences among their fundamental parameters. Therefore, we evaluated the influence of the HS on the vortex configuration and its effects on field-dependent magnetization. The results show that when the applied magnetic field H was increased, the diamagnetic response of the HS (Meissner effect) included additional jumps in magnetization, while diamagnetism continued to increase in the sample. In addition, the differences among parameters created an interface between both components, and two different magnitudes of supercurrent and vortex sizes caused less degradation of the local superconductivity, which increased the upper critical field. On the other hand, this type of HS with differences in parameters on both sides can be used to control the vortex movement in the selected sample of the superconducting region with more accuracy. Full article
(This article belongs to the Special Issue Multicomponent Superconductivity and Superfluidity)
Show Figures

Figure 1

16 pages, 3393 KiB  
Article
Green-Light GaN p-n Junction Luminescent Particles Enhance the Superconducting Properties of B(P)SCCO Smart Meta-Superconductors (SMSCs)
by Qingyu Hai, Honggang Chen, Chao Sun, Duo Chen, Yao Qi, Miao Shi and Xiaopeng Zhao
Nanomaterials 2023, 13(23), 3029; https://doi.org/10.3390/nano13233029 - 27 Nov 2023
Cited by 3 | Viewed by 1433
Abstract
Superconducting materials exhibit unique physical properties and have great scientific value and vast industrial application prospects. However, due to limitations, such as the critical temperature (TC) and critical current density (JC), the large-scale application of superconducting materials [...] Read more.
Superconducting materials exhibit unique physical properties and have great scientific value and vast industrial application prospects. However, due to limitations, such as the critical temperature (TC) and critical current density (JC), the large-scale application of superconducting materials remains challenging. Chemical doping has been a commonly used method to enhance the superconductivity of B(P)SCCO. However, satisfactory enhancement results have been difficult to achieve. In this study, we introduce green-light GaN p-n junction particles as inhomogeneous phases into B(P)SCCO polycrystalline particles to form a smart meta-superconductor (SMSC) structure. Based on the electroluminescence properties of the p-n junction, the Cooper pairs were stimulated and strengthened to enhance the superconductivity of B(P)SCCO. The experimental results demonstrate that the introduction of inhomogeneous phases can indeed enhance the critical temperature TC, critical current density JC, and complete diamagnetism (Meissner effect) of B(P)SCCO superconductors. Moreover, when the particle size of the raw material of B(P)SCCO is reduced from 30 to 5 μm, the grain size of the sintered samples also decreases, and the optimal doping concentration of the inhomogeneous phases increases from 0.15 wt.% to 0.2 wt.%, further improving the superconductivity. Full article
Show Figures

Figure 1

13 pages, 1977 KiB  
Article
Impact of Ionic Strength and Charge Density on Donnan Potential in the NaCl-Cation Exchange Membrane System
by Baraa A. K. Al-Sakaji, Ghaleb A. Husseini and Naif A. Darwish
Water 2023, 15(21), 3830; https://doi.org/10.3390/w15213830 - 2 Nov 2023
Cited by 2 | Viewed by 2315
Abstract
This work aims to theoretically investigate the effect of both the fixed charge density of ion exchange membranes and the ionic strength of the treated aqueous NaCl solution on the generated Donnan potential at thermodynamic equilibrium conditions. The direct objective of our work [...] Read more.
This work aims to theoretically investigate the effect of both the fixed charge density of ion exchange membranes and the ionic strength of the treated aqueous NaCl solution on the generated Donnan potential at thermodynamic equilibrium conditions. The direct objective of our work is to calculate the equilibrium concentration of the Cl co-ion inside a swelled cation-exchange membrane equilibrated with a water/NaCl system. Two activity coefficient models are employed, i.e., the Debye–Huckel (DH) model (as a reference model) and the Meissner model, which is known for its applicability in treating concentrated solutions. Experimental data available in the literature for Donnan potential are used to verify model predictions. Our study confirms that a high fixed charge density is required to counterbalance the deterioration in membrane selectivity encountered in high-salinity systems. The DH model can be safely used to predict the Donnan potential for feed compositions up to 0.1 M. At higher compositions, the DH model significantly overestimates the predicted (absolute) Donnan potential compared to the Meissner model. The osmotic pressure resulting from the difference in ionic concentration between the membrane phase and the feed phase is found to have insignificant effects on the Donnan potential. The equilibrium computations and methodology are presented in a general way that enables handling multivalent electrolyte systems such as CaCl2. Full article
(This article belongs to the Topic Membrane Separation Technology Research)
Show Figures

Figure 1

16 pages, 6623 KiB  
Article
Dynamics of Separation of Unmanned Aerial Vehicles from the Magnetic Launcher Cart during Takeoff
by Edyta Ładyżyńska-Kozdraś, Anna Sibilska-Mroziewicz, Krzysztof Sibilski, Danyil Potoka and Andrzej Żyluk
Electronics 2023, 12(13), 2883; https://doi.org/10.3390/electronics12132883 - 29 Jun 2023
Cited by 1 | Viewed by 1457
Abstract
Most aircraft launchers exhibit a rapid acceleration of the launching aircraft, often exceeding ten times the acceleration due to gravity. However, only magnetic launchers offer flexible control over the propulsion force of the launcher cart, enabling precise control over the aircraft’s acceleration and [...] Read more.
Most aircraft launchers exhibit a rapid acceleration of the launching aircraft, often exceeding ten times the acceleration due to gravity. However, only magnetic launchers offer flexible control over the propulsion force of the launcher cart, enabling precise control over the aircraft’s acceleration and speed during its movement on the launcher. Consequently, extensive research is being conducted on magnetic launchers to ensure the repeatability of launch parameters, protect against aircraft overloads, and ensure operator safety. This article describes the process of modeling and analyzing the dynamical properties of a launch cart of an innovative prototype launcher, which employs a passive magnetic suspension with high-temperature superconductors, developed under the GABRIEL project. The developed mathematical model of the magnetic catapult cart was employed to conduct numerical studies of the longitudinal and lateral movement of the cart, as well as the configuration of the UAV–cart system during UAV takeoff under variable atmospheric conditions. An essential aspect of the research involved experimentally determining the magnetic levitation force generated by the superconductors as a function of the gap. The results obtained demonstrate that the analyzed catapult design enables safe UAV takeoff. External factors and potential vibrations resulting from uneven mass distribution in the UAV–cart system are effectively balanced by the magnetic forces arising from the Meissner effect and the flux pinning phenomenon. The primary advantage of the magnetic levitation catapult, in comparison to commercial catapults, lies in its ability to provide a reduced and consistent acceleration throughout the entire takeoff process. Full article
Show Figures

Figure 1

45 pages, 3943 KiB  
Review
The Paramagnetic Meissner Effect (PME) in Metallic Superconductors
by Michael Rudolf Koblischka, Ladislav Půst, Crosby-Soon Chang, Thomas Hauet and Anjela Koblischka-Veneva
Metals 2023, 13(6), 1140; https://doi.org/10.3390/met13061140 - 19 Jun 2023
Cited by 4 | Viewed by 3222
Abstract
The experimental data in the literature concerning the Paramagnetic Meissner Effect (PME) or also called Wohlleben effect are reviewed with the emphasis on the PME exhibited by metallic, s-wave superconductors. The PME was observed in field-cool cooling (FC-C) and field-cool warming (FC-W) [...] Read more.
The experimental data in the literature concerning the Paramagnetic Meissner Effect (PME) or also called Wohlleben effect are reviewed with the emphasis on the PME exhibited by metallic, s-wave superconductors. The PME was observed in field-cool cooling (FC-C) and field-cool warming (FC-W) m(T)-measurements on Al, Nb, Pb, Ta, in compounds such as, e.g., NbSe2, In-Sn, ZrB12, and others, and also in MgB2, the metallic superconductor with the highest transition temperature. Furthermore, samples with different shapes such as crystals, polycrystals, thin films, bi- and multilayers, nanocomposites, nanowires, mesoscopic objects, and porous materials exhibited the PME. The characteristic features of the PME, found mainly in Nb disks, such as the characteristic temperatures T1 and Tp and the apparative details of the various magnetic measurement techniques applied to observe the PME, are discussed. We also show that PME can be observed with the magnetic field applied parallel and perpendicular to the sample surface, that PME can be removed by abrading the sample surface, and that PME can be introduced or enhanced by irradiation processes. The PME can be observed as well in magnetization loops (MHLs, m(H)) in a narrow temperature window Tp<Tc, which enables the construction of a phase diagram for a superconducting sample exhibiting the PME. We found that the Nb disks still exhibit the PME after more than 20 years, and we present the efforts of magnetic imaging techniques (scanning SQUID microscopy, magneto-optics, diamond nitrogen-vacancy (NV)-center magnetometry, and low-energy muon spin spectroscopy, (LE-μSR)). Various attempts to explain PME behavior are discussed in detail. In particular, magnetic measurements of mesoscopic Al disks brought out important details employing the models of a giant vortex state and flux compression. Thus, we consider these approaches and demagnetization effects as the base to understand the formation of the paramagnetic signals in most of the materials investigated. New developments and novel directions for further experimental and theoretical analysis are also outlined. Full article
Show Figures

Figure 1

15 pages, 1613 KiB  
Article
Magnetic Monopoles, Dyons and Confinement in Quantum Matter
by Carlo A. Trugenberger
Condens. Matter 2023, 8(1), 2; https://doi.org/10.3390/condmat8010002 - 27 Dec 2022
Cited by 1 | Viewed by 2356
Abstract
We show that magnetic monopoles appear naturally in granular quantum matter. Their condensation leads to a new state of matter, superinsulation, in which Cooper pairs are bound into purely electric pions by strings of electric flux. These electric flux tubes, the dual of [...] Read more.
We show that magnetic monopoles appear naturally in granular quantum matter. Their condensation leads to a new state of matter, superinsulation, in which Cooper pairs are bound into purely electric pions by strings of electric flux. These electric flux tubes, the dual of Abrikosov vortices, prevent the separation of charge–hole pairs, thereby causing an infinite resistance, even at finite temperatures, the dual behaviour of superconductors. We will discuss the electric Meissner effect, asymptotic freedom and their measurements and describe the recent direct detection of a linear, confining potential by dynamic relaxation experiments. Finally, we consider dyons, excitations carrying both a magnetic and an electric charge, and show that a condensate of such dyons leads to a possible solution of the mysteries of the pseudogap state of high-Tc cuprates. Full article
Show Figures

Figure 1

14 pages, 3164 KiB  
Article
An Improved Smart Meta-Superconductor MgB2
by Xiaopeng Zhao, Qingyu Hai, Miao Shi, Honggang Chen, Yongbo Li and Yao Qi
Nanomaterials 2022, 12(15), 2590; https://doi.org/10.3390/nano12152590 - 28 Jul 2022
Cited by 4 | Viewed by 3293
Abstract
Increasing and improving the critical transition temperature (TC), current density (JC) and the Meissner effect (HC) of conventional superconductors are the most important problems in superconductivity research, but progress has been slow for many [...] Read more.
Increasing and improving the critical transition temperature (TC), current density (JC) and the Meissner effect (HC) of conventional superconductors are the most important problems in superconductivity research, but progress has been slow for many years. In this study, by introducing the p-n junction nanostructured electroluminescent inhomogeneous phase with a red wavelength to realize energy injection, we found the improved property of smart meta-superconductors MgB2, the critical transition temperature TC increases by 0.8 K, the current density JC increases by 37%, and the diamagnetism of the Meissner effect HC also significantly improved, compared with pure MgB2. Compared with the previous yttrium oxide inhomogeneous phase, the p-n junction has a higher luminescence intensity, a longer stable life and simpler external field requirements. The coupling between superconducting electrons and surface plasmon polaritons may be explained by this phenomenon. The realization of smart meta-superconductor by the electroluminescent inhomogeneous phase provides a new way to improve the performance of superconductors. Full article
(This article belongs to the Special Issue Superconducting Nanostructures and Materials)
Show Figures

Figure 1

40 pages, 55979 KiB  
Review
A Mini Review on Thin Film Superconductors
by David Sibanda, Sunday Temitope Oyinbo, Tien-Chien Jen and Ayotunde Idris Ibitoye
Processes 2022, 10(6), 1184; https://doi.org/10.3390/pr10061184 - 14 Jun 2022
Cited by 6 | Viewed by 10550
Abstract
Thin superconducting films have been a significant part of superconductivity research for more than six decades. They have had a significant impact on the existing consensus on the microscopic and macroscopic nature of the superconducting state. Thin-film superconductors have properties that are very [...] Read more.
Thin superconducting films have been a significant part of superconductivity research for more than six decades. They have had a significant impact on the existing consensus on the microscopic and macroscopic nature of the superconducting state. Thin-film superconductors have properties that are very different and superior to bulk material. Amongst the various classification criteria, thin-film superconductors can be classified into Fe based thin-film superconductors, layered titanium compound thin-film superconductors, intercalation compounds of layered and cage-like structures, and other thin-film superconductors that do not fall into these groups. There are various techniques of manufacturing thin films, which include atomic layer deposition (ALD), chemical vapour deposition (CVD), physical vapour deposition (PVD), molecular beam epitaxy (MBE), sputtering, electron beam evaporation, laser ablation, cathodic arc, and pulsed laser deposition (PLD). Thin film technology offers a lucrative scheme of creating engineered surfaces and opens a wide exploration of prospects to modify material properties for specific applications, such as those that depend on surfaces. This review paper reports on the different types and groups of superconductors, fabrication of thin-film superconductors by MBE, PLD, and ALD, their applications, and various challenges faced by superconductor technologies. Amongst all the thin film manufacturing techniques, more focus is put on the fabrication of thin film superconductors by atomic layer deposition because of the growing popularity the process has gained in the past decade. Full article
(This article belongs to the Special Issue Recent Advances in Processed Materials for Energy Applications)
Show Figures

Figure 1

20 pages, 7693 KiB  
Article
The Effect of Scandium on the Structure, Microstructure and Superconductivity of Equimolar Sc-Hf-Nb-Ta-Ti-Zr Refractory High-Entropy Alloys
by Mitja Krnel, Andreja Jelen, Stanislav Vrtnik, Jože Luzar, Darja Gačnik, Primož Koželj, Magdalena Wencka, Anton Meden, Qiang Hu, Sheng Guo and Janez Dolinšek
Materials 2022, 15(3), 1122; https://doi.org/10.3390/ma15031122 - 31 Jan 2022
Cited by 13 | Viewed by 3407
Abstract
In this study, we investigate the scandium-containing Sc-Hf-Nb-Ta-Ti-Zr system of refractory high-entropy alloys (HEAs). Using the arc-melting method, we synthesized nine equimolar alloys (five 4-, three 5- and one 6-component), with all of them containing Sc. The alloys were characterized by XRD, electron [...] Read more.
In this study, we investigate the scandium-containing Sc-Hf-Nb-Ta-Ti-Zr system of refractory high-entropy alloys (HEAs). Using the arc-melting method, we synthesized nine equimolar alloys (five 4-, three 5- and one 6-component), with all of them containing Sc. The alloys were characterized by XRD, electron microscopy and EDS, while superconductivity was investigated via electrical resistivity, specific heat and the Meissner effect. The results were compared to the parent Hf-Nb-Ta-Ti-Zr refractory HEAs, forming a single-phase body-centered cubic (bcc) structure and quite homogeneous microstructure. The addition of Sc produces a two-phase structure in the Sc-Hf-Nb-Ta-Ti-Zr alloys, with one phase being bcc and the other hexagonal close-packed (hcp). The hcp phase absorbs practically all Sc, whereas the Sc-poor bcc phase is identical to the bcc phase in the Hf-Nb-Ta-Ti-Zr parent system. Upon the Sc addition, the microstructure becomes very inhomogeneous. Large bcc dendrites (10–100 µm) are homogeneous in the central parts, but become a fine dispersion of sub-micron precipitates of the bcc and hcp phases close to the edges. The interdendritic regions are also a fine dispersion of the two phases. Superconductivity of the Sc-Hf-Nb-Ta-Ti-Zr alloys originates from the bcc phase fraction, which demonstrates identical superconducting parameters as the bcc Hf-Nb-Ta-Ti-Zr parent alloys, while the Sc-containing hcp phase fraction is non-superconducting. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

11 pages, 2140 KiB  
Article
Critical Current Density and Meissner Effect of Smart Meta-Superconductor MgB2 and Bi(Pb)SrCaCuO
by Honggang Chen, Yongbo Li, Yao Qi, Mingzhong Wang, Hongyan Zou and Xiaopeng Zhao
Materials 2022, 15(3), 972; https://doi.org/10.3390/ma15030972 - 27 Jan 2022
Cited by 4 | Viewed by 3239
Abstract
The smart meta-superconductor MgB2 and Bi(Pb)SrCaCuO increase the superconducting transition temperature (TC), but the changes in the transport critical current density (JC) and Meissner effect are still unknown. Here, we investigated the JC and Meissner [...] Read more.
The smart meta-superconductor MgB2 and Bi(Pb)SrCaCuO increase the superconducting transition temperature (TC), but the changes in the transport critical current density (JC) and Meissner effect are still unknown. Here, we investigated the JC and Meissner effect of smart meta-superconductor MgB2 and Bi(Pb)SrCaCuO. The use of the standard four-probe method shows that Y2O3:Eu3+ and Y2O3:Eu3++Ag inhomogeneous phase significantly increase the JC, and JC decreases to a minimum value at a higher temperature. The Meissner effect was measured by direct current magnetization. The doping of Y2O3:Eu3+ and Y2O3:Eu3++Ag luminescent inhomogeneous phase causes a Meissner effect of MgB2 and Bi(Pb)SrCaCuO at a higher temperature, while the non-luminescent dopant reduces the temperature at which samples have Meissner effect. The introduction of luminescent inhomogeneous phase in conventional MgB2 and copper oxide high-temperature Bi(Pb)SrCaCuO superconductor increases the TC and JC, and Meissner effect is exerted at higher temperature. Therefore, smart meta-superconductivity is suitable for conventional and copper oxide high-temperature superconductors. Full article
Show Figures

Figure 1

23 pages, 389 KiB  
Article
The Law of Entropy Increase and the Meissner Effect
by Alexey Nikulov
Entropy 2022, 24(1), 83; https://doi.org/10.3390/e24010083 - 3 Jan 2022
Cited by 12 | Viewed by 4939
Abstract
The law of entropy increase postulates the existence of irreversible processes in physics: the total entropy of an isolated system can increase, but cannot decrease. The annihilation of an electric current in normal metal with the generation of Joule heat because of a [...] Read more.
The law of entropy increase postulates the existence of irreversible processes in physics: the total entropy of an isolated system can increase, but cannot decrease. The annihilation of an electric current in normal metal with the generation of Joule heat because of a non-zero resistance is a well-known example of an irreversible process. The persistent current, an undamped electric current observed in a superconductor, annihilates after the transition into the normal state. Therefore, this transition was considered as an irreversible thermodynamic process before 1933. However, if this transition is irreversible, then the Meissner effect discovered in 1933 is experimental evidence of a process reverse to the irreversible process. Belief in the law of entropy increase forced physicists to change their understanding of the superconducting transition, which is considered a phase transition after 1933. This change has resulted to the internal inconsistency of the conventional theory of superconductivity, which is created within the framework of reversible thermodynamics, but predicts Joule heating. The persistent current annihilates after the transition into the normal state with the generation of Joule heat and reappears during the return to the superconducting state according to this theory and contrary to the law of entropy increase. The success of the conventional theory of superconductivity forces us to consider the validity of belief in the law of entropy increase. Full article
(This article belongs to the Section Thermodynamics)
26 pages, 11733 KiB  
Article
Morphological Fabrication of Rubber Cutaneous Receptors Embedded in a Stretchable Skin-Mimicking Human Tissue by the Utilization of Hybrid Fluid
by Kunio Shimada, Ryo Ikeda, Hiroshige Kikura and Hideharu Takahashi
Sensors 2021, 21(20), 6834; https://doi.org/10.3390/s21206834 - 14 Oct 2021
Cited by 6 | Viewed by 2917
Abstract
Sensors are essential in the haptic technology of soft robotics, which includes the technology of humanoids. Haptic sensors can be simulated by the mimetic organ of perceptual cells in the human body. However, there has been little research on the morphological fabrication of [...] Read more.
Sensors are essential in the haptic technology of soft robotics, which includes the technology of humanoids. Haptic sensors can be simulated by the mimetic organ of perceptual cells in the human body. However, there has been little research on the morphological fabrication of cutaneous receptors embedded in a human skin tissue utilizing artificial materials. In the present study, we fabricated artificial, cell-like cutaneous receptors embedded in skin tissue mimicking human skin structure by utilizing rubber. We addressed the fabrication of five cutaneous receptors (free nerve endings, Krause and bulbs, Meissner corpuscles, Pacinian corpuscles and Ruffini endings). In addition, we investigated the effectiveness of the fabricated tissue for mechanical and thermal sensing. At first, in the production of integrated artificial skin tissue, we proposed a novel magnetic, responsive, intelligent, hybrid fluid (HF), which is suitable for developing the hybrid rubber skin. Secondly, we presented the fabrication by utilizing not only the HF rubber but our previously proposed rubber vulcanization and adhesion techniques with electrolytic polymerization. Thirdly, we conducted a mechanical and thermal sensing touch experiment with the finger. As a result, it demonstrated that intelligence as a mechanoreceptor or thermoreceptor depends on its fabric: the HF rubber sensor mimicked Krause and bulbs has the thermal and pressing sensibility, and the one mimicked Ruffini endings the shearing sensibility. Full article
Show Figures

Figure 1

Back to TopTop