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Abstract: Wildfires and post-fire restoration methods significantly impact soil physicochemical prop-
erties and microbial characteristics in forest ecosystems. Understanding post-fire soil recovery and
the impacts of various post-fire restoration methods is essential for developing effective restoration
strategies. This study aimed to investigate how fire and soil depth influence soil physicochemical
properties, enzymatic activities, and the structure of microbial communities, as well as how these
factors change under different post-fire management practices. We sampled 0–10 cm (topsoil) and
10–20 cm (subsoil) in unburned plots, naturally restored plots, and two afforestation plots in southern
China. The results showed that fire reduced topsoil soil moisture, nutrient levels, and microbial
biomass. The variations in soil physicochemical properties significantly influenced microbial pro-
cesses. Soil bulk density, nitrate, ammonium, carbon-to-nitrogen ratio, and availability of nitrogen,
phosphorus, and potassium availability influenced soil enzyme activities. Soil pH, ammonium nitro-
gen, and the availability of nitrogen, phosphorus, and potassium were key factors shaping microbial
composition. Fire altered the soil microbial communities by reducing the availability of nitrogen.
Soil depth alleviated the impact of fire on the soil to some degree. Although artificial interventions
reduced soil organic carbon, total nitrogen, and phosphorus, planting nitrogen-fixing species, such as
Acacia mangium, promoted microbial recovery.

Keywords: wildfire effects; post-fire management; microbial activity; soil nutrients; phospholipid
fatty acids

1. Introduction

Among natural disturbances, wildfires are among the most disruptive to terrestrial
ecosystems, yet the ongoing trend of global warming has heightened the risk of fires in
humid tropical forests [1]. Fires severely affect land and forest biodiversity, resulting in
habitat loss and contributing to climate change, with broad ecological, economic, and
social consequences [2]. One of the most significant consequences of wildfires is soil
erosion, which can obstruct vegetation regrowth, degrade water quality, deplete soil carbon
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pools and nutrients in upland and riparian forests, and disrupt biogeochemical cycles [3].
Thus, developing effective post-disaster management strategies to mitigate these impacts
is critical.

Soil is an irreplaceable resource (from a human perspective) and one of the most valu-
able assets for sustaining life [4]. Fires expose large areas of soil to air and sunlight, altering
physical properties such as structure and humidity, which subsequently affect its chemical
and biological characteristics [5]. Consequently, the physicochemical and biological prop-
erties of forest soil degrade, reducing their capacity to support ecosystems [6]. Research
has documented how fire influences soil properties, including aggregate stability, texture,
and porosity [7,8]. Nonetheless, the effects on soil properties can vary; for example, while
some studies indicate that soil bulk density decreases after a fire [8], others have observed
an increase [9]. Intense fires lead to nutrient loss through combustion and a decline in soil
organic matter and total nitrogen [5]. Due to the uneven distribution of heat, the effects
of fire on soil properties are often spatially heterogeneous and primarily limited to the
upper several centimeters of soil [4]. The influences of fire on the properties and microbial
characteristics in soil may diminish with increasing soil depth. Fire primarily affects the top
layer of microorganisms, and studies have shown that fire only reduces dissolved organic
carbon in 0–10 cm soil [10,11]. Research on subtropical forests indicates that the effect of
fire on microbial biomass carbon largely depends on soil depth [12]. Therefore, studying
the impacts of fire on soil at different depths can provide deeper insights into fire dynamics.

Alterations in soil physicochemical properties affect microorganisms, which are es-
sential for maintaining soil function. Soil microbial biomass carbon and nitrogen directly
reflect the microbial activity [13]. Research indicates that wildfires, through heat stress
and organic matter combustion, drive microbial biomass reductions and nutrient loss in
subtropical forest soils [14]. Enzymes such as β-glucosidase, N-acetyl-glucosaminidase,
and acid phosphatase mediate C, N, and P acquisition, while peroxidase drives organic
matter decomposition, underscoring the critical role of soil extracellular enzymes in biogeo-
chemical processes [15,16]. Substrate utilization and microbial composition significantly
influence enzyme activity, with hydrolytic enzymes declining after a fire [15]. Fire can
directly kill microorganisms by increasing soil temperature and potentially influencing
the size, composition, and recovery of microbial communities over a period [17,18]. The
severity of these effects is influenced by factors including fire intensity, duration, soil depth,
and host interactions [11,19]. Although bacteria and fungi vary in their fire resistance,
bacteria are typically more adaptable to soil conditions following a fire [20]. Factors such
as fire intensity and soil depth can significantly affect the direction and extent of microbial
changes [10,21]. Nevertheless, the specific mechanisms through which fire impinges upon
microbial communities and their functional capacities, such as enzyme activities, remain
poorly understood [22]. Additional exploration is required to clarify the interrelation-
ships between soil attributes and communities of microorganisms under various post-fire
restoration methods.

Post-fire restoration methods, including artificial restoration and human intervention,
also have an essential impact on ecosystem recovery. For instance, removing burned wood
and subsequent afforestation can impact soil and microbial recovery, potentially causing
more harm than the fire itself [23,24]. Charcoal formed during incomplete combustion can
enhance the water-holding ability of soils in subtropical regions [25]. The preference for tree
species for afforestation, such as those capable of nitrogen fixation, can accelerate ecological
restoration, improve soil properties, and promote microbial activity [26]. Although a great
deal of research has emphasized forest fires in northern and Mediterranean regions [18,27],
limited research has explored the impacts of subtropical wildfires and the efficacy of various
post-fire restoration practices in these regions.

This research explores how fire and post-fire restoration methods influence soil prop-
erties, enzymatic activities, and microbic community structure at various soil layers within
a subtropical forest. Specifically, we address three research questions: (1) What are the im-
pacts of fire and post-fire restoration methods on soil physicochemical properties, enzyme
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activities, and microbial community composition? (2) How do these impacts vary with soil
depth? (3) Through what pathways does fire affect microbial community structure? We
assume that fire causes a decrease in soil nutrients and microbial biomass and that these
impacts are moderated by soil depth. Additionally, we hypothesize that afforestation with
nitrogen-fixing species will promote faster microbial recovery. To test these hypotheses, we
employed structural equation modeling (SEM) to elucidate the immediate and subsequent
impacts of wildfire on microbial communities.

2. Materials and Methods
2.1. Study Area

This research was executed in a subtropical forest on Ling Yun Mountain in Guang-
dong Province, South China, to examine the impacts of wildfire and restoration methods
after fire on physicochemical properties and microbial characteristics in soil. A forest fire af-
fected the region from 5 December to 9 December 2019, burning a total area of 924.63 hectares.
The pre-fire vegetation was dominated by Pinus massoniana and Eucalyptus, with 93.2% of
the area being plantations. The climate of the study area is defined by monsoons, featur-
ing a precipitation peak from April to September and a drought period from October to
March. The yearly rainfall ranges from 1400 to 1956 mm, with an average temperature of
23 ◦C per year. The highest altitude of the region is 400 m above sea level, and the soil is
primarily laterite derived from granite rock [28].

To promote soil recovery, post-fire afforestation was implemented in March 2020.
The burned areas were cleared of debris, including branches, weeds, and other materials,
and native broadleaved tree species, mainly Acacia mangium and Michelia macclurei, were
planted. Four sites were selected for study: the unburned area (UF), the natural recovery
area (NRF), and two afforestation areas with different species (ARF1: Acacia mangium and
ARF2: Michelia macclurei). Each site consisted of three plots, totaling 12 plots overall, each
measuring 10 m × 10 m (Figure 1). The altitude, aspect, slope, and other details of the sites
are provided in Table S1.
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2.2. Soil Sampling and Chemical Analyses

Soil sampling was conducted in March 2022, 28 months after the fire. Within each
plot, five soil cores were placed along an S-shaped sample from two depths: 0–10 cm of
surface topsoil (0–10 cm) and 10–20 cm of deeper soil. A total of 120 subsamples were
obtained. Five subsamples from an identical depth within every plot were blended to
produce composite samples, which were promptly frozen in ice and delivered to the
laboratory. Before being analyzed, the soil composite samples were sifted via a 2 mm
mesh sieve.

The following methods were used to analyze the soil’s physiochemical properties:
bulk density, water retention, and porosity, which were quantified through the soaking
method with a cutting ring [29]. Soil water content (SWC) was measured after drying
soil samples in a 105 ◦C oven for a duration of 24 h. Soil pH was determined using
a Sartorius PB-10 m with a soil-to-water proportion of 1:2.5. Total nitrogen (TN) and
total phosphorus (TP) were assessed through the semi-micro Kjeldahl acid digestion tech-
nique [30] and molybdenum–antimony resistance colorimetric technique [31], respectively.
Soil organic carbon (SOC) was measured using combustion analysis on soil samples that
were air-dried [32]. Nitrate nitrogen (NO3

−-N) and ammonium nitrogen (NH4
+-N) were

quantified using copper cadmium reduction methods and indophenol blue colorimetry,
respectively [33,34]. For available nitrogen (AN), potassium (AK), and phosphorus (AVP),
AN was determined though the alkalosis diffusion approach (LY/T1229-1999), AK using
flame photometry (GB7856-87), and AVP was measured via the molybdenum phosphor-
blue colorimetric technique (GB7853-87).

2.3. Soil Microbial Biomass, Enzyme Activity and Microbial Characteristics Analyses

The chloroform fumigation–extraction technique was applied to measure microbial
biomass carbon (MBC) and nitrogen (MBN) with a correction factor of 0.45 [35]. En-
zyme activities included the N-acetyl-glucosaminidase (NAG) activity, which was mea-
sured following Deng and Popova [36]; β-glucosidase (BG) activity was estimated fol-
lowing Eivazi and Tabatabai [37]; and peroxidase (POD) activity was quantified with
L-3,4-dihydroxyphenylalanine as a substrate [38]. Acid phosphatase (AP) was quantified
following Tabatabai and Bremner [39].

Microbial communities were characterized via the phospholipid fatty acid (PLFA)
technique [40]. In summary, 8 g of soil samples was freeze-dried and extracted using a
chloroform–methanol–phosphate mixed buffer solution at a ratio of 1:2:8. The obtained
lipids were separated into neutral, glycolipid, and polar lipids utilizing a silicic acid column
with sequential elution using chloroform, acetone, and methanol. Total microbial biomass
was determined based on the 66 different PLFAs detected in the samples. The PLFAs specific
to different microbial groups were used to indicate general bacteria (GB), Gram-positive
bacteria (G+), Gram-negative bacteria (G−), actinomycetes, general fungi (GF), arbuscular
mycorrhizal fungi (AMF), and protozoa [41–44]. The calculation of the Shannon–Wiener
diversity index (H) was performed [45].

2.4. Statistical Analyses

For each response variable (e.g., soil moisture, bulk density, enzyme activities), a
one-way ANOVA was conducted to evaluate differences among plot types at each depth.
Duncan’s post hoc test was applied when significant results were obtained from ANOVA
(p < 0.05). ANOVA was chosen for its robustness in comparing multiple groups and
detecting differences in means. Levene’s test was used to assess homogeneity of variance.
Variables such as soil ammonia nitrogen, total nitrogen, carbon-to-nitrogen ratio, and acid
phosphatase exhibited heterogeneity, as did nitrate nitrogen and total PLFAs in the surface
soil, as well as organic carbon and available nitrogen in the deep soil. Welch’s test was
performed for these cases, followed by Tamhane’s T2 post hoc test (p < 0.05). Similarly, the
differences across various soil depths were also evaluated.
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The Bray–Curtis dissimilarity metric was used to assess variation in microbial com-
munity composition among the four sites, with the results visualized using principal
coordinate analysis (PCoA) implemented through the “ade4” package in R 4.3.2. Per-
mutational multivariate analysis of variance (PERMANOVA) was applied to perform a
quantitative evaluation of the joint impacts of wildfire and post-fire restoration methods on
microbial community composition. Redundancy analysis (RDA) was conducted to reveal
how environmental variables affect microbial communities. Structural equation modeling
was employed to investigate the direct immediate and indirect subsequent impacts of fire
on microorganisms and soil properties. All initial paths in the theoretical model were
included, and insignificant paths were removed using d-separation criteria, and estimate
indirect and total effects through the SEMEFF package [46].

3. Results
3.1. Impacts of Fire, Soil Depth, and Post-Fire Restoration Methods on Soil Physiochemical Properties

Post-fire restoration methods significantly affected most soil physical properties, ex-
cept for bulk density (BD) (Table 1). Soil water content (SWC) and field water content
(FWC) were higher in the unburned plots versus other plots. Nonetheless, no statistically
significant difference was found in SWC and FWC between the UF and NRF, while both
were significantly different from the afforestation plots (ARF1 and ARF2). There were
no significant variations detected within the two afforestation plots for SWC, FWC, and
capillary porosity. Fire tends to increase BD, but no significant variations in BD were found
between the different post-fire restoration sites. After the fire, the reduction in SWC, FWC,
and capillary porosity was less pronounced in the subsurface layer (10–20 cm) than in the
topsoil layer (0–10 cm).

Table 1. Soil physical properties at different depths under different sites. Data reported are average ± SE;
SE indicates the standard error derived from 3 replicate measurements. Varied lowercase letters
reflect significant variations in sites (p < 0.05); there was no significant difference with the same letter.
SWC: soil water content; FWC: field water content; CP: capillary porosity; BD: bulk density; UF:
unburned forest; NRF: burned but naturally regenerating forest; ARF1: burned but afforestation
restored with Acacia mangium; ARF2: burned but afforestation restored with Michelia macclurei.

Depth
(cm)

Sites p

UF NRF ARF1 ARF2 Depth

SWC (%) 0–10 16.85 ± 0.32 a 15.67 ± 0.21 a 10.87 ± 1.17 b 12.01 ± 1.26 b
10–20 15.91 ± 0.56 a 15.98 ± 0.13 a 11.41 ± 0.82 b 13.8 ± 0.7 ab 0.700

FWC (%) 0–10 20.04 ± 1.35 a 17.53 ± 0.72 a 11.42 ± 1.04 b 12.24 ± 0.67 b
10–20 17.74 ± 0.75 a 16.15 ± 0.35 a 12.34 ± 0.09 b 11.94 ± 1.55 b 0.611

CP (%) 0–10 39.95 ± 0.53 a 39.38 ± 0.73 ab 31.34 ± 1.15 c 35.17 ± 1.51 bc
10–20 37.47 ± 1.42 a 37.43 ± 1.01 a 31.99 ± 1.29 ab 30.88 ± 1.55 b 0.234

BD (g cm−3) 0–10 1.19 ± 0.01 1.31 ± 0.07 1.41 ± 0.05 1.48 ± 0.03
10–20 1.18 ± 0.01 1.47 ± 0.04 1.37 ± 0.07 1.44 ± 0.01 0.787

Soil chemical properties varied significantly with fire and post-fire restoration methods
(Table 2). Fire tends to increase soil pH, with no significant variations noted between post-
fire restoration sites. Fire significantly reduced the contents of total phosphorus, available
phosphorus, and available potassium in the surface soil. It also reduced the contents of soil
organic carbon, total nitrogen, and available nitrogen, especially in the 0–10 cm of topsoil.
Soil organic carbon and total nitrogen in the 10–20 cm of deeper soil were less affected by
wildfire. Total nitrogen, phosphorus, and available nitrogen levels were significantly high
in the NRF than the afforestation plots, yet no significant change was detected between the
two afforestation strategies. Notably, NO3

−-N levels were highest in ARF2 plots. Overall,
nutrient levels (SOC, TN, TP, AN, AK, AVP, NO3

−-N, NH4
+-N) were lower in deeper
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soil across all sites, and the impacts of fire on deeper soil chemistry properties were less
pronounced compared with topsoil (Table 2).

Table 2. Soil chemical features at various depths under different sites. Data reported are average ± SE;
SE indicates the standard error derived from 3 replicate measurements. Varied lowercase letters reflect
significant variations in sites (p < 0.05); there was no significant difference with the same letter. SOC:
soil organic carbon; TN: total nitrogen; TP: total phosphorus; NH4

+-N: ammonium nitrogen; NO3
−-N:

nitrate nitrogen; AN: available nitrogen; AVP: available phosphorus; AK: available potassium; UF:
unburned forest; NRF: burned but naturally regenerating forest; ARF1: burned but afforestation
restored with Acacia mangium; ARF2: burned but afforestation restored with Michelia macclurei.

Depth
(cm)

Sites p

UF NRF ARF1 ARF2 Depth

pH 0–10 4.26 ± 0.03 4.37 ± 0.05 4.4 ± 0.01 4.36 ± 0.04
10–20 4.26 ± 0.03 4.34 ± 0.05 4.41 ± 0.01 4.35 ± 0.04 0.947

SOC 0–10 25.96 ± 3.44 a 19.1 ± 0.77 ab 11.18 ± 3.31 b 9.61 ± 0.9 b
(g kg−1) 10–20 15.16 ± 2.82 a 11.83 ± 0.9 a 7.05 ± 0.37 a 7.06 ± 0.44 a 0.031

TN 0–10 2.51 ± 0.27 ab 2.24 ± 0.08 a 1.8 ± 0.15 ab 1.47 ± 0.06 b
(g kg−1) 10–20 1.55 ± 0.28 a 1.66 ± 0.03 a 1.2 ± 0.07 a 1.38 ± 0.08 a 0.004

TP 0–10 0.6 ± 0.02 a 0.28 ± 0.02 b 0.18 ± 0.01 c 0.15 ± 0.01 c
(g kg−1) 10–20 0.53 ± 0.02 a 0.25 ± 0.02 b 0.16 ± 0.01 c 0.15 ± 0.01 c 0.694

C/N 0–10 10.25 ± 0.31 8.54 ± 0.28 6.05 ± 1.51 6.52 ± 0.5
10–20 9.79 ± 0.67 7.16 ± 0.65 5.89 ± 0.10 5.13 ± 0.18 0.349

N/P 0–10 4.22 ± 0.53 b 8.13 ± 0.74 a 9.98 ± 0.37 a 10.11 ± 0.83 a
10–20 3 ± 0.64 c 6.71 ± 0.53 b 7.36 ± 0.38 b 9.42 ± 0.21 a 0.185

NH4
+-N 0–10 5.11 ± 0.59 2.52 ± 0.22 2.74 ± 0.25 2.39 ± 0.08

(mg kg−1) 10–20 3.06 ± 0.23 2.14 ± 0.07 2.38 ± 0.23 2.48 ± 0.03 0.117

NO3
−-N 0–10 1 ± 0.08 a 0.86 ± 0.07 a 1.78 ± 0.29 a 0.86 ± 0.04 a

(mg kg−1) 10–20 0.62 ± 0.04 b 0.68 ± 0.02 b 1.06 ± 0.13 a 0.51 ± 0.06 b 0.019

AN 0–10 155.9 ± 8.29 ab 124.42 ± 3.06 a 79.76 ± 9.24 b 67.25 ± 5.6 b
(mg kg−1) 10–20 104.84 ± 10.35 ab 98.99 ± 2.94 a 50.47 ± 2.08 b 42.85 ± 2.94 b 0.034

AVP 0–10 22.11 ± 2.25 a 9.37 ± 1.02 b 11.9 ± 1.55 b 8.47 ± 0.32 b
(mg kg−1) 10–20 12.14 ± 1.24 a 6.57 ± 0.7 b 8.35 ± 0.71 b 4.49 ± 0.96 b 0.024

AK 0–10 5.56 ± 0.41 a 3.31 ± 0.32 b 3.88 ± 0.19 b 3.71 ± 0.34 b
(mg kg−1) 10–20 4.14 ± 0.44 a 3.21 ± 0.39 a 2.92 ± 0.11 a 3.35 ± 0.25 a 0.074

3.2. Impacts of Fire, Soil Depth, and Post-Fire Restoration Methods on Soil Microbial Characteristics

Fire significantly diminished the content of microbial biomass carbon and nitrogen
(MBC, MBN) in the topsoil (Figure 2). Recovery of MBC in ARF1 was significantly better
than in NRF and ARF2 in the shallower soil, while post-fire restoration methods did not
significantly affect MBC recovery in deeper soil (Figure 2a). MBN in topsoil was notably
lower in post-fire plots than unburned plots (Figure 2b), and the content of MBC and
MBN were higher in ARF1 plots in comparison with other post-fire plots. Fire had varying
impacts on soil enzyme activities (Figure 3). The content of AP was higher in burned
plots compared with unburned plots (Figure 3a), while the content of BG was higher in
unburned plots (Figure 3b); however, the variation between AP and BG did not reach
statistical significance. The content of NAG and POD decreased after the fire. NAG activity
in ARF2 was significantly lower than in other plots (Figure 3c), although there was an
absence of a significant difference in POD activity among different post-fire restoration
methods (Figure 3d). Topsoil exhibited higher enzyme activity and microbial biomass than
deeper soil. Generally, the average enzyme activity (AP, NAG, and POD) was higher in
ARF1 plots in comparison to other post-fire plots.
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Figure 3. Microbial enzyme activity of acid phosphate (AP), β-glucosidase (BG), N-acetyl-glucosidase
(NAG), and peroxidase (POD) (panels a–d, respectively) (M ± SE, n = 3). Varied lowercase letters
reflect significant variations in sites (p < 0.05); there was no significant difference with the same
letter. Unburned forest (UF); burned but naturally regenerating forest (NRF); burned but afforestation
restored with Acacia mangium (ARF1) and Michelia macclurei (ARF2). Significant differences between
soil depth (p < 0.05) have been marked in the figure.

The average content of general bacteria, Gram-positive bacteria, Gram-negative bacte-
ria, actinomycetes, and arbuscular mycorrhizal fungi PLFAs was lower in post-fire sites
than unburned sites, while the highest content of general fungal and protozoa PLFAs was
observed in NRF site (Table S2). The relative abundance of Gram-positive bacteria was the
highest among the detected microorganisms, while fungi had a lower relative abundance
(Figure 4). Fire reduced the proportion of AMF among the microbial community but increased
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the ratios of actinomycetes and other microorganisms (Figure 4). The total phospholipid fatty
acids (PLFAs) in the soil ranged from 8 to 33.66 nmol g−1 (Figure 5a). ARF1 plots had higher
average total PLFAs (14.34 nmol·g−1) than NRF plots (13.38 nmol·g−1), with lower PLFA
levels in post-fire plots compared with unburned plots (Figure 5a). The Shannon–Wiener
diversity index revealed significant differences in microbial diversity across different sites,
with fire causing a general decline in diversity (Figure 5b). The fungi-to-bacteria ratio (F/B)
tended to increase after the fire in most plots, except ARF2, though a significant increase was
observed only in NRF (Figure 5c). The Gram-positive bacteria to Gram-negative bacteria
ratio was higher in post-fire sites (Figure 5d). The Gram-positive bacteria to Gram-negative
bacteria ratio was notably greater in ARF2 plots compared with other plots, while F/B was
greater in NRF plots than in the afforestation area. PLFA content for various microbial
groups decreased with soil depth, and the shift in microbial community composition was
more pronounced in topsoil in comparison with the deeper soil (Table S2).
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Figure 4. Relative content of soil microbial phospholipid fatty acids (PLFAs). G+: Gram-positive
bacteria; G−: Gram-negative bacteria; A: Actinobacteria; AMF: arbuscular mycorrhizal fungi;
P: protozoa; GF: general fungi, which are fungi other than AMF; GB: general bacteria, which are
bacteria except for G+, G−, and A; others: other microbes. Unburned forest (UF); burned but natu-
rally regenerating forest (NRF); burned but afforestation restored with Acacia mangium (ARF1) and
Michelia macclurei (ARF2).
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to Gram-negative bacteria (G+/G−, c), and fungi to bacteria (F/B, d) (M ± SE, n = 3). Varied
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with the same letter. Unburned forest (UF); burned but naturally regenerating forest (NRF); burned
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3.3. Correlations of Soil Enzyme Activity and Microbial Community Composition with Soil
Physicochemical Properties

PCoA revealed a marked distinction within the microbial community arrangement
space (Figure 6). The primary and secondary axes explained 43.22% and 30.83% of the
variance, respectively. PERMANOVA indicated significant dissimilarities in microbial
community structure across different sites (r2 = 0.48; p = 0.001) (Table S3). Fire significantly
altered the microbial community composition, with differences observed between natural
recovery and the afforestation plots (Table S3).
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Redundancy analysis (RDA) identified several soil properties that significantly influ-
enced microbial activity and community composition. The primary and secondary axes
elucidated 53.35% and 8.6% of the variability in microbial activity, and 67.77% of the total
difference in microbial composition (Figure 7). Key soil physicochemical properties affect-
ing microbial activities included bulk density (BD), nitrate nitrogen (NO3

−-N), ammonia
nitrogen (NH4

+-N), carbon nitrogen ratio (C/N), available nitrogen (AN), available phos-
phorus (AVP), and available potassium (AN) (Table S4). Variations in microbial community
composition demonstrated a significant association related to soil pH, NH4

+-N, AK, AVP,
and AN (p < 0.05) (Table S5). β-glucosidase, N-acetyl-glucosidase, peroxidase, microbial
biomass carbon (MBC), and microbial biomass nitrogen (MBN) were positively associated
with soil AN, AVP, AK, NH4

+-N, C/N, and SWC, and negatively associated with BD. In
contrast, acid phosphate activity positively correlated with soil pH (Figure 7a, Table S4).
Soil AVP, AN, and AK positively influenced total PLFAs and the PLFAs of diverse groups,
while pH generally had a negative influence, except on protozoa (Figure 7b). Correlation
analysis supported these findings (Figure S1), and a positive correlation was found between
enzyme activity and the contents of MBC and MBN (Figure S1). The enzyme activity was
positively correlated with the content of PLFAs in each group (Figure S2).
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Figure 7. The association between microbial activity (a) community composition (b) and soil physic-
ochemical properties based on redundancy analysis (RDA). Blue arrows indicate soil characteris-
tics and red arrows indicate microbial activity/microbial community. AK: available potassium;
AN: available nitrogen; AVP: available phosphorus; BD: bulk density; NO: NO3

−-N; NH: NH4
+-N;

CN: C N ratio; SWC: soil water content; T: total PLFAs; MBC: microbial biomass carbon; MBN:
microbial biomass nitrogen; AP: acid phosphate; BG: β-glucosidase; NAG: N-acetyl-glucosidase;
POD: peroxidase; G+: Gram-positive bacteria; G−: Gram-negative bacteria; A: Actinobacteria; AMF:
arbuscular mycorrhizal fungi; P: protozoa; GF: general fungi, which are fungi other than AMF; GB:
general bacteria, which are bacteria except for G+, G−, and A; others: other microbes. Unburned
forest (UF); burned but naturally regenerating forest (NRF); burned but afforestation restored with
Acacia mangium (ARF1) and Michelia macclurei (ARF2).

SEM explained 61%, 37%, and 96% of the changes in microbial diversity, bacterial
PLFA, and fungal PLFA content, separately. Fire exerted a direct positive relationship
with bulk density while negatively affecting available nitrogen (Figure 8). Indirectly, fire
adversely affected microbial diversity, bacterial PLFA content, and fungal PLFA content
through its influence on the soil’s available nitrogen. The soil’s available nitrogen had both
direct and indirect positive impacts on fungal PLFA content (Table S6).
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4. Discussion
4.1. Effects of Fire on Soil Physical and Chemical Properties

Our findings confirm that wildfires significantly alter soil physicochemical properties,
particularly in the topsoil. Soil water content and field capacity decreased after the fire,
primarily due to the loss of organic matter, soil structure damage, and increased evapora-
tion, which collectively reduced soil moisture. High temperatures caused soil structure
damage to the soil, with ash clogging pore spaces, resulting in reduced capillary porosity
and an increase in bulk density [47,48]. The elevation in soil pH, attributed to ash deposi-
tion, the loss and denaturation of organic acids, and mineral transformation, supports our
hypothesis that fire directly affects soil chemical properties [6].

The observed reductions in the content of soil organic carbon (SOC) and total nitrogen
(TN) are consistent with findings that wildfires volatilize organic matter, leading to signifi-
cant nutrient loss [49]. While previous studies have reported increased soil phosphorus
levels after fires [50], we found a decrease, suggesting that phosphorus volatilization may
occur at high temperatures, depending on soil characteristics [51]. Additionally, reduc-
tions in SOC have been linked to changes in microbial composition and population size,
increased carbon mineralization rates due to elevated pH, and carbon dissolution following
fire events [52]. Nitrogen loss may also result from the release of N into the atmosphere
as nitrous oxides, increased uptake and leaching associated with post-fire plant growth,
and ash erosion [50,53]. Furthermore, the increased nitrate levels observed in plots with
Acacia mangium underscore the role of nitrogen-fixing species in influencing soil nitrogen
availability during early recovery. These species can convert atmospheric nitrogen, thereby
contributing to the soil nitrogen cycle [54].

4.2. Effects of Fire on Soil Enzymatic Activities and the Structural of Microbial Communities

Fire significantly diminished the content of microbial biomass carbon and nitrogen
(MBC, MBN), particularly in surface soils (0–10 cm), supporting our hypothesis that fire
adversely affects microbial biomass. Variation in soil organic carbon (SOC), total nitrogen
(TN), and MBC, MBN was positively associated, and microbial activity depended strongly
on substrate availability [55], indicating that fire indirectly affects microbial biomass by
altering soil carbon and nitrogen. This reduction in MBC and MBN is likely a result of the
direct thermal destruction of microbial cells and the removal of carbon and nitrogen sources
essential for microbial growth [56]. Changes in soil enzyme activities after the fire further
support the idea that soil enzymes are highly sensitive to fire-induced variation in the soil
environment [16,57]. Interestingly, we observed a differential response among soil enzymes:
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while phosphatase activity increased after the fire, reflecting potential microbial adaptation
to phosphorus scarcity, β-glucosidase activity declined across all plots, possibly due to
a decrease in labile carbon substrates [58,59]. Furthermore, soil available P is positively
correlated with the activity of the N-acquiring enzyme (NAG) in the soil, suggesting that
the availability of phosphorus can trigger the increase in the augmentation of nitrogen
nutrient effectiveness [60]. A reduction in SOC and TN would impede the growth and
activity of microorganisms [13,61]. The reduction in soil MBC and MBN resulting from
the fires directly reflected the decline in soil microbial activity. Soil enzymes are primarily
derived from microorganisms [13]. It can thus be surmised that the reduced soil carbon and
nitrogen levels observed in the fire sample may be a contributing factor to the observed
decline in extracellular enzyme activity. Moya et al. [62] have previously reported that while
the poor nutrient availability and reduction in the carbon mineralization rate following
fires may delay the recovery of microbial activity, the collection of soil carbon and nitrogen
stocks during the succession process may lead to an increase in enzyme activity.

Our study revealed discernible alterations in the structure of the soil microbial com-
munity in the aftermath of a fire, showing that the overall PLFAs, bacterial, and fungal
contents all decreased after fire. Moreover, soil microbial diversity decreased after fire, and
the reduction in microbial abundance and diversity could have caused a deterioration of
ecosystem function [63]. Bacterial and fungal declines differed, except for a rise in fungal
content and a drop in bacterial content in the NRF plots, resulting in a post-fire change
in the proportion of fungi to bacteria in the plots. The increase in fungi (especially AMF)
in the NRF may have been due to P limitation, mycorrhizal fungi being more abundant
in sites more limited by soil nutrients, fire-induced substrate changes, and competitor
mortality, which can stimulate positive fungal responses [64,65]. When contrasted with
Gram-negative bacteria, Gram-positive bacteria feature a cell wall that is markedly thicker
and stronger [66], which enables them to better survive in resource-limited environments
and withstand environmental stresses. This might account for the elevation of the ratio of
Gram-positive bacteria to Gram-negative bacteria in shallow soil post-fire. The higher rela-
tive abundance of actinomycetes in post-fire plots may be related to the fact that the spores
they formed were highly resistant to fire [67]. Principal coordinate analysis (PCoA) indi-
cated distinct changes in microbial community composition under different management
strategies. The results indicate that soil pH and the nutrient accessibility in the soil exert
a considerable influence on soil microbial structure, which is in agreement with previous
research that soil microbes are linked to variation in available nitrogen, and the sustained
reduction in microbial activity may result from the loss of carbon–nitrogen binding after
the fire [68]. Fire directly and indirectly drives changes in soil bacteria and fungi through
environmental factors. SEM further revealed that the effect of fire on the content of bacteria
and fungi and the Shannon–Wiener diversity index is mainly through available nitrogen.
Studies have shown that variations in the structure of bacterial and fungal communities
are associated with alterations in nitrogen pools [69]. Increasing nitrogen availability can
support the expansion and reproduction of microbial communities, enhancing microbial
biomass, and affect fungal diversity. Available nitrogen may be a key factor affecting
microbial metabolic potential and functional genes [70,71]. Increased soil bulk density by
fire negatively affected the PLFA concentration in fungi, with reports indicating that soil
bulk density contributed to the reduction in the PLFA concentration in bacteria, fungi, and
overall microorganisms [72].

4.3. Implications for Depth

Whether it is the increase in pH after fire or the decrease in soil nutrients (SOC, TN,
TP, etc.), the changes in deep soil were smaller than those in shallow soil, indicating that
the impact of fire decreases with increasing depth. Although the overall soil PLFAs content
decreased by 21.14% on average, the decrease was lower than that in the topsoil layer
(53.66% on average). Microorganisms were usually more affected in the topsoil because the
temperature was usually greater in the topsoil. Fire experiments showed that the soil depth
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difference was 5 cm, and the temperature difference could be more than 100 ◦C [73]. Soil
nutrients decrease with soil depth. Similarly, soil enzyme activity and microbial content
also decrease as soil depth increases, which is connected to the decline of soil organic matter
and nutrients. Wu et al. [61] believe that their reduction will inhibit the development of
microorganisms and change soil enzyme activity. The results illustrated that the effect of
fire on soil diminished with an increase in soil depth. A fire study about Pinus tabulaeformis
forests in North China showed that organic matter moderated the arrangement of microbial
communities with increasing depth. Fire not only directly affected the microbial community
in the topsoil but also affected the deeper soil over an extended period [10].

4.4. Implications for Post-Fire Management Strategies

Our results highlight important implications for post-fire restoration methods in
subtropical forests. The microbial biomass and microbial activity in the Acacia mangium
plantation plots recovered better than other post-fire plots, consistent with the research
results of Acacia mangium in Eucalyptus plantation. Acacia mangium is an N2 fixing species,
which can increase MBC, regulate soil microbial characteristics, and increase the concen-
tration of C and N in soil active components [74]. Therefore, the total PLFAs and F/B
in ARF1 plots are closer to those of the unburned sample plot, indicating that planting
Acacia mangium is conducive to the post-fire recovery of soil microorganisms. However, our
findings also caution against immediate after-fire practices, including timber harvesting
and site preparation, which can degrade soil properties by reducing moisture and nutrient
availability and disturbing soil structure [23]. Prior research has shown that harvesting
increases soil community diversity [75]. However, this study found the microbial diversity
in the natural recovery plots showed no significant difference to that in the ARF1 plots,
demonstrating that the impacts of soil compaction and harvesting on microbial diversity
could be offset by cultivating Acacia mangium to a certain extent. To optimize ecosystem
recovery, we recommend delaying interventions until natural vegetation begins to recover,
typically 1 or 2 years after the fire [10,76]. During this period, strategies should focus on
enhancing structural complexity at the forest floor, retaining deadwood to protect soil and
improve nutrient availability, and minimizing soil compaction to promote microbial and
soil health [10,77]. In the long-term, post-fire restoration strategies for subtropical China
should focus on the restoration of vegetation and consider the use of nitrogen-fixing trees
in artificial reforestation efforts, such as Acacia mangium.

While our study provides ponderable insights into the effects of fire and post-fire
restoration methods on soil and microbial dynamics, additional research is required to
comprehend the long-term effects of various restoration methods across varied subtropical
ecosystems. Further research ought to explore the interactive impacts of fire severity, soil
depth, and management interventions on microbial functional traits and their roles in
ecosystem functions, providing a more comprehensive understanding of soil resilience and
recovery after fire.

5. Conclusions

Our findings demonstrate that wildfires significantly alter soil physicochemical prop-
erties and microbial community composition, with impacts varying by soil depth and
post-fire restoration methods. We found that fire reduced soil nutrients (SOC, TN, AN),
leading to declines in microbial biomass carbon and nitrogen, NAG, POD activities, and
the content of microbial groups (PLFAs). Key factors influencing microbial community
structure included soil pH and the availability of nitrogen, phosphorus, and potassium.
Fire indirectly affected soil microbial composition by altering soil physical properties and
nitrogen availability. Soil depth mitigates the effect of fire on soil, as nutrients, microbial
activities, and microbial content decline with increasing depth. Our findings highlight the
importance of selecting appropriate post-fire restoration methods to promote ecosystem
recovery. While interventions like logging exacerbate soil degradation, afforestation with
nitrogen-fixing species, such as Acacia mangium, enhances microbial recovery. We strongly
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recommend prioritizing nitrogen-fixing species in post-fire landscapes and delaying inter-
ventions until natural vegetation recovery is evident, to optimize soil health and enhance
ecosystem resilience. However, this study focused solely on the early recovery stages of
soil properties, leaving long-term trends uncertain. Future research should explore the
interactive effects and underlying mechanisms of fire severity, soil depth, and management
interventions on microbial functional traits and their contributions to ecosystem functions.
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