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Abstract: In this study, we present an exact solution to the Lindblad master equation
describing the interaction of two quantized electromagnetic fields in a decaying cavity
coupled to a thermal reservoir at a finite temperature. The solution is obtained using
the superoperator technique, leveraging commutation relations to factorize the exponen-
tial of the Lindblad superoperators into a product of exponentials. To demonstrate the
applicability of this approach, we analyze the dynamics of the system both analytically
and numerically for two initial conditions: nonentangled and entangled coherent states,
exploring their temporal evolution. Additionally, we employ entropy and quantum discord
analysis to characterize quantum correlations and analyze the behavior of entanglement (or
lack thereof) during the evolution. This comprehensive analysis provides valuable insights
into the behavior of open quantum systems and their interaction with the environment.

Keywords: Lindblad master equation; superoperators; quantum correlations

1. Introduction
The study of quantum systems in optical cavities has played a pivotal role in the

advancement of quantum optics [1,2]. Optical cavities provide a controlled environment
that enables exploration of nonclassical behaviors of quantized electromagnetic fields,
making them ideal platforms for observing phenomena such as spontaneous emission,
quantum decoherence, and system thermalization [3–6]. In the absence of dissipation,
the field modes within these cavities remain isolated, and their dynamics can be accurately
described using the Schrödinger equation [7–12]. However, when the cavity experiences
decay and interacts with a thermal reservoir, the system undergoes irreversible processes,
such as dissipation and decoherence, requiring the use of the Lindblad master equation to
describe its time evolution [13–15].

Although the Lindblad master equation is a powerful tool for modeling open quantum
systems, obtaining exact solutions is often an intractable task. However, recent advances
have employed techniques based on superoperators and non-unitary transformations to
derive exact solutions for systems comprising two decaying field modes, both at zero
and finite temperatures [16,17]. These studies have shown that, at zero temperature,
the dynamics of the system are dominated solely by cavity dissipation, while at finite
temperatures, thermal excitations from the reservoir introduce significant modifications [17].
Furthermore, exact solutions are critical for benchmarking numerical methods and for
exploring phenomena such as thermalization, decoherence, and entanglement dynamics in
more complex systems [6,18,19].
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Entanglement, in particular, stands out due to its fundamental role in quantum tech-
nologies such as quantum computing, cryptography, and communication [18,20–22]. En-
tangled states arise from the interaction of quantized fields and exhibit correlations that
challenge classical explanations while also being highly susceptible to environmental inter-
actions, which can induce quantum decoherence and even lead to the loss of entanglement
as the system interacts with a thermal reservoir [4,19]. This sensitivity underscores the
importance of understanding how entangled and unentangled states evolve under dissi-
pative conditions, as well as how the system transitions between quantum and classical
regimes [23,24]. Moreover, the study of the preservation or degradation of entanglement
in open quantum systems is vital for the advancement of quantum technologies, where
environmental interactions remain a significant challenge [14,25]. In addition to entan-
glement, quantum discord and classical correlations have emerged as essential tools for
characterizing quantum correlations in open systems. Unlike entanglement, quantum dis-
cord captures broader quantum correlations that can persist even in separable states [26,27].
Studying quantum discord complements the analysis of entanglement, providing deeper
insights into how correlations evolve and how systems transition between quantum and
classical behaviors [28,29].

To contextualize this study within the larger literature, we note that previous work has
focused primarily on specific cases of initial states, often neglecting a comparative analysis
between entangled and unentangled scenarios [30–34]. Furthermore, while numerical ap-
proaches have been widely employed, there is a scarcity of analytical solutions that provide
fundamental insights into the interaction between dissipation and thermal effects [6,13,35].
This gap highlights the need for a detailed theoretical and numerical exploration of these
systems, addressing both entangled and nonentangled initial conditions.

This work aims to provide a detailed analysis of the Lindblad master equation describ-
ing the interaction of two quantized field modes in an optical cavity coupled to a thermal
reservoir. Using the superoperator formalism, we explore how the initial states of the
system, whether entangled or not, affect its temporal evolution under thermal dissipation.
In Section 2, we introduce the theoretical framework that governs the physical system
and the Lindblad equation that describes its dynamics. Section 3 presents the solution
methodology, employing superoperator techniques to factorize the evolution operator
through commutation relations. In Section 4, we analyze the evolution of two initially
nonentangled coherent states, and in Section 5, we examine the evolution of two initially
entangled coherent states. In Section 6, we perform a detailed analysis of entropy and
quantum discord to study the behavior of quantum and classical correlations, providing
insight into the dynamics of entanglement of the system. Finally, in Section 7, we present
our conclusions.

2. Lindblad Master Equation
Consider the interaction between two quantized fields, denoted by â and b̂, with each

subject to Markovian decay processes with a common loss rate, γ. Both fields are coupled
to a thermal reservoir characterized by an average thermal excitation number, n̄th ≥ 0,
as shown in Figure 1.

The Markovian dynamics of the reduced density matrix, ρ̂, in the interaction picture is
described by the Lindblad master equation [13–15]:

dρ̂

dt
= − i gŜρ̂ + Laρ̂ + Lbρ̂, (1)

where Ŝρ̂ is defined as Ŝρ̂ = [Ĥint, ρ̂], with Ĥint = âb̂† + â† b̂ representing the interaction
Hamiltonian, which describes the coherent coupling between the two bosonic field modes.
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Here, â (â†) and b̂ (b̂†) are the annihilation (creation) operators for each mode, and g denotes
the coupling strength between the two bosonic modes [7–12]. The terms Lcρ̂, with c = a, b,
represent the Lindblad superoperators—also known as the Lindbladian—for the decay
processes of each field. The Lindbladian is defined as follows:

Lcρ̂ ≡ γ
[
(n̄th + 1)

(
2ĉρ̂ĉ† − ĉ† ĉρ̂ − ρ̂ĉ† ĉ

)
+ n̄th

(
2ĉ†ρ̂ĉ − ĉĉ†ρ̂ − ρ̂ĉĉ†

)]
. (2)

The Lindbladian describes how the bosonic system interacts with the thermal envi-
ronment, capturing both the loss and gain of excitations. The first term accounts for the
loss of excitations due to the interaction with the environment, where the factor n̄th + 1
represents the total number of excitations, including those induced by the thermal reservoir.
This dissipation is modeled through the annihilation operators ĉ, with ĉ = â, b̂. The second
term captures the gain of thermal excitations, with n̄th representing the average number of
excitations in equilibrium, and the creation operators ĉ† model this gain. Together, these
terms offer a comprehensive description of the dynamics of the system influenced by both
the mutual interaction and the thermal environment (see Figure 1). It is also evident that at
zero temperature, where n̄th = 0, the Equation (1) reduces to the case where only decay is
present, as analyzed in [16].

n̄th

γ

â b̂

γ

n̄th

Figure 1. Schematic representation of two bosonic fields, â and b̂, both coupled to the same thermal
reservoir with an average thermal photon number n̄th. The interaction with the reservoir induces
both loss and gain processes, characterized by dissipation mechanisms that include spontaneous
emission, at a rate proportional to γ(1 + n̄th) and thermal absorption proportional to γn̄th. These
processes ensure that both fields experience decay at the same rate, γ, while maintaining equilibrium
with the thermal reservoir, reflecting identical incoherent dynamics for each field.

3. Solution to the Lindblad Master Equation
In order to solve the Lindblad master Equation (1), it is important to note that, al-

though the Lindbald superoperators individually do not commute with the interaction
term, surprisingly, the sum of the Lindblad superoperators Laρ̂ and Lbρ̂ commutes with
the superoperator Ŝρ̂, that is, [

La + Lb, Ŝ
]
ρ̂ = 0, (3)

and, obviously, the Lindblad superoperators commute with each other. It is worth high-
lighting that the superoperators commute if and only if the decay rate is the same for both,
i.e., γ = γa = γb, and the fields are coupled to two independent thermal reservoirs at
the same temperature, which is characterized by an average number of thermal photons
n̄th (see Figure 1). From this, we can derive the formal solution to the Lindblad master
Equation (1), given an initial condition ρ̂(0), as

ρ̂(t) = eLat eLbt e− i gtŜ ρ̂(0). (4)



Dynamics 2025, 5, 4 4 of 17

This solution requires applying the exponential functions of the superoperators to the
initial condition in a specific way. This process is not straightforward, as each superoperator
consists of a product or sum of operators. To apply these exponentials correctly, we must
carefully decompose each superoperator. In the following, we will provide a detailed
explanation of how to achieve this decomposition step by step.

3.1. Decomposition of the First Exponential

To efficiently apply the first exponential term, e− i gtŜ, to an arbitrary initial condition
ρ̂(0) as presented in (4), it is crucial to decompose the term into a more tractable form.
For this purpose, we define the operators:

Â =
â + b̂√

2
and B̂ =

â − b̂√
2

, (5)

which satisfy the relation

âb̂† + â† b̂ = Â† Â − B̂† B̂ = N̂A − N̂B, (6)

where N̂A = Â† Â and N̂B = B̂† B̂ represent the number of operators for the modes Â and
B̂, respectively. Utilizing this result, the first exponential term in (4), when applied to ρ̂(0),
corresponds to the unitary evolution driven by the interaction Hamiltonian and can be
expressed as

e− i gtŜ ρ̂(0) = e− i gt(N̂A−N̂B) |ψ(0)⟩ ⟨ψ(0)| ei gt(N̂A−N̂B). (7)

The unitary evolution captures the coherent dynamics dictated by the superoperator
Ŝ. The next step involves incorporating the nonunitary contributions arising from the
Lindblad master equation. These terms account for dissipation and decoherence processes,
ensuring a complete description of the open dynamics of the system.

3.2. Decomposition of the Second and Third Exponentials

The second and third exponential terms in (4), eLct for c = a, b, govern the nonunitary
dynamics of the modes â and b̂, respectively. Although these terms play analogous roles,
the main challenge lies in the explicit decomposition of the Lindbladian exponential eLct.
To facilitate this decomposition, the Lindbladian superoperator Lc, originally defined in
(2), is rewritten in a more manageable form [17,36–38]:

Lcρ̂ = 2γ(n̄th + 1) ĉρ̂ĉ† + 2γ n̄th ĉ†ρ̂ĉ − γ(2 n̄th + 1)
(

ĉ† ĉρ̂ + ρ̂ĉ† ĉ
)
− 2γn̄th ρ̂

=
(

Ĵ(c)− + Ĵ(c)+ + L̂(c) − 2γn̄th

)
ρ̂, (8)

where we have utilized the commutation relation ĉĉ† = ĉ† ĉ + 1 and defined the following
superoperators to represent the different dissipative contributions [17,37–39]:

Ĵ(c)− ρ̂ = 2γ(n̄th + 1) ĉρ̂ĉ†, Ĵ(c)+ ρ̂ = 2γn̄th ĉ†ρ̂ĉ, L̂(c)ρ̂ = −γ(2 n̄th + 1)
(

ĉ† ĉρ̂ + ρ̂ĉ† ĉ
)

. (9)

The decomposition highlights the distinct contributions to the dynamics of the system:
Ĵ(c)+ represents the photon gain process, Ĵ(c)− corresponds to photon loss, and L̂(c) accounts
for the dissipative effects arising from the interaction with the thermal reservoir. By refor-
mulating the Lindbladian superoperator in this way, we can more efficiently analyze and
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apply the nonunitary evolution of the system. This reformulation enables us to express the
Lindbladian exponential as follows:

ρ̂(t) = e−4γn̄tht ∏
c=a,b

[
e
(

Ĵ(c)− + Ĵ(c)+ +L̂(c)
)

t
]

e− i gt(N̂A−N̂B) |ψ(0)⟩ ⟨ψ(0)| ei gt(N̂A−N̂B). (10)

In this expression, the term e−4γn̄tht represents a simple exponential decay factor, while

the more complex dynamics is encapsulated in the exponential operator e
(

Ĵ(c)− + Ĵ(c)+ +L̂(c)
)

t.
It is straightforward to verify that these superoperators satisfy the commutation

relations of the SU(1, 1) algebra, which is given by

[
Ĵ(c)+ , Ĵ(c)−

]
ρ̂ = 4γ2n̄th(n̄th + 1)

[
L̂(c)

γ(2n̄th + 1)
− 1

]
ρ̂, (11a)[

Ĵ(c)± , L̂(c)
]
ρ̂ = ±2γ(2n̄th + 1) Ĵ(c)± ρ̂. (11b)

Given the commutation relations established, we propose an ansatz to factorize the
sum of the superoperators in Equation (10) as a product of exponentials involving these
superoperators. It is important to note that the order in which these superoperators are
applied can be chosen freely. However, for convenience and to simplify the application
of the solution to the initial conditions in which the field modes are in coherent states,
it is advantageous to first apply powers of the annihilation operator, represented by the
superoperator Ĵ(c)− , followed by powers of the creation operator, represented by Ĵ(c)+ . This
leads to the following ansatz:

ρ̂(t) = e−4γn̄thte2s(t) ∏
c=a,b

[
er(t) Ĵ(c)+ eq(t)L̂(c)

ep(t) Ĵ(c)−

]
e− i gt(N̂A−N̂B) |ψ(0)⟩ ⟨ψ(0)| ei gt(N̂A−N̂B). (12)

By differentiating Equations (10) and (12) with respect to time, equating the resulting
terms, and solving the resulting system of coupled differential equations, we derive the
following solutions [38]:

p(t) = r(t) =
1

2γn̄th

N(t)
N(t) + 1

, (13a)

q(t) =
1

γ(2n̄th + 1)
{γt + ln[N(t) + 1]}, (13b)

s(t) = 2γn̄tht − ln[N(t) + 1], (13c)

where N(t) = n̄th(1 − e−2γt).
Substituting these results into Equation (12) yields the final solution to the Lindblad

master equation, as presented in Equation (4). This solution is now generalized and
can be applied to any initial condition of the cavity, making it particularly valuable for
investigating the dynamics of various quantum systems. This represents one of the key
motivations that underpins the present manuscript.

4. Time Evolution of Nonentangled Coherent States
In this section, we analyze the temporal evolution of a system consisting of two field

modes initially prepared in a nonentangled state described by [7–12]:

|ψ(0)⟩ = |α⟩a ⊗ |β⟩b . (14)

This initial condition serves as the basis for studying how nonentangled coherent
states evolve under the influence of the Lindblad dynamics, particularly focusing on the
effects of dissipation and thermalization in the presence of a thermal reservoir.
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4.1. Action of the First Exponential Operator

We begin by applying the first exponential operator, as expressed in Equation (7).
Using the results obtained in (A4) and the property ei tn̂ |ζ⟩ = |ζei t⟩ (where n̂ = ĉ† ĉ is the
number operator), we find that the transformed state evolves as

e− i gtŜρ̂(0) = e− i gt(N̂A−N̂B) |α⟩a ⟨α| ⊗ |β⟩b ⟨β| ei gt(N̂A−N̂B)

=

∣∣∣∣α + β√
2

e− i gt
〉

A

〈
α + β√

2
e− i gt

∣∣∣∣⊗ ∣∣∣∣α − β√
2

ei gt
〉

B

〈
α − β√

2
ei gt

∣∣∣∣. (15)

Using the transformation derived from Equation (A6), we map the evolved state back
to the original field modes â and b̂. This yields the following expression for the state after
the application of the first exponential operator:

e− i gtŜρ̂(0) = |α′⟩a ⟨α′| ⊗ |β′⟩b ⟨β′| , (16)

where

α′ =
α + β

2
e− i gt +

α − β

2
ei gt, (17a)

β′ =
α + β

2
e− i gt − α − β

2
ei gt. (17b)

This result demonstrates how the initial nonentangled state evolves under the influ-
ence of the first exponential operator, effectively incorporating the interactions between
the modes. The transformed coherent states, |α′⟩a and |β′⟩b, now reflect the effects of the
interaction parameters and the temporal evolution while preserving the nonentangled
structure of the system.

4.2. Action of the Second and Third Exponential Operators

As mentioned above, since the decay rate and the number of thermal excitations in the
reservoir are the same for each mode in the cavity, the action of the exponential operators
of the Lindblad superoperators La and Lb is practically identical. Therefore, it is sufficient
to derive the results for a single mode (for example, for the operator â) and then perform
the tensor product with the other mode (b̂).

Thus, we are now interested in showing how to apply the solution (12) to the previous
result given by Equation (16). To do this, we will use the following results (for a more
detailed derivation, the reader may refer to references [7,37,38]):

e−2γn̄thtes(t) =
1

N(t) + 1
, (18a)

ep(t) Ĵ(c)− |ζ ′⟩ ⟨ζ ′| = exp
[
|ζ ′|2 N(t)

N(t) + 1
n̄th + 1

n̄th

]
|ζ ′⟩ ⟨ζ ′| , (18b)

eq(t)L̂(c) |ζ ′⟩ ⟨ζ ′| = exp
[
|ζ̃(t)|2 − |ζ ′|2

]
|ζ̃(t)⟩ ⟨ζ̃(t)| , (18c)

ep(t) Ĵ(c)+ |ζ̃(t)⟩ ⟨ζ̃(t)| =
∞

∑
n=0

1
n!

[
N(t)

N(t) + 1

]n n

∑
k=0

n

∑
m=0

(
n
k

)(
n
m

)
×
√

k!
√

m! ζ̃∗(t)n−k ζ̃(t)n−m |ζ̃(t), k⟩ ⟨ζ̃(t), m| , (18d)

where ζ̃(t) = ζ ′e−γt

N(t)+1 , |ζ̃(t), k⟩ = D̂[ζ̃(t)] |k⟩ is the displaced number operator [7–12],
and ζ ′ = α′, β′.

Thus, we can write the full solution to the Lindblad master Equation (1) as

ρ̂(t) = [α]a [β]b |α̃(t), k⟩a ⟨α̃(t), m| ⊗ |β̃(t), k′⟩ ⟨β̃(t), m′| , (19)
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with

[α]a =
exp

[
|α̃(t)|2 − |α′|2

]
exp

[
|α′|2 N(t)

N(t)+1
n̄th+1

n̄th

]
N(t) + 1

∞

∑
n=0

1
n!

[
N(t)

N(t) + 1

]n

×
n

∑
k=0

n

∑
m=0

(
n
k

)(
n
m

)√
k!
√

m! α̃∗(t)n−k α̃(t)n−m,

[β]b =
exp

[
|β̃(t)|2 − |β′|2

]
exp

[
|β′|2 N(t)

N(t)+1
n̄th+1

n̄th

]
N(t) + 1

∞

∑
n′=0

1
n′!

[
N(t)

N(t) + 1

]n′

×
n′

∑
k′=0

n′

∑
m′=0

(
n′

k′

)(
n′

m′

)√
k′!

√
m′! β̃∗(t)n′−k′ β̃(t)n′−m′

. (20)

In this expression, α̃(t) = α′e−γt

N(t)+1 , and β̃(t) = β′e−γt

N(t)+1 . The terms [α]a and [β]b represent
prefactors that include the summation terms and components of the thermal distribution
associated with each mode, â and b̂, respectively. These terms account for the effects of
dissipation and the number of excitations in each cavity owing to thermal fluctuations.

Note that as t → ∞, α̃(t) → 0, β̃(t) → 0, and N(t) → n̄th. Therefore, we recover the
thermal density matrix associated with the probability of finding n photons in the mode â
and n′ photons in the mode b̂ (both at the same temperature n̄th), which is given by

ρ̂(t → ∞) =
1

(n̄th + 1)2

∞

∑
n=0

∞

∑
n′=0

(
n̄th

n̄th + 1

)n+n′

|n⟩a ⟨n| ⊗ |n′⟩b ⟨n′| . (21)

5. Time Evolution of Entangled Coherent States
In the previous Section 4, it was shown that when the initial state consists of two

coherent nonentangled states, the system evolves in such a way that the states remain
separable throughout the evolution. The magnitudes of the coherent states change because
of dissipation, but the states themselves do not become entangled. Naturally, one might
wonder what happens if the initial state consists of two coherent entangled states [31,34].
To explore this, let us now consider an initial entangled state of the form:

|ψ(0)⟩ = 1
N (|α⟩a ⊗ |−β⟩b + |−α⟩a ⊗ |β⟩b), (22)

where N is the normalization constant, which is given by

N =

√
2
[
1 + e−2(|α|2+|β|2)

]
. (23)

Now, applying this initial condition to the first exponential operator (7) and using the
same technique described in the previous section, we obtain

e− i gtŜρ̂(0) =
1
N 2

(
|α′⟩a ⟨α′| ⊗ |−β′⟩b ⟨−β′|+ |α′⟩a ⟨−α′| ⊗ |−β′⟩b ⟨β′|

+ |−α′⟩a ⟨α′| ⊗ |β′⟩b ⟨−β′|+ |−α′⟩a ⟨−α′| ⊗ |β′⟩b ⟨β′|
)
, (24)

where α′ and β′ are identical to those obtained in (17).
It is important to note that, as in the previous case, the action of the exponential

operators corresponding to the Lindblad superoperators La and Lb is essentially the same
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and follows the same principles discussed above. This allows us to express the solution to
the Lindblad master Equation (1) associated with the initial condition (22) as follows:

ρ̂(t) =
1
N 2

(
[α1]a [β1]b |α̃(t), k⟩a ⟨α̃(t), m| ⊗ |−β̃(t), k′⟩ ⟨−β̃(t), m′|

+[α2]a [β2]b |α̃(t), k⟩a ⟨−α̃(t), m| ⊗ |−β̃(t), k′⟩ ⟨β̃(t), m′|
+[α3]a [β3]b |−α̃(t), k⟩a ⟨α̃(t), m| ⊗ |β̃(t), k′⟩ ⟨−β̃(t), m′|
+[α4]a [β4]b |−α̃(t), k⟩a ⟨−α̃(t), m| ⊗ |β̃(t), k′⟩ ⟨β̃(t), m′|

)
, (25)

where, once again, ζ̃(t) = ζ ′e−γt

N(t)+1 , |ζ̃(t), k⟩ = D̂[ζ̃(t)] |k⟩ represents the displaced number
operator, and ζ ′ = α′, β′. Additionally, the quantities [αj]a and [β j]b (where j = 1, 2, 3, 4) are
analogous to those obtained in (20), which can be explicitly found in Appendix B.

6. Numerical Results
The analytical results presented in Equations (19) and (25) describe the evolution of

a system initially composed of two coherent states unentangled and entangled, respec-
tively, inside a cavity with identical decay rates γ and coupled to a thermal reservoir at
temperature n̄th. In the case of the non-entangled initial condition, Equation (19) indicates
that the system maintained its separable structure throughout evolution. Additionally,
Equation (21) shows that, as t → ∞, the system reached a stationary state, and the resulting
density matrix reduced to the thermal matrix associated with the reservoir. This confirms
that the nonentanglement between modes â and b̂ was preserved throughout the evolution.
On the other hand, for the entangled initial condition, Equation (25) describes a more com-
plex dynamic. However, the analytical result alone does not allow for a direct conclusion
on whether the entanglement was preserved or lost during the evolution of the system.

We can verify whether the system maintains its initial condition of nonentanglement or
entanglement or, if these properties change during its evolution, if it is capable of analyzing
the von Neumann entropy, which is a key tool for quantifying quantum correlations. In a
bipartite system composed of modes â and b̂, the entropy of a subsystem, such as mode â,
is defined as in [40]:

Sa(t) = −Tra[ρ̂a(t) ln ρ̂a(t)], (26)

where ρ̂a(t) = Trb[ρ̂(t)] represents the reduced density matrix of mode â, which is obtained
by tracing out the contributions of mode b̂. Similarly, the entropy for mode b̂ is expressed
as follows:

Sb(t) = −Trb[ρ̂b(t) ln ρ̂b(t)], (27)

where ρ̂b(t) = Tra[ρ̂(t)].
For a separable state, the reduced density matrices ρ̂a(t) and ρ̂b(t) describe pure states.

This implies that the entropy of both modes is zero (Sa(t) = 0 and Sb(t) = 0), reflecting the
absence of correlations between them. Conversely, if the system generates entanglement,
the reduced density matrices become mixed states, resulting in nonzero entropy. This
analysis provides an effective means of identifying and characterizing quantum correlations
within the system.

However, entropy alone does not distinguish whether the correlations in the system
are classical or quantum. To address this, the analysis is complemented by quantum discord
(QD), which quantifies the purely quantum correlations present in a state. Quantum discord
is defined as in [26–29]:

D(ρ̂) = I(ρ̂)−Q(ρ̂), (28)



Dynamics 2025, 5, 4 9 of 17

where I(ρ̂) is the quantum mutual information, which is a measure of the total correlations
(both classical and quantum) present in the system. It is defined as

I(ρ̂) = S(ρ̂a) + S(ρ̂b)− S(ρ̂), (29)

where S(ρ̂) represents the von Neumann entropy of the full system, and S(ρ̂a) and S(ρ̂b)

are the entropies of the reduced subsystems â and b̂, respectively. Quantum mutual
information quantifies how much information is shared between subsystems, serving as a
comprehensive measure of correlations. On the other hand, the term Q(ρ̂) represents the
classical correlations (CC), and it is calculated as

Q(ρ̂) = max
{Πk}

[
S(ρ̂b)− ∑

k
pkS(ρ̂k

b)

]
, (30)

where {Πk} denotes a set of projective measurements performed on subsystem â, pk is the
probability associated with the k-th measurement outcome, and ρ̂k

b is the post-measurement
state of subsystem b̂. Classical correlations are determined by optimizing over all possible
measurement bases on â, reflecting the maximum extractable information of b̂ based on
measurements made on â.

The combined analysis of entropy and quantum discord provides more detailed
insight into the entanglement properties of the system. If D(ρ̂) = 0, it confirms the
absence of quantum correlations, indicating that the system is not entangled, even if
classical correlations may still be present. Conversely, a nonzero value of D(ρ̂) indicates
the presence of quantum correlations, which may suggest entanglement, although it does
not necessarily imply it. This distinction arises because quantum discord can also capture
quantum correlations in separable states. Therefore, this approach allows us to distinguish
between different types of correlations and analyze their evolution over time under the
influence of dissipation and thermal coupling.

The following figures analyze the dynamics of the entanglement based on the initial
conditions of the system. Figures 2 and 3 correspond to an initially nonentangled state
at zero temperature (n̄th = 0) and finite temperature (n̄th = 0.1), respectively. Similarly,
Figures 4 and 5 depict the case of an initial entangled state under the same temperature
conditions.

Each figure is divided into four subfigures to provide a detailed analysis:

• Subfigures (I) and (II) show the entropies Sa and Sb of modes â and b̂, respectively,
as functions of time t and decay rate γ.

• Subfigure (III) illustrates both entropies, Sa (solid red line) and Sb (dotted blue line),
for a fixed decay rate γ = 0.13 as functions of time. Additionally, green dashed lines
represent the entropy calculated from the reduced density matrix of the thermal state,
allowing for comparison with the stationary entropy.

• The subfigure (IV) analyzes the quantum discord (QD, solid purple line) and the
classical correlations (CCs, dotted black line) over time. This subfigure is key to
drawing conclusions about the dynamics of entanglement and quantum correlations
in the system.
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Figure 2. Analysis of the initially nonentangled state at zero temperature (n̄th = 0). Subfigures (I) and
(II) show the entropies Sa and Sb of modes â and b̂, respectively, as functions of time t and decay rate
γ. Subfigure (III) illustrates Sa(t) (solid red line) and Sb(t) (dotted blue line) for γ = 0.13, with the
green dashed line representing the reduced entropy of the thermal state. Subfigure (IV) presents the
quantum discord (QD, solid purple line) and classical correlations (CC, dotted black line) as functions
of time. The parameters used are α = 2.5, β = 1, and g = 1.
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Figure 3. Analysis of the initially nonentangled state at finite temperature (n̄th = 0.1). Subfigures (I)
and (II) show the entropies Sa and Sb of modes â and b̂, respectively, as functions of time t and decay
rate γ. Subfigure (III) illustrates Sa(t) (solid red line) and Sb(t) (dotted blue line) for γ = 0.13, with the
green dashed line showing the reduced thermal entropy. Subfigure (IV) presents the quantum discord
(QD, solid purple line) and classical correlations (CC, dotted black line) over time. The parameters
are the same as those used in Figure 2.
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Figure 4. Analysis of the initially entangled state at zero temperature (n̄th = 0). Subfigures (I) and
(II) show the entropies Sa and Sb of modes â and b̂, respectively, as functions of time t and decay
rate γ. Subfigure (III) illustrates Sa(t) (solid red line) and Sb(t) (dotted blue line) for γ = 0.13,
with the green dashed line representing the entropy calculated from the reduced density matrix of
the thermal state. Subfigure (IV) presents the quantum discord (QD, solid purple line) and classical
correlations (CC, dashed black line) as functions of time. The parameters are the same as those used
in Figures 2 and 3.
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Figure 5. Analysis of the initially entangled state at finite temperature (n̄th = 0.1). Subfigures (I) and
(II) show the entropies Sa and Sb of modes â and b̂, respectively, as functions of time t and decay rate
γ. Subfigure (III) illustrates Sa(t) (solid red line) and Sb(t) (dotted blue line) for γ = 0.13, with the
green dashed line representing the entropy calculated from the reduced density matrix of the thermal
state. Subfigure (IV) presents the quantum discord (QD, solid purple line) and classical correlations
(CC, dashed black line) as functions of time. The parameters are the same as those used in Figures 2–4.
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The parameters used throughout the analysis are α = 2.5, β = 1, and g = 1, ensuring
consistency in all scenarios.

Detailed analysis of these cases leads to the following observations:

1. Initially nonentangled state at zero temperature (Figure 2): At zero temperature
(n̄th = 0), the reservoir did not introduce thermal fluctuations, allowing the modes â
and b̂ to evolve independently while maintaining their purity. Consequently, the en-
tropies Sa(t) and Sb(t) remained at zero throughout the evolution, as shown in
subfigures (I) and (II), with any observed increases being numerical artifacts caused
by the finite precision of the computational calculations. Subfigure (III) confirms that
both entropies remained constant at zero for a fixed decay rate γ = 0.13, coinciding
with the reduced and stationary entropy for this case. Furthermore, subfigure (IV)
demonstrates that both the quantum discord (QD) and classical correlations (CCs)
remained at zero, indicating the absence of any type of correlations. This analysis
aligns with our analytical results, as the system preserved its initially nonentangled
state, maintaining its separable structure and remaining in a pure state throughout
the evolution.

2. Initially nonentangled state at finite temperature (Figure 3): At finite temperature
(n̄th = 0.1), thermal fluctuations from the reservoir induced mixing in the initially pure
states of modes â and b̂, resulting in nonzero entropies Sa(t) and Sb(t) throughout the
evolution. As shown in subfigures (I) and (II), these entropies increased over time
due to interaction with the thermal reservoir and eventually converged to the same
stationary value, Sa = Sb = 0.335. This stationary value, confirmed in subfigure (III)
for a fixed decay rate γ = 0.13, corresponds to the reduced entropy associated with the
thermal state, reflecting the equilibrium between the system and the reservoir. Subfig-
ure (IV) illustrates that both the quantum discord (QD) and classical correlations (CCs)
remained at zero throughout the evolution, indicating that no correlations, quantum
or classical, were generated between the modes. The analysis confirms that the sys-
tem retained its nonentangled nature throughout the evolution, with the increase in
entropy attributed solely to thermal mixing induced by the reservoir, without the
development of entanglement or quantum correlations. This behavior is consistent
with the analytical results, demonstrating that the system evolved independently
toward a thermal stationary state, where both modes exhibited equivalent properties,
as reflected in the identical stationary entropies.

3. Initially entangled state at zero temperature (Figure 4): At zero temperature (n̄th = 0),
the dynamics started with two initially entangled coherent states inside a decaying
cavity. Subfigures (I) and (II) show that the entropies Sa(t) and Sb(t) were initially
nonzero, reflecting the mixed nature of the reduced states due to the initial entangle-
ment. During evolution, these entropies oscillated as a result of the internal exchange
of quantum information between modes â and b̂ and eventually decayed to zero,
as confirmed in subfigure (III) for a fixed decay rate γ = 0.13, where the stationary
entropies coincided with the reduced entropy of the thermal state, which was also
zero. Subfigure (IV) reveals that the quantum discord (QD), initially nonzero due to
the quantum correlations of the entangled state, oscillated and gradually decayed
to zero, while the classical correlations (CCs) decayed rapidly to zero and remained
there throughout the evolution, reflecting the absence of thermal fluctuations. Al-
though the initial entanglement partially persisted while the entropies and discord
oscillate, these oscillations indicate a progressive reduction in quantum correlations.
Eventually, when the entropies and discord reached zero, the system completely lost
its entanglement, evolving into a stationary state where both modes were decoupled,
uncorrelated, and in pure individual states.
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4. Initially entangled state at finite temperature (Figure 5): At finite temperature
(n̄th = 0.1), the dynamics began with two initially entangled coherent states inside
a decaying cavity. Subfigures (I) and (II) show that the entropies Sa(t) and Sb(t) re-
mained nonzero throughout the evolution, exhibiting notable oscillations and higher
values compared to the zero-temperature case. This behavior arose from the initial
entanglement and the mixing induced by thermal fluctuations from the reservoir. Sub-
figure (III) demonstrates that both entropies, initially equal and nonzero, increased to
a maximum due to thermal fluctuations and then decayed with oscillations toward the
stationary value Sa = Sb = 0.335, making them consistent with the reduced thermal
entropy. The coincidence of the stationary value between the initially entangled and
nonentangled cases can be explained by the fact that the thermal reservoir imposed a
statistical mixture independent of the system’s initial configuration. Subfigure (IV)
shows that the quantum discord (QD, solid purple line) started with a nonzero value,
reflecting the initial quantum correlations, but oscillated and decayed more rapidly
toward zero compared to the zero-temperature case due to thermal fluctuations.
Meanwhile, the classical correlations (CCs, dashed black line) decayed quickly to zero
and remained negligible throughout the evolution. While the initial entanglement
partially persisted as long as the entropies and discord oscillated, these oscillations
reflect a competition between the initial quantum correlations and the mixing effects
induced by the thermal reservoir. During this phase, the system retained some degree
of quantum correlation, but these correlations progressively weakened due to the
dynamic exchange of information between the modes and the reservoir. Eventually,
when the entropies and discord reached their stationary values, the entanglement was
fully lost, and the system evolved into a thermal stationary state where both modes
were decoupled, uncorrelated, and exhibited identical entropy values.

7. Conclusions
We have derived an exact solution to the Lindblad master equation that describes the

interaction of two electromagnetic field modes in a decaying cavity coupled to a thermal
reservoir at finite temperature.

Our results indicate that, for initial unentangled states, the system retains its separable
structure throughout evolution, without generating quantum entanglement. At finite
temperature, thermal fluctuations increase the entropy of the modes as a result of the
statistical mixing induced by the reservoir. However, the quantum discord remains at zero,
indicating that the correlations generated are not of a quantum nature.

For initially entangled states, the entanglement progressively weakens due to dissipa-
tion and thermal effects. At zero temperature, the entropies of the modes initially oscillate
due to the exchange of quantum information within the system but eventually decay to
zero, reflecting the transition to pure individual states and the total loss of entanglement.
At finite temperature, the entropy oscillations are more pronounced, and the stationary
state exhibits a nonzero entropy value corresponding to the thermal mixing imposed by
the reservoir. In this case, the quantum discord also vanishes over time, signifying the
complete loss of the initial quantum correlations.

These results highlight how environmental interactions, through dissipation and
thermal fluctuations, destroy the initial quantum correlations of the system. For initially
entangled states, the disappearance of quantum discord reflects the transition to a regime
where the correlations are solely dictated by thermal equilibrium and lack any quantum
character. This emphasizes the fragility of entanglement with environmental influences
and underscores the practical limitations in preserving entanglement in open quantum
systems.
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Appendix A. Properties and Representation of Nonentangled
Coherent States

It is well-known that the Glauber displacement operator [41,42] defines coherent states
as

|ζ⟩ = D̂(ζ)|0⟩, (A1)

where D̂(ζ) = eζ â†−ζ∗ â, and |0⟩ represents the vacuum state [7–12].
A state composed of two independent coherent states, |α⟩ (associated with mode â)

and |β⟩ (associated with mode b̂), can be written as a nonentangled state of the following
form [43]:

|ψ⟩ = |α⟩a ⊗ |β⟩b = D̂a(α)D̂b(β)|0⟩a ⊗ |0⟩b. (A2)

Using the definitions for the operators Â and B̂, introduced in Equation (5), the product
of the displacement operators can be rewritten as

D̂a(α)D̂b(β) = exp
[(

αâ† − α∗ â
)
+

(
βb̂† − β∗ b̂

)]
= exp

[(
α + β√

2
Â† − α∗ + β∗

√
2

Â
)
+

(
α − β√

2
B̂† − α∗ − β∗

√
2

B̂
)]

= D̂A

(
α + β√

2

)
D̂B

(
α − β√

2

)
. (A3)

Thus, the state in Equation (A2) can be expressed as follows:

|ψ⟩ =
∣∣∣∣α + β√

2

〉
A
⊗

∣∣∣∣α − β√
2

〉
B

. (A4)

Similarly, if we introduce a relative phase between the components of the state, it
becomes

|ψ⟩ =
∣∣∣∣α + β√

2
e− i η

〉
A
⊗

∣∣∣∣α − β√
2

ei η

〉
B

, (A5)

which can be rewritten in terms of the original modes â and b̂ as follows:

|ψ⟩ =
∣∣∣∣α + β

2
e− i η +

α − β

2
ei η

〉
a
⊗

∣∣∣∣α + β

2
e− i η − α − β

2
ei η

〉
b
. (A6)
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Appendix B. Explicit Expressions for the Coefficients [αj]a and [βj]b
In this Appendix, we present the explicit expressions for the coefficients [αj]a and [β j]b

mentioned in the Equation (25). These coefficients are used to describe the time-dependent
behavior of the subsystems and are derived based on the formalism introduced earlier.
Their detailed forms are

[α1]a =
exp

[
|α̃(t)|2 − |α′|2

]
exp

[
|α′|2 N(t)

N(t)+1
n̄th+1

n̄th

]
N(t) + 1

∞

∑
n=0

1
n!

[
N(t)

N(t) + 1

]n

×
n

∑
k=0

n

∑
m=0

(
n
k

)(
n
m

)√
k!
√

m! α̃∗(t)n−k α̃(t)n−m, (A7a)

[α2]a =
exp

[
−
(
|α̃(t)|2 − |α′|2

)]
exp

[
−|α′|2 N(t)

N(t)+1
n̄th+1

n̄th

]
N(t) + 1

∞

∑
n=0

1
n!

[
N(t)

N(t) + 1

]n

×
n

∑
k=0

n

∑
m=0

(
n
k

)(
n
m

)√
k!
√

m! [−α̃∗(t)]n−k α̃(t)n−m, (A7b)

[α3]a =
exp

[
−
(
|α̃(t)|2 − |α′|2

)]
exp

[
−|α′|2 N(t)

N(t)+1
n̄th+1

n̄th

]
N(t) + 1

∞

∑
n=0

1
n!

[
N(t)

N(t) + 1

]n

×
n

∑
k=0

n

∑
m=0

(
n
k

)(
n
m

)√
k!
√

m! α̃∗(t)n−k [−α̃(t)]n−m, (A7c)

[α4]a =
exp

[
|α̃(t)|2 − |α′|2

]
exp

[
|α′|2 N(t)

N(t)+1
n̄th+1

n̄th

]
N(t) + 1

∞

∑
n=0

1
n!

[
N(t)

N(t) + 1

]n

×
n

∑
k=0

n

∑
m=0

(
n
k

)(
n
m

)√
k!
√

m! [−α̃∗(t)]n−k [−α̃(t)]n−m, (A7d)

and

[β1]b =
exp

[
|β̃(t)|2 − |β′|2

]
exp

[
|β′|2 N(t)

N(t)+1
n̄th+1

n̄th

]
N(t) + 1

∞

∑
n′=0

1
n′!

[
N(t)

N(t) + 1

]n′

×
n′

∑
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n′
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(
n′

k′

)(
n′
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)√
k′!

√
m′!

[
−β̃∗(t)

]n′−k′ [−β̃(t)
]n′−m′

, (A8a)

[β2]b =
exp

[
−
(
|β̃(t)|2 − |β′|2

)]
exp

[
−|β′|2 N(t)

N(t)+1
n̄th+1

n̄th

]
N(t) + 1

∞

∑
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1
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N(t) + 1

]n′
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, (A8b)

[β3]b =
exp
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−
(
|β̃(t)|2 − |β′|2
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exp
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[β4]b =
exp

[
|β̃(t)|2 − |β′|2

]
exp

[
|β′|2 N(t)

N(t)+1
n̄th+1

n̄th

]
N(t) + 1

∞

∑
n′=0

1
n′!

[
N(t)

N(t) + 1

]n′

×
n′

∑
k′=0

n′

∑
m′=0

(
n′

k′

)(
n′

m′

)√
k′!

√
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In these expressions, the terms α̃(t) = α′e−γt

N(t)+1 and β̃(t) = β′e−γt

N(t)+1 represent the time-
dependent coefficients that include the effects of the decay rate γ and the factor N(t), which
depend on the thermal environment.

References
1. Haroche, S.; Raimond, J.M. Exploring the Quantum: Atoms, Cavities, and Photons; Oxford University Press: Oxford, UK, 2006.

https://doi.org/10.1093/acprof:oso/9780198509141.001.0001.
2. Garrison, J.C.; Chiao, R.Y. Quantum Optics; Oxford University Press: Oxford, UK, 2008. https://doi.org/10.1093/acprof:

oso/9780198508861.003.0001.
3. Meschede, D.; Walther, H.; Müller, G. One-Atom Maser. Phys. Rev. Lett. 1985, 54, 551–554. https://doi.org/10.1103/PhysRevLett.

54.551.
4. Dalibard, J.; Castin, Y.; Mølmer, K. Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 1992,

68, 580–583. https://doi.org/10.1103/PhysRevLett.68.580.
5. Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. https://doi.org/10.1017/CBO9

780511813993.
6. Gardiner, C.W.; Zoller, P. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications

to Quantum Optics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2004.
7. Louisell, W.H. Quantum Statistical Properties of Radiation; John Wiley & Sons, Inc.: New York, NY, USA, 1990.
8. Fox, M. Quantum Optics: An Introduction; Oxford Master Series in Physics; Oxford University Press: Oxford, UK, 2006.
9. Klimov, A.B.; Chumakov, S.M. A Group-Theoretical Approach to Quantum Optics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009.

https://doi.org/10.1002/9783527624003.ch5.
10. Moya-Cessa, H.M.; Soto-Eguibar, F. Introduction To Quantum Optics; Rinton Press: Princeton, NJ, USA, 2011.
11. Agarwal, G. Quantum Optics; Cambridge University Press: Cambridge, UK, 2013.
12. Gerry, C.; Knight, P. Introductory Quantum Optics; Cambridge University Press: Cambridge, UK, 2004. https://doi.org/10.1017/

CBO9780511791239.
13. Carmichael, H.J. An open systems approach to quantum optics; Springer: Berlin/Heidelberg, Germany, 1993.
14. Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002.
15. Manzano, D. A Short Introduction to the Lindblad Master Equation. AIP Adv. 2020, 10, 025106. https://doi.org/10.1063/1.5115

323.
16. Hernández-Sánchez, L.; Ramos-Prieto, I.; Soto-Eguibar, F.; Moya-Cessa, H.M. Exact solution for the interaction of two decaying

quantized fields. Opt. Lett. 2023, 48, 5435–5438. https://doi.org/10.1364/OL.503837.
17. Hernández-Sánchez, L.; Bocanegra-Garay, I.A.; Ramos-Prieto, I.; Soto-Eguibar, F.; Moya-Cessa, H.M. Exact solution of the master

equation for interacting quantized fields at finite temperature decay. arXiv 2024, arXiv:2410.08428.
18. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press:

Cambridge, UK, 2010. https://doi.org/10.1017/CBO9780511976667.
19. Zurek, W.H. Decoherence and the Transition from Quantum to Classical. Phys. Today 1991, 44, 36–44. https://doi.org/10.1063/1.

881293.
20. Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942.

https://doi.org/10.1103/RevModPhys.81.865.
21. Zou, N. Quantum Entanglement and Its Application in Quantum Communication. J. Phys. Conf. Ser. 2021, 1827, 012120.

https://doi.org/10.1088/1742-6596/1827/1/012120.
22. Duarte, F.J.; Taylor, T.S. Quantum Entanglement Engineering and Applications; IOP Publishing: Bristol, UK, 2021. https://doi.org/

10.1088/978-0-7503-3407-5.
23. Bouwmeester, D.; Pan, J.W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997,

390, 575–579. https://doi.org/10.1038/37539.
24. Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248.

https://doi.org/10.1103/PhysRevLett.80.2245.
25. Rivas, Á.; Huelga, S.F. Open Quantum Systems: An Introduction, 1 ed.; SpringerBriefs in Physics, Springer Berlin, Heidelberg:

Berlin, Heidelberg, 2012; pp. X, 97. https://doi.org/10.1007/978-3-642-23354-8.
26. Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 2001, 88, 017901.

https://doi.org/10.1103/PhysRevLett.88.017901.
27. Modi, K.; Brodutch, A.; Cable, H.; Paterek, T.; Vedral, V. The classical-quantum boundary for correlations: Discord and related

measures. Rev. Mod. Phys. 2012, 84, 1655–1707. https://doi.org/10.1103/RevModPhys.84.1655.

https://doi.org/10.1093/acprof:oso/9780198509141.001.0001
https://doi.org/10.1093/acprof:oso/9780198508861.003.0001
https://doi.org/10.1093/acprof:oso/9780198508861.003.0001
https://doi.org/10.1103/PhysRevLett.54.551
https://doi.org/10.1103/PhysRevLett.54.551
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1017/CBO9780511813993
https://doi.org/10.1017/CBO9780511813993
https://doi.org/10.1002/9783527624003.ch5
https://doi.org/10.1017/CBO9780511791239
https://doi.org/10.1017/CBO9780511791239
https://doi.org/10.1063/1.5115323
https://doi.org/10.1063/1.5115323
https://doi.org/10.1364/OL.503837
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1063/1.881293
https://doi.org/10.1063/1.881293
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1088/1742-6596/1827/1/012120
https://doi.org/10.1088/978-0-7503-3407-5
https://doi.org/10.1088/978-0-7503-3407-5
https://doi.org/10.1038/37539
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1007/978-3-642-23354-8
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/RevModPhys.84.1655


Dynamics 2025, 5, 4 17 of 17

28. Werlang, T.; Rigolin, G. Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 2010, 81, 044101.
https://doi.org/10.1103/PhysRevA.81.044101.

29. Han, F. The Dynamics of Quantum Correlation and Its Transfer in Dissipative Systems. Int. J. Theor. Phys. 2011, 50, 1785–1792.
https://doi.org/10.1007/s10773-011-0687-0.

30. Lai, W.; Buek, V.; Knight, P. Nonclassical fields in a linear directional coupler. Phys. Rev. A. 1991, 43, 6323–6336. https:
//doi.org/10.1103/PhysRevA.43.6323.

31. Sanders, B.C. Entangled coherent states. Phys. Rev. A 1992, 45, 6811–6815. https://doi.org/10.1103/PhysRevA.45.6811.
32. Wang, X. Bipartite entangled non-orthogonal states. J. Phys. A Math. Gen. 2001, 35, 165. https://doi.org/10.1088/0305-4470/35

/1/313.
33. van Enk, S.J. Decoherence of multidimensional entangled coherent states. Phys. Rev. A 2005, 72, 022308. https://doi.org/10.110

3/PhysRevA.72.022308.
34. Lastra, F.; Romero, G.; López, C.; Zagury, N.; Retamal, J. Entangled coherent states under dissipation. Opt. Commun. 2010,

283, 3825–3829. https://doi.org/10.1016/j.optcom.2010.05.061.
35. Johansson, J.; Nation, P.; Nori, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys.

Commun. 2013, 184, 1234–1240. https://doi.org/10.1016/j.cpc.2012.11.019.
36. Barnett, S.M.; Knight, P.L. Dissipation in a fundamental model of quantum optical resonance. Phys. Rev. A 1986, 33, 2444–2448.

https://doi.org/10.1103/PhysRevA.33.2444.
37. Phoenix, S.J.D. Wave-packet evolution in the damped oscillator. Phys. Rev. A 1990, 41, 5132–5138. https://doi.org/10.1103/

PhysRevA.41.5132.
38. Arévalo-Aguilar, L.M.; Moya-Cessa, H. Solution to the master equation for a quantized cavity mode. Quantum Semiclass. Opt.

1998, 10, 671. https://doi.org/10.1088/1355-5111/10/5/004.
39. Arévalo-Aguilar, L.M.; Moya-Cessa, H. Cavidad con pérdidas: Una descripción usando superoperadores. Rev. Mex. Fis. 1995,

42, 675–683.
40. Phoenix, S.; Knight, P. Fluctuations and entropy in models of quantum optical resonance. Ann. Phys. 1988, 186, 381–407.

https://doi.org/10.1016/0003-4916(88)90006-1.
41. Glauber, R.J. The Quantum Theory of Optical Coherence. Phys. Rev. 1963, 130, 2529–2539. https://doi.org/10.1103/PhysRev.130.

2529.
42. Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 1963, 131, 2766–2788. https://doi.org/10.1103/

PhysRev.131.2766.
43. Mar-Sarao, R.; Soto-Eguibar, F.; Moya-Cessa, H. Many fields interaction: Beam splitters and waveguide arrays. Ann. Phys. 2011,

523, 402–407. https://doi.org/10.1002/andp.201000147.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1103/PhysRevA.81.044101
https://doi.org/10.1007/s10773-011-0687-0
https://doi.org/10.1103/PhysRevA.43.6323
https://doi.org/10.1103/PhysRevA.43.6323
https://doi.org/10.1103/PhysRevA.45.6811
https://doi.org/10.1088/0305-4470/35/1/313
https://doi.org/10.1088/0305-4470/35/1/313
https://doi.org/10.1103/PhysRevA.72.022308
https://doi.org/10.1103/PhysRevA.72.022308
https://doi.org/10.1016/j.optcom.2010.05.061
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.33.2444
https://doi.org/10.1103/PhysRevA.41.5132
https://doi.org/10.1103/PhysRevA.41.5132
https://doi.org/10.1088/1355-5111/10/5/004
https://doi.org/10.1016/0003-4916(88)90006-1
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1002/andp.201000147

	Introduction
	Lindblad Master Equation
	Solution to the Lindblad Master Equation
	Decomposition of the First Exponential
	Decomposition of the Second and Third Exponentials

	Time Evolution of Nonentangled Coherent States
	Action of the First Exponential Operator
	Action of the Second and Third Exponential Operators

	Time Evolution of Entangled Coherent States
	Numerical Results
	Conclusions
	Appendix A
	Appendix B
	References

