mRNA Expression Level of ALK in Neuroblastoma Is Associated with Histological Subtype, ALK Mutations and ALK Immunohistochemical Protein Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Clinicopathological Data
2.2. Immunohistochemistry
2.3. Fluorescence In Situ Hybridization
2.4. Single Nucleotide Polymorphism Array
2.5. Next Generation Sequencing
2.6. Whole Exome Sequencing
2.7. Whole Transcriptome Sequencing
2.8. Statistical Analysis
3. Results
3.1. Prognostic Value of ALK mRNA Expression
3.2. mRNA Expression of ALK and Histological Sub Classification
3.3. mRNA Expression and Immunohistochemical Protein Expression of ALK
3.4. ALK Status and mRNA Expression of ALK
3.5. MYCN Status and mRNA Expression of ALK/MYCN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valter, K.; Zhivotovsky, B.; Gogvadze, V. Cell death-based treatment of neuroblastoma. Cell Death Dis. 2018, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Regairaz, M.; Munier, F.; Sartelet, H.; Castaing, M.; Marty, V.; Renauleaud, C.; Doux, C.; Delbé, J.; Courty, J.; Fabre, M.; et al. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma. Am. J. Pathol. 2016, 186, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Schulte, J.H.; Bachmann, H.S.; Brockmeyer, B.; DePreter, K.; Oberthür, A.; Ackermann, S.; Fischer, M. High ALK Receptor Tyrosine Kinase Expression Supersedes ALK Mutation as a Determining Factor of an Unfavorable Phenotype in Primary Neuroblastoma. Clin. Cancer Res. 2011, 17, 5082–5092. [Google Scholar] [CrossRef] [PubMed]
- DuBois, S.G.; Macy, M.E.; Henderson, T.O. High-Risk and Relapsed Neuroblastoma: Toward More Cures and Better Outcomes. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Cohn, S.L.; Pearson, A.D.; London, W.B.; Monclair, T.; Ambros, P.F.; Brodeur, G.M.; Matthay, K.K. The International Neuroblastoma Risk Group (INRG) classification system: An INRG Task Force report. J. Clin. Oncol. 2009, 27, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Azarova, A.M.; Gautam, G.; George, R.E. Emerging importance of ALK in neuroblastoma. Semin. Cancer Biol. 2011, 21, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Bellini, A.; Pötschger, U.; Bernard, V.; Lapouble, E.; Baulande, S.; Ambros, P.F.; Schleiermacher, G. Frequency and Prognostic Impact of ALK Amplifications and Mutations in the European Neuroblastoma Study Group (SIOPEN) High-Risk Neuroblastoma Trial (HR-NBL1). J. Clin. Oncol. 2021, 39, 3377–3390. [Google Scholar] [CrossRef] [PubMed]
- Carén, H.; Abel, F.; Kogner, P.; Martinsson, T. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem. J. 2008, 416, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Lu, M.Y.; Yang, Y.L.; Chou, S.W.; Lin, D.T.; Lin, K.H.; Jou, S.T. The prognostic roles of and correlation between ALK and MYCN protein expression in neuroblastoma. J. Clin. Pathol. 2020, 73, 154–161. [Google Scholar] [CrossRef]
- Duijkers, F.A.M.; Gaal, J.; Meijerink, J.P.P.; Admiraal, P.; Pieters, R.; de Krijger, R.R.; van Noesel, M.M. High anaplastic lymphoma kinase immunohistochemical staining in neuroblastoma and ganglioneuroblastoma is an independent predictor of poor outcome. Am. J. Pathol. 2012, 180, 1223–1231. [Google Scholar] [CrossRef]
- Ogawa, S.; Takita, J.; Sanada, M.; Hayashi, Y. Oncogenic mutations of ALK in neuroblastoma. Cancer Sci. 2011, 102, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Passoni, L.; Longo, L.; Collini, P.; Coluccia, A.M.; Bozzi, F.; Podda, M.; Luksch, R. Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res. 2009, 69, 7338–7346. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhou, C.; Sun, Q.; Cai, R.; Li, Y.; Wang, D.; Gong, L. ALK amplification and protein expression predict inferior prognosis in neuroblastomas. Exp. Mol. Pathol. 2013, 95, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, C.M.; Viscardi, G.; Di Liello, R.; Fasano, M.; Martinelli, E.; Troiani, T.; Morgillo, F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol. Cancer 2018, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, B.; Palmer, R.H. The role of the ALK receptor in cancer biology. Ann. Oncol. 2016, 27, iii4–iii15. [Google Scholar] [CrossRef]
- Huang, H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. Int. J. Mol. Sci. USA 2018, 19, 3448. [Google Scholar] [CrossRef] [PubMed]
- Janoueix-Lerosey, I.; Lopez-Delisle, L.; Delattre, O.; Rohrer, H. The ALK receptor in sympathetic neuron development and neuroblastoma. Cell Tissue Res. 2018, 372, 325–337. [Google Scholar] [CrossRef]
- Umapathy, G.; Mendoza-Garcia, P.; Hallberg, B.; Palmer, R.H. Targeting anaplastic lymphoma kinase in neuroblastoma. Apmis 2019, 127, 288–302. [Google Scholar] [CrossRef]
- Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 2016, 165, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Koussounadis, A.; Langdon, S.P.; Um, I.H.; Harrison, D.J.; Smith, V.A. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci. Rep. 2015, 5, 10775. [Google Scholar] [CrossRef]
- Ponomarenko, E.A.; Krasnov, G.S.; Kiseleva, O.I.; Kryukova, P.A.; Arzumanian, V.A.; Dolgalev, G.V.; Poverennaya, E. Workability of mRNA Sequencing for Predicting Protein Abundance. Genes 2023, 14, 2065. [Google Scholar] [CrossRef] [PubMed]
- Papathomas, T.G.; Pucci, E.; Giordano, T.J.; Lu, H.; Duregon, E.; Volante, M.; De Krijger, R.R. An International Ki67 Reproducibility Study in Adrenal Cortical Carcinoma. Am. J. Surg. Pathol. 2016, 40, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Koens, L.; van de Ven, P.M.; Hijmering, N.J.; Kersten, M.J.; Diepstra, A.; Chamuleau, M.; de Jong, D. Interobserver variation in CD30 immunohistochemistry interpretation; consequences for patient selection for targeted treatment. Histopathology 2018, 73, 473–482. [Google Scholar] [CrossRef]
- van Bockstal, M.R.; Cooks, M.; Nederlof, I.; Brinkhuis, M.; Dutman, A.; Koopmans, M.; van Deurzen, C.H. Interobserver Agreement of PD-L1/SP142 Immunohistochemistry and Tumor-Infiltrating Lymphocytes (TILs) in Distant Metastases of Triple-Negative Breast Cancer: A Proof-of-Concept Study. A Report on Behalf of the International Immuno-Oncology Biomarker Working Group. Cancers 2021, 13, 4910. [Google Scholar] [CrossRef] [PubMed]
- Mossé, Y.P.; Laudenslager, M.; Longo, L.; Cole, K.A.; Wood, A.; Attiyeh, E.F.; Maris, J.M. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008, 455, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Delloye-Bourgeois, C.; Bertin, L.; Thoinet, K.; Jarrosson, L.; Kindbeiter, K.; Buffet, T.; Castellani, V. Microenvironment-Driven Shift of Cohesion/Detachment Balance within Tumors Induces a Switch toward Metastasis in Neuroblastoma. Cancer Cell 2017, 32, 427–443.e8. [Google Scholar] [CrossRef] [PubMed]
- Berry, T.; Luther, W.; Bhatnagar, N.; Jamin, Y.; Poon, E.; Sanda, T.; George, R.E. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 2012, 22, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Schönherr, C.; Ruuth, K.; Kamaraj, S.; Wang, C.L.; Yang, H.L.; Combaret, V.; Hallberg, B. Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene 2012, 31, 5193–5200. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, G.; El Wakil, A.; Witek, B.; Chesler, L.; Danielson, L.; Deng, X.; Hallberg, B. The kinase ALK stimulates the kinase ERK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci. Signal. 2014, 7, ra102. [Google Scholar] [CrossRef]
- Mus, L.M.; Lambertz, I.; Claeys, S.; Kumps, C.; van Loocke, W.; van Neste, C.; Speleman, F. The ETS transcription factor ETV5 is a target of activated ALK in neuroblastoma contributing to increased tumour aggressiveness. Sci. Rep. 2020, 10, 218. [Google Scholar] [CrossRef]
- Siaw, J.T.; Javanmardi, N.; van den Eynden, J.; Lind, D.E.; Fransson, S.; Martinez-Monleon, A.; Martinsson, T. 11q Deletion or ALK Activity Curbs DLG2 Expression to Maintain an Undifferentiated State in Neuroblastoma. Cell Rep. 2020, 32, 108171. [Google Scholar] [CrossRef] [PubMed]
- Okubo, J.; Takita, J.; Chen, Y.; Oki, K.; Nishimura, R.; Kato, M.; Sanada, M.; Hiwatari, M.; Hayashi, Y.; Igarashi, T.; et al. Aberrant activation of ALK kinase by a novel truncated form ALK protein in neuroblastoma. Oncogene 2012, 31, 4667–4676. [Google Scholar] [CrossRef] [PubMed]
- Cazes, A.; Louis-Brennetot, C.; Mazot, P.; Dingli, F.; Lombard, B.; Boeva, V.; Daveau, R.; Cappo, J.; Combaret, V.; Schleiermacher, G.; et al. Characterization of Rearrangements Involving the ALK Gene Reveals a Novel Truncated Form Associated with Tumor Aggressiveness in Neuroblastoma. Cancer Res. 2013, 73, 195–204. [Google Scholar] [CrossRef]
- Fransson, S.; Hansson, M.; Ruuth, K.; Djos, A.; Berbegall, A.; Javanmardi, N.; Abrahamsson, J.; Palmer, R.H.; Noguera, R.; Hallberg, B.; et al. Intragenic anaplastic lymphoma kinase (ALK) rearrangements: Translocations as a novel mechanism of ALK activation in neuroblastoma tumors. Genes Chromosom. Cancer 2015, 54, 99–109. [Google Scholar] [CrossRef]
- de Brouwer, S.; de Preter, K.; Kumps, C.; Zabrocki, P.; Porcu, M.; Westerhout, E.M.; Speleman, F. Meta-analysis of Neuroblastomas Reveals a Skewed ALK Mutation Spectrum in Tumors with MYCN Amplification. Clin. Cancer Res. 2010, 16, 4353–4362. [Google Scholar] [CrossRef] [PubMed]
- Demir, A.B.; Aktas, S.; Altun, Z.; Ercetin, P.; Aktas, T.C.; Olgun, N. Questioning How to Define the “Ultra-High-Risk” Subgroup of Neuroblastoma Patients. Folia Biol. 2021, 67, 1–9. [Google Scholar] [CrossRef]
- Ogura, T.; Hiyama, E.; Kamei, N.; Kamimatsuse, A.; Ueda, Y.; Ogura, K. Clinical feature of anaplastic lymphoma kinase–mutated neuroblastoma. J. Pediatr. Surg. 2012, 47, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Wulf, A.M.; Moreno, M.M.; Paka, C.; Rampasekova, A.; Liu, K.J. Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int. J. Mol. Sci. 2021, 22, 11718. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.; Nafady, A.; Takatori, A.; Kishida, S.; Ohira, M.; Suenaga, Y.; Hossain, S.; Akter, J.; Ogura, A.; Nakamura, Y.; et al. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma. Sci. Rep. 2013, 3, 3450. [Google Scholar] [CrossRef]
- Fischer, M.; Moreno, L.; Ziegler, D.S.; Marshall, L.V.; Zwaan, C.M.; Irwin, M.S.; Casanova, M.; Sabado, C.; Wulff, B.; Stegert, M.; et al. Ceritinib in paediatric patients with anaplastic lymphoma kinase-positive malignancies: An open-label, multicentre, phase 1, dose-escalation and dose-expansion study. Lancet Oncol. 2021, 22, 1764–1776. [Google Scholar] [CrossRef]
- Foster, J.H.; Voss, S.D.; Hall, D.C.; Minard, C.G.; Balis, F.M.; Wilner, K.; Berg, S.L.; Fox, E.; Adamson, P.C.; Adamson, S.M.; et al. Activity of Crizotinib in Patients with ALK-Aberrant Relapsed/Refractory Neuroblastoma: A Children’s Oncology Group Study (ADVL0912). Clin. Cancer Res. 2021, 27, 3543–3548. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, K.C.; Park, J.R.; Kayser, K.; Malvar, J.; Chi, Y.Y.; Groshen, S.G.; Villablanca, J.G.; Krytska, K.; Lai, L.M.; Acharya, P.T.; et al. Lorlatinib with or without chemotherapy in ALK-driven refractory/relapsed neuroblastoma: Phase 1 trial results. Nat. Med. 2023, 29, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.O.; Huibers, M.M.H.; de Weger, R.A.; de Leng, W.W.J.; Hinrichs, J.W.J.; Meijers, R.W.J.; Willems, S.M.; Peeters, T.L.M.G. One-fits-all pretreatment protocol facilitating Fluorescence in Situ Hybridization on formalin-fixed paraffin-embedded, fresh frozen and cytological slides. Mol. Cytogenet. 2019, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- de Leng, W.W.J.; Gadellaa-van Hooijdonk, C.G.; Barendregt-Smouter, F.A.S.; Koudijs, M.J.; Nijman, I.; Hinrichs, J.W.J.; Cuppen, E.; van Lieshout, S.; Loberg, D.R.; de Jonge, M.; et al. Targeted Next Generation Sequencing as a Reliable Diagnostic Assay for the Detection of Somatic Mutations in Tumours Using Minimal DNA Amounts from Formalin Fixed Paraffin Embedded Material. PLoS ONE 2016, 11, e0149405. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Workflows, B.P. Genome Analysis Toolkit (GATK) 2022. Available online: https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows (accessed on 1 June 2024).
- Wingett, S.W.; Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018, 7, 1338. [Google Scholar] [CrossRef] [PubMed]
- David, B.; Takuto, S.; Kristian, C.; Gad, G.; Chip, S.; Lee, L. Calling Somatic SNVs and Indels with Mutect2. BioRxiv 2019, 861054. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Hehir-Kwa, J.Y.; Koudijs, M.J.; Verwiel, E.T.P.; Kester, L.A.; van Tuil, M.; Strengman, E.; Buijs, A.; Kranendonk, M.E.G.; Hiemcke-Jiwa, L.S.; de Haas, V.; et al. Improved Gene Fusion Detection in Childhood Cancer Diagnostics Using RNA Sequencing. JCO Precis. Oncol. 2022, 6, e2000504. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Schemper, M.; Smith, T.L. A note on quantifying follow-up in studies of failure time. Control. Clin. Trials 1996, 17, 343–346. [Google Scholar] [CrossRef] [PubMed]
- George, R.E.; Sanda, T.; Hanna, M.; Fröhling, S.; Luther, W., 2nd; Zhang, J.; Ahn, Y.; Zhou, W.J.; London, W.B.; McGrady, R.; et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 2008, 455, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.K.; Shattuck, D.L.; Ingalla, E.Q.; Yen, L.; Borowsky, A.D.; Young, L.J.; Cardiff, R.D.; Carraway, K.L.; Sweeney, C. Suppression of the Negative Regulator LRIG1 Contributes to ErbB2 Overexpression in Breast Cancer. Cancer Res. 2008, 68, 8286–8294. [Google Scholar] [CrossRef] [PubMed]
- Roos, D.; de Boer, M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim. Et Biophys. Acta Mol. Basis Dis. 2021, 1867, 166166. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, J.A. Qualitative Descriptors of Strength of Association and Effect Size. J. Soc. Serv. Res. 1996, 21, 37–59. [Google Scholar] [CrossRef]
- Hoogstrate, Y.; Draaisma, K.; Ghisai, S.A.; van Hijfte, L.; Barin, N.; de Heer, I.; French, P.J. Transcriptome analysis reveals tumor microenvironment changes in glioblastoma. Cancer Cell 2023, 41, 678–692.e7. [Google Scholar] [CrossRef]
- Sokol, E.; Desai, A.V. The Evolution of Risk Classification for Neuroblastoma. Children 2019, 6, 27. [Google Scholar] [CrossRef]
N (%) | |
---|---|
Gender | |
Female | 29 (54) |
Male | 25 (46) |
Age group | |
Infant (<1 year) | 16 (30) |
Child (1–18 years) | 38 (70) |
Overall survival | |
Yes | 41 (76) |
No | 13 (14) |
Event free survival | |
Yes | 20 (63) |
No | 34 (37) |
Primary tumor location | |
Adrenal gland | 29 (54) |
Paravertebral ganglia | 17 (32) |
Other/unknown | 8 (15) |
Classification (INPC) | |
Neuroblastoma (not further specified) | 2 (4) |
Undifferentiated neuroblastoma | 5 (9) |
Poorly differentiated neuroblastoma | 39 (72) |
Differentiating neuroblastoma | 4 (7) |
Ganglioneuroblastoma | 2 (4) |
Ganglioneuroma | 2 (4) |
ALK protein expression | |
Negative | 33 (61) |
Weak | 11 (20) |
Moderate | 2 (4) |
Strong | 3 (6) |
Molecular aberration | |
Gain of 2(p) | 19 (35) |
ALK mutation | 7 (13) |
ALK amplification | 1 (2) |
MYCN amplification | 12 (22) |
OS | EFS | |||
---|---|---|---|---|
HR | 95% CI (p-Value) | HR | 95% CI (p-Value) | |
ALK mRNA expression Unadjusted | 1.127 | 0.812–1.854 (0.331) | 1.241 | 0.890–1.730 (0.204) |
ALK mRNA expression Adjusted for MYCN amplification | 1.134 | 0.783–1.644 (0.505) | ||
MYCN amplification Adjusted for ALK mRNA expression | 2.301 | 0.894–5.926 (0.084) |
OR | 95% CI (p-Value) | |
---|---|---|
Histological classification | ||
Reference category: Group B | 1.914 | 1.083–3.382 (0.025) |
Weak immunohistochemical protein expression | ||
Reference category: negative protein expression | 2.829 | 1.290–6.204 (0.009) |
Moderate/strong immunohistochemical protein expression | ||
Reference category: negative protein expression | 2.934 | 0.889–9.679 (0.077) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruinsma, R.S.; Fiocco, M.F.; de Leng, W.W.J.; Kester, L.A.; Langenberg, K.P.S.; Tytgat, G.A.M.; van Noesel, M.M.; Wijnen, M.H.W.A.; van der Steeg, A.F.W.; de Krijger, R.R. mRNA Expression Level of ALK in Neuroblastoma Is Associated with Histological Subtype, ALK Mutations and ALK Immunohistochemical Protein Expression. J. Mol. Pathol. 2024, 5, 304-318. https://doi.org/10.3390/jmp5030022
Bruinsma RS, Fiocco MF, de Leng WWJ, Kester LA, Langenberg KPS, Tytgat GAM, van Noesel MM, Wijnen MHWA, van der Steeg AFW, de Krijger RR. mRNA Expression Level of ALK in Neuroblastoma Is Associated with Histological Subtype, ALK Mutations and ALK Immunohistochemical Protein Expression. Journal of Molecular Pathology. 2024; 5(3):304-318. https://doi.org/10.3390/jmp5030022
Chicago/Turabian StyleBruinsma, Rixt S., Marta F. Fiocco, Wendy W. J. de Leng, Lennart A. Kester, Karin P. S. Langenberg, Godelieve A. M. Tytgat, Max M. van Noesel, Marc H. W. A. Wijnen, Alida F. W. van der Steeg, and Ronald R. de Krijger. 2024. "mRNA Expression Level of ALK in Neuroblastoma Is Associated with Histological Subtype, ALK Mutations and ALK Immunohistochemical Protein Expression" Journal of Molecular Pathology 5, no. 3: 304-318. https://doi.org/10.3390/jmp5030022