Impact of Contralateral Hemiplegia on Lower Limb Joint Kinematics and Dynamics: A Musculoskeletal Modeling Approach
Abstract
:1. Introduction
- (i)
- To investigate biomechanical differences in joint angles and moments between contralateral hemiplegia (CH) patients and typically developed (TD) individuals using OpenSim tools.
- (ii)
- To analyze these differences statistically using mean absolute deviation, box plots, t-tests, and correlation analysis and provide insights into joint coordination to guide rehabilitation strategies.
2. Materials and Methods
2.1. Data Collection
2.2. Adopted Methodolgy
2.2.1. Model for TD Subjects
2.2.2. Model for CH-Affected Subjects
3. Results and Discussions
3.1. Kinematics
3.1.1. Hip Joint
3.1.2. Pelvis Bone
3.1.3. Lumbar Joint
3.1.4. Knee Joint Angle
3.1.5. Ankle Joint Angle
3.1.6. Subtalar Joint Angle
3.2. Correlation Analysis for Joint Kinematics
3.3. Joint Dynamics
3.3.1. Hip Joint
3.3.2. Pelvis Bone
3.3.3. Lumbar Joint
3.3.4. Knee Moment
3.3.5. Ankle Moment
3.3.6. Subtalar Moment
3.4. Correlation Analysis for Joint Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardona, M.; Cena, C.E.G. Biomechanical analysis of the lower limb: A full-body musculoskeletal model for muscle-driven simulation. IEEE Access 2019, 7, 709–723. [Google Scholar] [CrossRef]
- Mo, F.; Zhang, Q.; Zhang, H.; Long, J.; Wang, Y.; Chen, G.; Ye, J. A simulation-based framework with a proprioceptive musculoskeletal model for evaluating the rehabilitation exoskeleton system. Comput. Methods Programs Biomed. 2021, 208, 106270. [Google Scholar] [CrossRef] [PubMed]
- Giarmatzis, G.; Fotiadou, S.; Giannakou, E.; Karakasis, E.; Vadikolias, K.; Aggelousis, N. Evaluating the Repeatability of Musculoskeletal Modeling Force Outcomes in Gait among Chronic Stroke Survivors: Implications for Contemporary Clinical Practice. Biomechanics 2024, 4, 333–345. [Google Scholar] [CrossRef]
- Roelker, S.A.; Caruthers, E.J.; Baker, R.K.; Pelz, N.C.; Chaudhari, A.M.; Siston, R.A. Interpreting musculoskeletal models and dynamic simulations: Causes and effects of differences between models. Ann. Biomed. Eng. 2017, 45, 2635–2647. [Google Scholar] [CrossRef] [PubMed]
- Kalita, B.; Narayan, J.; Dwivedy, S.K. Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review. Int. J. Soc. Robot. 2021, 13, 775–793. [Google Scholar] [CrossRef]
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World stroke organization (wso): Global stroke fact sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef]
- North, K.; Kan, A.; De Silva, M.; Ouvrier, R. Hemiplegia due to posterior cerebral artery occlusion. Stroke 1993, 24, 1757–1760. [Google Scholar] [CrossRef] [PubMed]
- Lazoura, O.; Papadaki, P.J.; Antoniadou, E.; Groumas, N.; Papadimitriou, A.; Thriskos, P.; Fezoulidis, I.V.; Vlychou, M. Skeletal and body composition changes in hemiplegic patients. J. Clin. Densitom. 2010, 13, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, H.; Okuyama, O.; Liu, T. Pelvis-toe distance: 3-dimensional gait characteristics of functional limb shortening in hemiparetic stroke. Sensors 2021, 21, 5417. [Google Scholar] [CrossRef] [PubMed]
- Riad, J.; Finnbogason, T.; Broström, E. Leg length discrepancy in spastic hemiplegic cerebral palsy: A magnetic resonance imaging study. J. Pediatr. Orthop. 2010, 30, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Gardas, S.; Shah, H. Influence of leg length discrepancy on balance and gait in post-stroke patients: A correlational study. Bull. Fac. Phys. Ther. 2020, 25, 12. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.; Hicks, J.L.; Uchida, T.K.; Habib, A.; Dembia, C.L.; Dunne, J.J.; Ong, C.F.; DeMers, M.S.; Rajagopal, A.; Millard, M.; et al. Opensim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 2018, 14, e1006223. [Google Scholar] [CrossRef] [PubMed]
- Shachykov, A.; Frère, J.; Hénaff, P. Simulation of spinal muscle control in human gait using opensim. IEEE Trans. Med. Robot. Bionics 2022, 4, 254–265. [Google Scholar] [CrossRef]
- Sibson, B.E.; Banks, J.J.; Yawar, A.; Yegian, A.K.; Anderson, D.E.; Lieberman, D.E. Using inertial measurement units to estimate spine joint kinematics and kinetics during walking and running. Sci. Rep. 2024, 14, 234. [Google Scholar] [CrossRef] [PubMed]
- Sikidar, A.; Kalyanasundaram, D. An open-source opensim® anklefoot musculoskeletal model for assessment of strains and forces in dense connective tissues. Comput. Methods Programs Biomed. 2022, 224, 106994. [Google Scholar] [CrossRef] [PubMed]
- Renganathan, G.; Barnamehei, H.; Das, S.; Kurita, Y. Effect of wearing running shoes on lower limb kinematics by using opensim simulation software. Actuators 2022, 11, 152. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Estrada-Barranco, C.; Cano-de-la-Cuerda, R.; Molina-Rueda, F. Construct validity of the Wisconsin Gait Scale in acute, subacute and chronic stroke. Gait Posture 2019, 68, 363–368. [Google Scholar] [CrossRef] [PubMed]
- John, C.T.; Anderson, F.C.; Higginson, J.S.; Delp, S.L. Stabilisation of walking by intrinsic muscle properties revealed in a three-dimensional muscle-driven simulation. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 451–462. [Google Scholar] [CrossRef]
- Hicks, J.; Kwong, H. Getting Started with Inverse Dynamics, OpenSim Documentation. 2024. Available online: https://opensimconfluence.atlassian.net/wiki/spaces/OpenSim/pages/53090063/Getting+Started+with+Inverse+Dynamics (accessed on 6 December 2024).
Bone | Length CH Affected (mm) | Length TD (mm) | Relative Difference for Mean Length (%) |
---|---|---|---|
Calcaneous | 42.3 ± 0.8 | 43.1 ± 0.9 | 98.1 |
Talus | 32.1 ± 0.6 | 32.8 ± 0.8 | 97.8 |
Tibia | 349.0 ± 3.6 | 377.12 ± 4.1 | 92.38 |
Femur | 437.8 ± 5.8 | 455.7 ± 6.1 | 96.1 |
Pelvis | 116.1 ± 1.3 | 115.6 ± 1.1 | 100.5 |
Bone | Measurement Used | Scale Factor |
---|---|---|
Calcaneus (R) | Foot | 1.027085 |
Talus (R) | Shank | 1.113978 |
Tibia (R) | Manual scales * | 0.988523 |
Femur (R) | Manual scales | 1.147240 |
Toes (R) | Foot | 1.027085 |
Pelvis | Pelvis | 1.024577 |
Bone | Measurement Used | Scale Factor |
---|---|---|
Calcaneus (R) | Manual scales * | 1.00757 |
Talus (R) | Manual scales | 1.08947 |
Tibia (R) | Manual scales | 0.913197 |
Femur (R) | Manual scales | 1.102497 |
Toes (R) | Foot | 1.027085 |
Pelvis | Manual scales | 1.029699 |
Joint and Motion | Median (TD) | IQR (TD) | Median (CH) | IQR (CH) | p-Value |
---|---|---|---|---|---|
Hip Joint | |||||
Hip Flexion | 6.77° | 11.59–19.08° | 13.71° | −2.39–26.76° | <0.05 * |
Hip Adduction | −0.94° | −4.11–3.58° | −1.41° | −4.84–2.91° | >0.05 |
Hip Rotation | −4.34° | −6.71–0.39° | −3.69° | −6.20–0.56° | >0.05 |
Pelvis Bone | |||||
Pelvis Rotation | −0.65° | −3.55–1.43° | −0.54° | −3.69–1.97° | >0.05 |
Pelvis Tilt | −4.89° | 4.54–5.35° | −3.18° | −3.51–−2.62° | <0.05 |
Lumbar Joint | |||||
Lumbar Extension | −15.88° | −15.19–−16.57° | −17.52° | −16.65–−17.95° | <0.05 |
Lumbar Rotation | −2.08° | −6.01–2.59° | −2.22° | −6.32–2.55° | >0.05 |
Lumbar Bending | −0.12° | −2.75–2.32° | 0.09° | −2.35–2.45° | <0.05 |
Knee Joint | |||||
Knee Flexion | −18.84° | −38.71–−8.51° | −18.91° | −37.95–−9.53° | >0.05 |
Ankle Joint | |||||
Ankle Flexion | 2.68° | 0.94–9.4° | 8.23° | 4.60–13.32° | <0.05 |
Subtalar Joint | |||||
Subtalar Flexion | −1.52 × 10−6° | −3.38 × 10−6–−7.25 × 10−7° | −1.27 × 10−6° | −3.10 × 10−6–−4.22 × 10−6° | >0.05 |
Joint and Motion | Median (TD), Nm | IQR (TD), Nm | Median (CH), Nm | IQR (CH), Nm | p-Value |
---|---|---|---|---|---|
Hip Joint | |||||
Hip Flexion | −37.47 | −44.81–12.99 | −37.58 | −45.82–12.14 | >0.05 |
Hip Adduction | −9.22 | −35.19–−0.48 | −11.64 | −36.461–1.05 | >0.05 |
Hip Rotation | −0.99 | −4.20–1.55 | −0.97 | −4.05–1.22 | >0.05 |
Pelvis Bone | |||||
Pelvis Rotation | −0.36 | −6.70–5.81 | −0.83 | −7.48–6.20 | >0.05 |
Pelvis Tilt | 38.71 | 26.06–47.12 | 43.62 | 31.71–54.39 | <0.05 |
Lumbar Joint | |||||
Lumbar Extension | 68.92 | 58.54–76.95 | 74.38 | 62.89–82.90 | <0.05 |
Lumbar Rotation | 0.88 | −2.05–2.72 | 0.871 | −2.29–3.07 | >0.05 |
Lumbar Bending | 5.22 | −2.53–15.26 | 5.98 | −3.30–16.89 | >0.05 |
Knee Joint | |||||
Knee Flexion | −6.91 | −21.53–4.08 | −4.07 | −19.44–4.08 | >0.05 |
Ankle Joint | |||||
Ankle Flexion | −39.14 | −96.09–0.84 | −26.22 | −90.24–0.95 | >0.05 |
Subtalar Joint | |||||
Subtalar Flexion | 10.44 | −0.20–14.23 | 10.49 | −0.20–15.31 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younis, S.; Bishnoi, A.; Narayan, J.; Mio, R. Impact of Contralateral Hemiplegia on Lower Limb Joint Kinematics and Dynamics: A Musculoskeletal Modeling Approach. Biomechanics 2024, 4, 784-804. https://doi.org/10.3390/biomechanics4040058
Younis S, Bishnoi A, Narayan J, Mio R. Impact of Contralateral Hemiplegia on Lower Limb Joint Kinematics and Dynamics: A Musculoskeletal Modeling Approach. Biomechanics. 2024; 4(4):784-804. https://doi.org/10.3390/biomechanics4040058
Chicago/Turabian StyleYounis, Sadia, Alka Bishnoi, Jyotindra Narayan, and Renato Mio. 2024. "Impact of Contralateral Hemiplegia on Lower Limb Joint Kinematics and Dynamics: A Musculoskeletal Modeling Approach" Biomechanics 4, no. 4: 784-804. https://doi.org/10.3390/biomechanics4040058
APA StyleYounis, S., Bishnoi, A., Narayan, J., & Mio, R. (2024). Impact of Contralateral Hemiplegia on Lower Limb Joint Kinematics and Dynamics: A Musculoskeletal Modeling Approach. Biomechanics, 4(4), 784-804. https://doi.org/10.3390/biomechanics4040058