Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Landsat-7 ETM+ panchromatic image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8026 KiB  
Article
The Estimation of Lava Flow Temperatures Using Landsat Night-Time Images: Case Studies from Eruptions of Mt. Etna and Stromboli (Sicily, Italy), Kīlauea (Hawaii Island), and Eyjafjallajökull and Holuhraun (Iceland)
by Ádám Nádudvari, Anna Abramowicz, Rosanna Maniscalco and Marco Viccaro
Remote Sens. 2020, 12(16), 2537; https://doi.org/10.3390/rs12162537 - 7 Aug 2020
Cited by 12 | Viewed by 6325
Abstract
Using satellite-based remote sensing to investigate volcanic eruptions is a common approach for preliminary research, chiefly because a great amount of freely available data can be effectively accessed. Here, Landsat 4-5TM, 7ETM+, and 8OLI night-time satellite images are used to estimate lava flow [...] Read more.
Using satellite-based remote sensing to investigate volcanic eruptions is a common approach for preliminary research, chiefly because a great amount of freely available data can be effectively accessed. Here, Landsat 4-5TM, 7ETM+, and 8OLI night-time satellite images are used to estimate lava flow temperatures and radiation heat fluxes from selected volcanic eruptions worldwide. After retrieving the spectral radiance, the pixel values were transformed into temperatures using the calculated calibration constants. Results showed that the TIR and SWIR bands were saturated and unable to detect temperatures over the active lava flows. However, temperatures were effectively detected over the active lava flows in the range ~500–1060 °C applying the NIR-, red-, green- or blue-band. Application of the panchromatic band with 15 m resolution also revealed details of lava flow morphology. The calculated radiant heat flux for the lava flows accords with increasing cooling either with slope or with distance from the vent. Full article
Show Figures

Graphical abstract

16138 KiB  
Article
Spatial-Temporal Characteristics of Glacier Velocity in the Central Karakoram Revealed with 1999–2003 Landsat-7 ETM+ Pan Images
by Yongling Sun, Liming Jiang, Lin Liu, Yafei Sun and Hansheng Wang
Remote Sens. 2017, 9(10), 1064; https://doi.org/10.3390/rs9101064 - 19 Oct 2017
Cited by 36 | Viewed by 8422
Abstract
The situation of stable and slightly advancing glaciers in the Karakoram is called the “Karakoram anomaly”. Glacier surface velocity is one of the key parameters of glacier dynamics and mass balance, however, the response of glacier motion to this regional anomaly is not [...] Read more.
The situation of stable and slightly advancing glaciers in the Karakoram is called the “Karakoram anomaly”. Glacier surface velocity is one of the key parameters of glacier dynamics and mass balance, however, the response of glacier motion to this regional anomaly is not fully understood. Here, we characterize the spatial-temporal variations in glacier velocity over the Central Karakoram from 1999–2003. The inter-annual glacier velocity fields were retrieved using a cross-correlation-based algorithm applied to four Landsat-7 Enhanced Thematic Mapper Plus (ETM+) panchromatic image pairs. We find that most of the glaciers on the southern slope flowed faster than those on the northern slope, which might be attributed to the differences in glacier sizes. Furthermore, ice motion observations over four years reveal that most of the glaciers were quasi-stable or experienced small fluctuations of flow velocity during our study period. We identify a new surging event for the South Skamri Glacier in the study period by investigating the glacier frontal changes and the longer-term time series of surface velocities between 1996 and 2006. From the transverse velocity profiles of seven typical glaciers, we infer that basal sliding is the predominant motion mechanism of the middle and upper glaciers, whereas internal deformation dominates closest to the glacier terminus. Full article
(This article belongs to the Special Issue Remote Sensing of Glaciers)
Show Figures

Graphical abstract

3146 KiB  
Article
Radiometric Cross-Calibration of GF-4 in Multispectral Bands
by Aixia Yang, Bo Zhong, Shanlong Wu and Qinhuo Liu
Remote Sens. 2017, 9(3), 232; https://doi.org/10.3390/rs9030232 - 3 Mar 2017
Cited by 30 | Viewed by 5351
Abstract
The GaoFen-4 (GF-4), launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS) is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like [...] Read more.
The GaoFen-4 (GF-4), launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS) is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like the charge-coupled device (CCD) onboard HuanJing-1 (HJ) or the wide field of view sensor (WFV) onboard GaoFen-1 (GF-1), GF-4 also has a wide field of view, which provides challenges for cross-calibration with narrow field of view sensors, like the Landsat series. A new technique has been developed and used to calibrate HJ-1/CCD and GF-1/WFV, which is verified viable. The technique has three key steps: (1) calculate the surface using the bi-directional reflectance distribution function (BRDF) characterization of a site, taking advantage of its uniform surface material and natural topographic variation using Landsat Enhanced Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) imagery and digital elevation model (DEM) products; (2) calculate the radiance at the top-of-the atmosphere (TOA) with the simulated surface reflectance using the atmosphere radiant transfer model; and (3) fit the calibration coefficients with the TOA radiance and corresponding Digital Number (DN) values of the image. This study attempts to demonstrate the technique is also feasible to calibrate GF-4 multispectral bands. After fitting the calibration coefficients using the technique, extensive validation is conducted by cross-validation using the image pairs of GF-4/PMS and Landsat-8/OLI with similar transit times and close view zenith. The validation result indicates a higher accuracy and frequency than that given by the China Centre for Resources Satellite Data and Application (CRESDA) using vicarious calibration. The study shows that the new technique is also quite feasible for GF-4 multispectral bands as a routine long-term procedure. Full article
Show Figures

Figure 1

Back to TopTop