A Cloud Detection System for UAV Sense and Avoid: Analysis of a Monocular Approach in Simulation and Flight Tests
Abstract
:1. Introduction
- The extension of a monocular approach for cloud position estimation with 3D cloud occupancy grids.
- The presentation of an evaluation concept resulting in two experimental setups:
- A simulation environment optimized in terms of cloud detection.
- A flight test bed as UAV surrogate based on a very light aircraft.
- Quantitative analysis of the proposed approach by comparing the calculated cloud position with the actual cloud position and analyzing feature metrics.
- The provision of an annotated and augmented cloud dataset from the aerial perspective.
1.1. Related Work
1.1.1. Cloud Segmentation
1.1.2. Cloud Position Estimation
1.1.3. Cloud Type Classification
1.1.4. Previous Work at University of the Bundeswehr Munich
1.2. Outline
2. Materials and Methods
2.1. Requirements
- Cargo UAVs operating in lower, uncontrolled airspace with high VFR traffic volumes.
- Tactical ISR UAVs operating in areas with increased thunderstorm activity.
2.1.1. Performance Requirements
2.1.2. System Requirements
2.2. Meteorological Aspects
2.3. Proposed Approach
2.3.1. Image and Metadata Acquisition
2.3.2. Cloud Segmentation
2.3.3. Ensemble Feature Detection and Tracking
2.3.4. Two-Dimensional Feature Filtering in Image Plane
2.3.5. Triangulation
2.3.6. Plausibility Check
2.3.7. Cluster Analysis
2.3.8. Cloud Occupancy Grid
2.4. Experimental Design
2.4.1. Evaluation Concept
2.4.2. Experimental Setup: Simulation Environment
2.4.3. Experimental Setup: Flight Test Bed
3. Results
3.1. Cloud Segmentation
3.1.1. MissionLabSimulationDataset-Clouds (MLSD-C)
3.1.2. MissionLabAirborneDataset-Clouds (MLAD-C)
3.1.3. Segmentation Results
3.2. Cloud Position Estimation
3.2.1. Simulated Scenario
- A larger triangulation baseline leads to more accurate cloud position estimates;
- A higher speed has a positive effect on the approach;
- Depending on the computational resources of the hardware used, the real-time capacity is no longer guaranteed if the baseline is too small in combination with a high velocity;
- In line with expectations, the accuracy of cloud position estimation increases with decreasing distance to the clouds.
3.2.2. Flight Experiment Scenario
4. Discussion
4.1. Segmentation Performance
4.2. Quantitative Analysis of Cloud Position Estimation in Simulation
4.3. Findings for Cloud Position Estimation in Flight Experiments
4.4. Conclusion and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
CGTV | Cloud Ground Truth Volume |
CGTM | Cloud Ground Truth Mask |
CPU | Central Processing Unit |
ECEF | Earth-Centered-Earth-Fixed |
EO | Electro-Optical |
FOV | Field of View |
GNSS | Global Navigation Satellite System |
GPU | Graphics Processing Unit |
INS | Inertial Navigation System |
IoU | Intersection over Union |
ISR | Intelligence, Surveillance, Reconnaissance |
mAP | Mean Average Precision |
MLAD-C | MissionLabAirborneDataset-Clouds |
MLSD-C | MissionLabSimulationDataset-Clouds |
MWIR | Mid-Wave Infrared |
NED | North-East-Down |
RAM | Random Access Memory |
RANSAC | Random Sample Consensus |
ROS2 | Robot Operating System 2 |
SAA | Sense and Avoid |
SDK | Software Development Kit |
SWaP-C | Size, Weight and Power-Cost |
UAV | Unmanned Aerial Vehicle |
UniBwM | University of the Bundeswehr Munich |
VLA | Very Light Aircraft |
VFR | Visual Flight Rule |
References
- Dauer, J.C. (Ed.) Automated Low-Altitude Air Delivery: Towards Autonomous Cargo Transportation with Drones; Research Topics in Aerospace; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Lyu, M.; Zhao, Y.; Huang, C.; Huang, H. Unmanned Aerial Vehicles for Search and Rescue: A Survey. Remote Sens. 2023, 15, 3266. [Google Scholar] [CrossRef]
- Liu, C.A.; Dong, R.; Wu, H.; Yang, G.T.; Lin, W. A 3D Laboratory Test-Platform for Overhead Power Line Inspection. Int. J. Adv. Robot. Syst. 2016, 13, 72. [Google Scholar] [CrossRef]
- Gillins, M.N.; Gillins, D.T.; Parrish, C. Cost-Effective Bridge Safety Inspections Using Unmanned Aircraft Systems (UAS). In Proceedings of the Geotechnical and Structural Engineering Congress 2016, Phoenix, AZ, USA, 14–17 February 2016; pp. 1931–1940. [Google Scholar] [CrossRef]
- Máthé, K.; Buşoniu, L. Vision and Control for UAVs: A Survey of General Methods and of Inexpensive Platforms for Infrastructure Inspection. Sensors 2015, 15, 14887–14916. [Google Scholar] [CrossRef] [PubMed]
- Department of Defense. Unmanned Aircraft Systems Roadmap 2005–2030; Technical Report; Department of Defense: Arlington County, VA, USA, 2005.
- Internation Civil Aviation Organization. ANNEX 2 to the Convention on International Civil Aviation—Rules of the Air. In The Convention on International Civil Aviation—Annexes 1 to 18; International Civil Aviation Organization: Montreal, QC, Canada, 2018. [Google Scholar]
- Dev, S.; Nautiyal, A.; Lee, Y.H.; Winkler, S. CloudSegNet: A Deep Network for Nychthemeron Cloud Image Segmentation. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1814–1818. [Google Scholar] [CrossRef]
- Mohajerani, S.; Saeedi, P. Cloud-Net: An End-to-End Cloud Detection Algorithm for Landsat 8 Imagery. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1029–1032. [Google Scholar] [CrossRef]
- Mohajerani, S.; Krammer, T.A.; Saeedi, P. A Cloud Detection Algorithm for Remote Sensing Images Using Fully Convolutional Neural Networks. In Proceedings of the 2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP), Vancouver, BC, Canada, 29–31 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Funk, F.; Stuetz, P. A Passive Cloud Detection System for UAV: System Functions and Validation. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- Nguyen, H.; Yadegar, J.; Utt, J.; Schwartz, B.; Ramu, P.; Ganguli, A.; Porway, J. EO/IR Due Regard Capability for UAS Based on Intelligent Cloud Detection and Avoidance. In Proceedings of the AIAA Infotech@Aerospace 2010, Atlanta, Georgia, 20–22 April 2010. [Google Scholar] [CrossRef]
- Koehler, T.L.; Johnson, R.W.; Shields, J. Status of the Whole Sky Imager Database. In Proceedings of the Cloud Impacts on DOD Operations and Systems, 1991 Conference, El Segundo, CA, USA, 9–12 July 1991; pp. 77–80. [Google Scholar]
- Long, C.N.; Sabburg, J.M.; Calbó, J.; Pagès, D. Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images. J. Atmos. Ocean. Technol. 2006, 23, 633–652. [Google Scholar] [CrossRef]
- Li, Q.; Lu, W.; Yang, J. A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images. J. Atmos. Ocean. Technol. 2011, 28, 1286–1296. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, C. Cloud Detection of RGB Color Aerial Photographs by Progressive Refinement Scheme. IEEE Trans. Geosci. Remote. Sens. 2014, 52, 7264–7275. [Google Scholar] [CrossRef]
- Yi, W.; Jing, Z.; Shuang, G. Hue–Saturation–Intensity and Texture Feature-Based Cloud Detection Algorithm for Unmanned Aerial Vehicle Images. Int. J. Adv. Robot. Syst. 2020, 17, 172988142090353. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man, Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Dev, S.; Lee, Y.H.; Winkler, S. Color-Based Segmentation of Sky/Cloud Images From Ground-Based Cameras. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 231–242. [Google Scholar] [CrossRef]
- Dev, S.; Savoy, F.M.; Lee, Y.H.; Winkler, S. Nighttime Sky/Cloud Image Segmentation. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 345–349. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef]
- Funk, F. Passive Cloud Detection for High Altitude Pseudo-Satellites. Ph.D. Thesis, Bundeswehr Universität München, Neubiberg, Germany, 2020. [Google Scholar]
- Changhui, Y.; Yuan, Y.; Minjing, M.; Menglu, Z. Cloud detection method based on feature extraction in remote sensing images. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2013, XL-2/W1, 173–177. [Google Scholar] [CrossRef]
- Tulpan, D.; Bouchard, C.; Ellis, K.; Minwalla, C. Detection of Clouds in Sky/Cloud and Aerial Images Using Moment Based Texture Segmentation. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 1124–1133. [Google Scholar] [CrossRef]
- Shi, M.; Xie, F.; Zi, Y.; Yin, J. Cloud Detection of Remote Sensing Images by Deep Learning. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 701–704. [Google Scholar] [CrossRef]
- Mohajerani, S.; Saeedi, P. Cloud-Net+: A Cloud Segmentation CNN for Landsat 8 Remote Sensing Imagery Optimized with Filtered Jaccard Loss Function. arXiv 2020, arXiv:2001.08768. [Google Scholar]
- Kanu, S.; Khoja, R.; Lal, S.; Raghavendra, B.; Cs, A. CloudX-net: A Robust Encoder-Decoder Architecture for Cloud Detection from Satellite Remote Sensing Images. Remote. Sens. Appl. Soc. Environ. 2020, 20, 100417. [Google Scholar] [CrossRef]
- Nied, J.; Jones, M.; Seaman, S.; Shingler, T.; Hair, J.; Cairns, B.; Gilst, D.V.; Bucholtz, A.; Schmidt, S.; Chellappan, S.; et al. A Cloud Detection Neural Network for Above-Aircraft Clouds Using Airborne Cameras. Front. Remote. Sens. 2023, 4, 1118745. [Google Scholar] [CrossRef]
- Batista-Tomás, A.R.; Díaz, O.; Batista-Leyva, A.; Altshuler, E. Classification and Dynamics of Tropical Clouds by Their Fractal Dimension. Quaterly J. R. Meteorol. Soc. 2016, 142, 983–988. [Google Scholar] [CrossRef]
- Dudek, A.; Funk, F.; Russ, M.; Stütz, P. Cloud Detection System for UAV Sense and Avoid: First Results of Cloud Segmentation in a Simulation Environment. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Turin, Italy, 19–21 June 2019; pp. 533–538. [Google Scholar] [CrossRef]
- Dudek, A.; Stütz, P. Cloud Detection System for UAV Sense and Avoid: Cloud Distance Estimation Using Triangulation. In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11–15 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Dudek, A.; Stütz, P. Cloud Detection System for UAV Sense and Avoid: Discussion of Suitable Algorithms. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Dudek, A.; Kunstmann, F.; Stütz, P.; Hennig, J. Detect and Avoid of Weather Phenomena On-Board UAV: Increasing Detection Capabilities by Information Fusion. In Proceedings of the 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 3–7 October 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Bertoncini, J.; Dudek, A.; Russ, M.; Gerdts, M.; Stütz, P. Fixed-Wing UAV Path Planning and Collision Avoidance Using Nonlinear Model Predictive Control and Sensor-based Cloud Detection. In Proceedings of the 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), Barcelona, Spain, 1–5 October 2023; pp. 1–10. [Google Scholar] [CrossRef]
- Dudek, A.; Behret, V.; Stütz, P. Cloud Detection System for UAV Sense and Avoid: Challenges and Findings in Flight Experiments. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–11. [Google Scholar] [CrossRef]
- Dudek, A.; Stütz, P. A Cloud Detection System for UAV Sense and Avoid: Flight Experiments to Analyze the Impact of Varying Environmental Conditions. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Ostler, J.; Dudek, A.; Bertoncini, J.; Russ, M.; Stütz, P. MissionLab: A Next Generation Mission Technology Research Platform Based on a Very Light Aircraft. In Proceedings of the AIAA Scitech 2024 Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Rheinmetall Technical Publications GmbH. Luna Ng: Airborne Reconnaissance System. 2022. Available online: https://www.rheinmetall.com/Rheinmetall%20Group/Karriere/Rheinmetall%20als%20Arbeitgeber/Menschen-Projekte/penzberg/B328e0522_RTP_LUNA_NG_A5_quer_ES_LR.pdf (accessed on 11 November 2024).
- Pyka Inc. Pelican Cargo. 2024. Available online: https://www.flypyka.com/pelican-cargo (accessed on 5 December 2024).
- Hozumi, K.; Harimaya, T.; Magono, C. The Size Distribution of Cumulus Clouds as a Function of Cloud Amount. J. Meteorol. Soc. Jpn. Ser. II 1982, 60, 691–699. [Google Scholar] [CrossRef]
- Lin, Z.; Castano, L.; Mortimer, E.; Xu, H. Fast 3D Collision Avoidance Algorithm for Fixed Wing UAS. J. Intell. Robot. Syst. 2020, 97, 577–604. [Google Scholar] [CrossRef]
- World Meteorological Organization. International Cloud Atlas; World Meteorological Organization: Geneva, Switzerland, 1956; Volume 1. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics; Ultralytics: Frederick, MD, USA, 2023; Available online: https://github.com/ultralytics/ultralytics (accessed on 2 January 2025).
- Ultralytics Inc. YOLOv8—Ultralytics Yolo Docs. 2024. Available online: https://docs.ultralytics.com/models/yolov8/ (accessed on 2 January 2025).
- Funk, F.; Stütz, P. A Passive Cloud Detection System for UAV: Concept and First Results. In Proceedings of the International Symposium on Enhanced Solutions for Aircraft and Vehicle Surveillance Applications (ESAVS), Berlin, Germany, 7–8 April 2016. [Google Scholar]
- Bradski, G. The Opencv Library. Dobb’s J. Softw. Tools 2000, 25, 120–125. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Auton. Robot. 2013, 34, 189–206. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. arXiv 2023. [Google Scholar] [CrossRef]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Powers, D. Evaluation: From Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar] [CrossRef]
- International Civil Aviation Organization. Annex 11 to the Convention on International Civil Aviation—Air Traffic Services. In The Convention on International Civil Aviation—Annexes 1 to 18, 15th ed.; International Civil Aviation Organization: Montreal, QC, Canada, 2018; p. APP 4–1. [Google Scholar]
Attributes | Requirements |
---|---|
Minimum range for reliable estimates | 2.5 km at 70 knots |
Sensor type | EO, IR expandable |
System design | Monocular, platform-independent |
System output | Provision of real-time 3D cloud situation |
Clouds Have … | Clouds Move … |
---|---|
achromatic appearance [19] | correlated within cloud layer |
rather even scattering of red and blue light [14] | uncorrelated between layers (windshear) |
high intensity due to large reflectivity [16] | vertically (in case of convective clouds) |
fewer details compared to ground [16] | with negligible acceleration |
high homogeneity in cloud middle [12] |
Analytical Focus | Validation of … | Evaluation Metric |
---|---|---|
Cloud Segmentation | Model Prediction vs. CGTM | Precision Recall mAP |
Cloud Position Estimation | Feature Detection, Tracking and Triangulation | Feature Amount Feature Density Feature Losses |
Position Accuracy | Inside vs. Outside CGTV Outlier Distances to CGTV |
Dataset | Precision | Recall | mAP50 | mAP50-95 |
---|---|---|---|---|
MLSD-C | 0.811 | 0.446 | 0.526 | 0.334 |
MLAD-C | 0.889 | 0.547 | 0.608 | 0.457 |
Frame Rate | Resolution | FOV | Baseline Sample Frames | Ground Speed |
---|---|---|---|---|
10 Hz | 800 × 600 | 60° × 45° | 50 m, 200 m | 70 kt, 250 kt |
Frame Rate | Resolution | FOV | Baseline Sample Frames | Ground Speed |
---|---|---|---|---|
10 Hz | 1920 × 1080 | 37.6° × 21.8° | 200 m | 58 kt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudek, A.; Stütz, P. A Cloud Detection System for UAV Sense and Avoid: Analysis of a Monocular Approach in Simulation and Flight Tests. Drones 2025, 9, 55. https://doi.org/10.3390/drones9010055
Dudek A, Stütz P. A Cloud Detection System for UAV Sense and Avoid: Analysis of a Monocular Approach in Simulation and Flight Tests. Drones. 2025; 9(1):55. https://doi.org/10.3390/drones9010055
Chicago/Turabian StyleDudek, Adrian, and Peter Stütz. 2025. "A Cloud Detection System for UAV Sense and Avoid: Analysis of a Monocular Approach in Simulation and Flight Tests" Drones 9, no. 1: 55. https://doi.org/10.3390/drones9010055
APA StyleDudek, A., & Stütz, P. (2025). A Cloud Detection System for UAV Sense and Avoid: Analysis of a Monocular Approach in Simulation and Flight Tests. Drones, 9(1), 55. https://doi.org/10.3390/drones9010055