Machine-Learning-Based Biomechanical Feature Analysis for Orthopedic Patient Classification with Disc Hernia and Spondylolisthesis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | Machine Learning |
IVD | Lumbar Intervertebral Disc |
CT | Computed Tomography |
THP | Total Hip Arthroplasty |
LBP | Low Back Pain |
CNN | Convolutional Neural Network |
MRI | Magnetic Resonance Imaging |
AUC | Area Under the Curve |
ROC | Receiver Operating Characteristic |
References
- Adams, M.A.; Roughley, P.J. What is Intervertebral Disc Degeneration, and What Causes It? Spine 2006, 31, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Jordon, J.; Konstantinou, K.; O’Dowd, J. Herniated lumbar disc. BMJ Clin. Evid. 2009, 2009, 1118. [Google Scholar]
- Qaraghli, M.I.A.; Jesus, O.D. Lumbar Disc Herniation. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Wiltse, L.L. The Etiology of Spondylolisthesis. J. Bone Jt. Surg. 1962, 44, 539–560. [Google Scholar] [CrossRef]
- Bydon, M.; Alvi, M.A.; Goyal, A. Degenerative Lumbar Spondylolisthesis. Neurosurg. Clin. N. Am. 2019, 30, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Ganju, A. Isthmic spondylolisthesis. Neurosurg. Focus 2002, 13, 1–6. [Google Scholar] [CrossRef]
- Dydyk, A.M.; Massa, R.N.; Mesfin, F.B. Disc Herniation. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Bednar, D.A. Cauda equina syndrome from lumbar disc herniation. Can. Med. Assoc. J. 2015, 188, 284. [Google Scholar] [CrossRef]
- KD, W. Spondylolisthesis. In Campbell’s Operative Orthopaedics, 14th ed.; Elsevier: Philadelphia, PA, USA, 2021; Chapter 40. [Google Scholar]
- Tenny, S.; Hanna, A.; Gillis, C.C. Spondylolisthesis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Padash, S.; Mickley, J.P.; Vera Garcia, D.V.; Nugen, F.; Khosravi, B.; Erickson, B.J.; Wyles, C.C.; Taunton, M.J. An Overview of Machine Learning in Orthopedic Surgery: An Educational Paper. J. Arthroplast. 2023, 38, 1938–1942. [Google Scholar] [CrossRef]
- Toma, M.; Wei, O.C. Predictive Modeling in Medicine. Encyclopedia 2023, 3, 590–601. [Google Scholar] [CrossRef]
- Rouzrokh, P.; Wyles, C.C.; Philbrick, K.A.; Ramazanian, T.; Weston, A.D.; Cai, J.C.; Taunton, M.J.; Lewallen, D.G.; Berry, D.J.; Erickson, B.J.; et al. A Deep Learning Tool for Automated Radiographic Measurement of Acetabular Component Inclination and Version After Total Hip Arthroplasty. J. Arthroplast. 2021, 36, 2510–2517.e6. [Google Scholar] [CrossRef]
- Rouzrokh, P.; Ramazanian, T.; Wyles, C.C.; Philbrick, K.A.; Cai, J.C.; Taunton, M.J.; Maradit Kremers, H.; Lewallen, D.G.; Erickson, B.J. Deep Learning Artificial Intelligence Model for Assessment of Hip Dislocation Risk Following Primary Total Hip Arthroplasty From Postoperative Radiographs. J. Arthroplast. 2021, 36, 2197–2203.e3. [Google Scholar] [CrossRef]
- D’Antoni, F.; Russo, F.; Ambrosio, L.; Bacco, L.; Vollero, L.; Vadalà, G.; Merone, M.; Papalia, R.; Denaro, V. Artificial Intelligence and Computer Aided Diagnosis in Chronic Low Back Pain: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5971. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, Z.; Xie, Z.; Liu, L.; Ren, G.; Guo, Z.; Xu, L.; Yin, X.; Hu, Y.; Wang, Y.; et al. Natural Language Processing-Driven Artificial Intelligence Models for the Diagnosis of Lumbar Disc Herniation with L5 and S1 Radiculopathy: A Preliminary Evaluation. World Neurosurg. 2024, 189, e300–e309. [Google Scholar] [CrossRef] [PubMed]
- Wirries, A.; Geiger, F.; Hammad, A.; Bäumlein, M.; Schmeller, J.N.; Blümcke, I.; Jabari, S. AI Prediction of Neuropathic Pain after Lumbar Disc Herniation-Machine Learning Reveals Influencing Factors. Biomedicines 2022, 10, 1319. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Qiao, X.; Wang, Z.; Jiang, L.; Liu, Y.; Sun, Q. Artificial Intelligence-Based CT Imaging on Diagnosis of Patients with Lumbar Disc Herniation by Scalpel Treatment. Comput. Intell. Neurosci. 2022, 2022, 3688630. [Google Scholar] [CrossRef]
- Bekbolatova, M.; Mayer, J.; Ong, C.W.; Toma, M. Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare 2024, 12, 125. [Google Scholar] [CrossRef]
- Crawford, C. Biomechanical Features of Orthopedic Patients. Available online: https://www.kaggle.com/datasets/uciml/biomechanical-features-of-orthopedic-patients (accessed on 9 September 2024).
- Chen, H.; Chen, J.; Ding, J. Data Evaluation and Enhancement for Quality Improvement of Machine Learning. IEEE Trans. Reliab. 2021, 70, 831–847. [Google Scholar] [CrossRef]
- Siebert, J.; Joeckel, L.; Heidrich, J.; Trendowicz, A.; Nakamichi, K.; Ohashi, K.; Namba, I.; Yamamoto, R.; Aoyama, M. Construction of a quality model for machine learning systems. Softw. Qual. J. 2022, 30, 307–335. [Google Scholar] [CrossRef]
- Murphy, P.; Knight, S. Misdiagnosis in Sports Medicine. Curr. Sports Med. Rep. 2002, 1, 333–337. [Google Scholar] [CrossRef]
- Jawad, B.N.; Pedersen, K.Z.; Andersen, O.; Meier, N. Minimizing the Risk of Diagnostic Errors in Acute Care for Older Adults: An Interdisciplinary Patient Safety Challenge. Healthcare 2024, 12, 1842. [Google Scholar] [CrossRef]
- Ahn, Y.; Hong, G.S.; Park, K.J.; Lee, C.W.; Lee, J.H.; Kim, S.O. Impact of diagnostic errors on adverse outcomes: Learning from emergency department revisits with repeat CT or MRI. Insights Into Imaging 2021, 12, 160. [Google Scholar] [CrossRef]
- Dora, C.; Wälchli, B.; Elfering, A.; Gal, I.; Weishaupt, D.; Boos, N. The significance of spinal canal dimensions in discriminating symptomatic from asymptomatic disc herniations. Eur. Spine J. 2002, 11, 575–581. [Google Scholar] [CrossRef]
- Donnally, C.J., III; Hanna, A.; Varacallo, M. Lumbar Degenerative Disk Disease; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Epstein, N.E.; Hood, D.C. Unnecessary spinal surgery: A prospective 1-year study of one surgeon’s experience. Surg. Neurol. Int. 2011, 2, 83. [Google Scholar] [CrossRef]
Model | Accuracy | AUC | Recall | Precision | F1 | Kappa | MCC | TT (Sec) |
---|---|---|---|---|---|---|---|---|
Logistic Regression | 0.8576 | 0.9294 | 0.8576 | 0.8683 | 0.8590 | 0.6840 | 0.6910 | 0.2380 |
Ridge Classifier | 0.8437 | 0.8922 | 0.8437 | 0.8524 | 0.8359 | 0.6188 | 0.6385 | 0.0050 |
Linear Discriminant Analysis | 0.8437 | 0.8922 | 0.8437 | 0.8534 | 0.8377 | 0.6255 | 0.6430 | 0.0050 |
Gradient Boosting Classifier | 0.8338 | 0.9106 | 0.8338 | 0.8373 | 0.8329 | 0.6180 | 0.6230 | 0.0190 |
Extra Trees Classifier | 0.8299 | 0.9167 | 0.8299 | 0.8302 | 0.8237 | 0.5914 | 0.6009 | 0.0240 |
Random Forest Classifier | 0.8251 | 0.9078 | 0.8251 | 0.8261 | 0.8232 | 0.5934 | 0.5976 | 0.0270 |
Light Gradient Boosting Machine | 0.8208 | 0.8935 | 0.8208 | 0.8233 | 0.8181 | 0.5838 | 0.5894 | 0.0680 |
K Neighbors Classifier | 0.8121 | 0.8901 | 0.8121 | 0.8221 | 0.8128 | 0.5771 | 0.5842 | 0.0120 |
Quadratic Discriminant Analysis | 0.7931 | 0.9185 | 0.7931 | 0.8615 | 0.7985 | 0.5947 | 0.6362 | 0.0050 |
Naive Bayes | 0.7792 | 0.8823 | 0.7792 | 0.8286 | 0.7847 | 0.5494 | 0.5772 | 0.0050 |
Decision Tree Classifier | 0.7792 | 0.7474 | 0.7792 | 0.7828 | 0.7785 | 0.4962 | 0.4994 | 0.0060 |
Ada Boost Classifier | 0.7606 | 0.8293 | 0.7606 | 0.7634 | 0.7563 | 0.4421 | 0.4501 | 0.0140 |
SVM-Linear Kernel | 0.7002 | 0.8865 | 0.7002 | 0.7062 | 0.6489 | 0.2789 | 0.3289 | 0.0060 |
Dummy Classifier | 0.6773 | 0.5000 | 0.6773 | 0.4587 | 0.5470 | 0.0000 | 0.0000 | 0.0040 |
Model | Accuracy | AUC | Recall | Precision | F1 | Kappa | MCC | TT (Sec) |
---|---|---|---|---|---|---|---|---|
Random Forest Classifier | 0.9083 | 0.9783 | 0.9083 | 0.9186 | 0.9066 | 0.8623 | 0.8689 | 0.0310 |
Gradient Boosting Classifier | 0.8989 | 0.0000 | 0.8989 | 0.9067 | 0.8979 | 0.8482 | 0.8528 | 0.0520 |
Extra Trees Classifier | 0.8956 | 0.9833 | 0.8956 | 0.9030 | 0.8942 | 0.8432 | 0.8478 | 0.0310 |
Light Gradient Boosting Machine | 0.8891 | 0.9681 | 0.8891 | 0.8997 | 0.8875 | 0.8335 | 0.8401 | 0.2950 |
Decision Tree Classifier | 0.8634 | 0.8978 | 0.8634 | 0.8758 | 0.8608 | 0.7949 | 0.8034 | 0.0080 |
Logistic Regression | 0.8446 | 0.0000 | 0.8446 | 0.8568 | 0.8451 | 0.7667 | 0.7720 | 0.0330 |
Ridge Classifier | 0.8225 | 0.0000 | 0.8225 | 0.8354 | 0.8148 | 0.7336 | 0.7439 | 0.0080 |
Linear Discriminant Analysis | 0.8225 | 0.0000 | 0.8225 | 0.8286 | 0.8201 | 0.7335 | 0.7385 | 0.0090 |
Naive Bayes | 0.7875 | 0.9115 | 0.7875 | 0.7946 | 0.7806 | 0.6813 | 0.6895 | 0.0100 |
Quadratic Discriminant Analysis | 0.7872 | 0.0000 | 0.7872 | 0.7967 | 0.7846 | 0.6804 | 0.6871 | 0.0090 |
K Neighbors Classifier | 0.5943 | 0.7767 | 0.5943 | 0.6310 | 0.5959 | 0.3910 | 0.4013 | 0.0120 |
Ada Boost Classifier | 0.5106 | 0.0000 | 0.5106 | 0.5668 | 0.4622 | 0.2668 | 0.3048 | 0.0190 |
SVM-Linear Kernel | 0.4200 | 0.0000 | 0.4200 | 0.3752 | 0.2916 | 0.1230 | 0.1951 | 0.0100 |
Dummy Classifier | 0.3175 | 0.5000 | 0.3175 | 0.1009 | 0.1531 | 0.0000 | 0.0000 | 0.0070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasef, D.; Nasef, D.; Sawiris, V.; Girgis, P.; Toma, M. Machine-Learning-Based Biomechanical Feature Analysis for Orthopedic Patient Classification with Disc Hernia and Spondylolisthesis. BioMedInformatics 2025, 5, 3. https://doi.org/10.3390/biomedinformatics5010003
Nasef D, Nasef D, Sawiris V, Girgis P, Toma M. Machine-Learning-Based Biomechanical Feature Analysis for Orthopedic Patient Classification with Disc Hernia and Spondylolisthesis. BioMedInformatics. 2025; 5(1):3. https://doi.org/10.3390/biomedinformatics5010003
Chicago/Turabian StyleNasef, Daniel, Demarcus Nasef, Viola Sawiris, Peter Girgis, and Milan Toma. 2025. "Machine-Learning-Based Biomechanical Feature Analysis for Orthopedic Patient Classification with Disc Hernia and Spondylolisthesis" BioMedInformatics 5, no. 1: 3. https://doi.org/10.3390/biomedinformatics5010003
APA StyleNasef, D., Nasef, D., Sawiris, V., Girgis, P., & Toma, M. (2025). Machine-Learning-Based Biomechanical Feature Analysis for Orthopedic Patient Classification with Disc Hernia and Spondylolisthesis. BioMedInformatics, 5(1), 3. https://doi.org/10.3390/biomedinformatics5010003