Comparative Assessment of the Effect of Positioning Techniques and Ground Control Point Distribution Models on the Accuracy of UAV-Based Photogrammetric Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure-from-Motion
2.2. Precise Point Positioning (PPP) Technique
2.3. Real-Time Kinematic (RTK)
2.4. Post-Processed Kinematic (PPK)
2.5. Experimental Details
2.5.1. Study Area and Datasets
2.5.2. Data Processing Steps and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef]
- Fraser, R.H.; Olthof, I.; Lantz, T.C.; Schmitt, C. UAV Photogrammetry for Mapping Vegetation in the Low-Arctic. Arct. Sci. 2016, 2, 79–102. [Google Scholar] [CrossRef]
- Šašak, J.; Gallay, M.; Kaňuk, J.; Hofierka, J.; Minár, J. Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain. Remote Sens. 2019, 11, 2154. [Google Scholar] [CrossRef]
- Liu, J.; Xu, W.; Guo, B.; Zhou, G.; Zhu, H. Accurate Mapping Method for UAV Photogrammetry Without Ground Control Points in the Map Projection Frame. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9673–9681. [Google Scholar] [CrossRef]
- Shahbazi, M.; Sohn, G.; Théau, J.; Menard, P. Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling. Sensors 2015, 15, 27493–27524. [Google Scholar] [CrossRef]
- Deliry, S.I.; Avdan, U. Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review. J. Indian Soc. Remote Sens. 2021, 49, 1997–2017. [Google Scholar] [CrossRef]
- Gabrlik, P. The Use of Direct Georeferencing in Aerial Photogrammetry with Micro UAV. IFAC-Pap. 2015, 48, 380–385. [Google Scholar] [CrossRef]
- Grayson, B.; Penna, N.T.; Mills, J.P.; Grant, D.S. GPS Precise Point Positioning for UAV Photogrammetry. Photogramm. Rec. 2018, 33, 427–447. [Google Scholar] [CrossRef]
- Jemai, M.; Loghmari, M.A.; Naceur, M.S. A GNSS Measurement Study Based on RTK and PPK Methods. In Proceedings of the 2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET), Hammamet, Tunisia, 29 April–1 May 2023; pp. 1–6. [Google Scholar]
- Famiglietti, N.A.; Cecere, G.; Grasso, C.; Memmolo, A.; Vicari, A. A Test on the Potential of a Low Cost Unmanned Aerial Vehicle RTK/PPK Solution for Precision Positioning. Sensors 2021, 21, 3882. [Google Scholar] [CrossRef]
- Alkan, R.M.; Erol, S.; Mutlu, B. Applicability of Real-Time PPP Technique in Polar Regions as an Accurate and Efficient Real-Time Positioning System. Turk. J. Earth Sci. 2023, 32, 1022–1040. [Google Scholar] [CrossRef]
- Xiang, Y.; Gao, Y.; Li, Y. Reducing Convergence Time of Precise Point Positioning with Ionospheric Constraints and Receiver Differential Code Bias Modeling. J. Geod. 2020, 94, 8. [Google Scholar] [CrossRef]
- Calais, E.; Han, J.Y.; DeMets, C.; Nocquet, J.M. Deformation of the North American Plate Interior from a Decade of Continuous GPS Measurements. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Banville, S.; Hassen, E.; Lamothe, P.; Farinaccio, J.; Donahue, B.; Mireault, Y.; Goudarzi, M.A.; Collins, P.; Ghoddousi-Fard, R.; Kamali, O. Enabling Ambiguity Resolution in CSRS-PPP. NAVIGATION J. Inst. Navig. 2021, 68, 433–451. [Google Scholar] [CrossRef]
- Ocalan, T.; Turk, T.; Tunalioglu, N.; Gurturk, M. Investigation of Accuracy of PPP and PPP-AR Methods for Direct Georeferencing in UAV Photogrammetry. Earth Sci. Inform. 2022, 15, 2231–2238. [Google Scholar] [CrossRef]
- Seo, D.-M.; Woo, H.-J.; Hong, W.-H.; Seo, H.; Na, W.-J. Optimization of Number of GCPs and Placement Strategy for UAV-Based Orthophoto Production. Appl. Sci. 2024, 14, 3163. [Google Scholar] [CrossRef]
- Zhao, H.; Li, G.; Chen, Z.; Zhang, S.; Zhang, B.; Cheng, X. Impacts of GCP Distributions on UAV-PPK Photogrammetry at Sermeq Avannarleq Glacier, Greenland. Remote Sens. 2024, 16, 3934. [Google Scholar] [CrossRef]
- Cho, J.M.; Lee, B.K. GCP and PPK Utilization Plan to Deal with RTK Signal Interruption in RTK-UAV Photogrammetry. Drones 2023, 7, 265. [Google Scholar] [CrossRef]
- Elkhrachy, I. Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alex. Eng. J. 2021, 60, 5579–5590. [Google Scholar] [CrossRef]
- Erol, B.; Turan, E.; Erol, S.; Alper Kuçak, R. Comparative Performance Analysis of Precise Point Positioning Technique in the UAV—Based Mapping. Measurement 2024, 233, 114768. [Google Scholar] [CrossRef]
- Tang, L.; Qiao, G.; Li, B.; Yuan, X.; Ge, H.; Popov, S. GNSS-Supported Direct Georeferencing for UAV Photogrammetry without GCP in Antarctica: A Case Study in Larsemann Hills. Mar. Geod. 2024, 47, 324–351. [Google Scholar] [CrossRef]
- Makineci, H.B.; Bilgen, B.; Bulbul, S. A New Precise Point Positioning with Ambiguity Resolution (PPP-AR) Approach for Ground Control Point Positioning for Photogrammetric Generation with Unmanned Aerial Vehicles. Drones 2024, 8, 456. [Google Scholar] [CrossRef]
- Kim, H.; Hyun, C.-U.; Park, H.-D.; Cha, J. Image Mapping Accuracy Evaluation Using UAV with Standalone, Differential (RTK), and PPP GNSS Positioning Techniques in an Abandoned Mine Site. Sensors 2023, 23, 5858. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F. Accuracy Assessment of RTK/PPK UAV-Photogrammetry Projects Using Differential Corrections from Multiple GNSS Fixed Base Stations. Geocarto Int. 2023, 38, 2197507. [Google Scholar] [CrossRef]
- Berber, M.; Munjy, R.; Lopez, J. Kinematic GNSS Positioning Results Compared against Agisoft Metashape and Pix4dmapper Results Produced in the San Joaquin Experimental Range in Fresno County, California. J. Geod. Sci. 2021, 11, 48–57. [Google Scholar] [CrossRef]
- Gurturk, M.; Soycan, M. Accuracy Assessment of Kinematic PPP versus PPK for GNSS Flights Data Processing. Surv. Rev. 2022, 54, 48–56. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Seidl, J.; Reindl, T.; Brouček, J. Photogrammetry Using UAV-Mounted GNSS RTK: Georeferencing Strategies without GCPs. Remote Sens. 2021, 13, 1336. [Google Scholar] [CrossRef]
- Liu, X.; Lian, X.; Yang, W.; Wang, F.; Han, Y.; Zhang, Y. Accuracy Assessment of a UAV Direct Georeferencing Method and Impact of the Configuration of Ground Control Points. Drones 2022, 6, 30. [Google Scholar] [CrossRef]
- Dönmez, Ş.Ö.; Tunc, A. Transformation methods for using combination of remotely sensed data and cadastral maps. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 587–589. [Google Scholar] [CrossRef]
- Cevik, I.C.; Atik, M.E.; Duran, Z. Investigation of Optimal Ground Control Point Distribution for Geometric Correction of VHR Remote Sensing Imagery. J. Indian Soc. Remote Sens. 2024, 52, 359–369. [Google Scholar] [CrossRef]
- Guang, Y.; Weili, J. Research on Impact of Ground Control Point Distribution on Image Geometric Rectification Based on Voronoi Diagram. Procedia Environ. Sci. 2011, 11, 365–371. [Google Scholar] [CrossRef]
- Bozkurt, S.; Atik, M.E.; Duran, Z. Improving Aerial Targeting Precision: A Study on Point Cloud Semantic Segmentation with Advanced Deep Learning Algorithms. Drones 2024, 8, 376. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Atik, M.E.; Ozturk, O.; Duran, Z.; Seker, D.Z. An Automatic Image Matching Algorithm Based on Thin Plate Splines. Earth Sci. Inform. 2020, 13, 869–882. [Google Scholar] [CrossRef]
- Chen, K.; Reichard, G.; Akanmu, A.; Xu, X. Geo-Registering UAV-Captured Close-Range Images to GIS-Based Spatial Model for Building Façade Inspections. Autom. Constr. 2021, 122, 103503. [Google Scholar] [CrossRef]
- Zhao, S.; Kang, F.; Li, J.; Ma, C. Structural Health Monitoring and Inspection of Dams Based on UAV Photogrammetry with Image 3D Reconstruction. Autom. Constr. 2021, 130, 103832. [Google Scholar] [CrossRef]
- Anderle, R.J. Point Positioning Concept Using Precise Ephemeris. Satell. Doppler Position 1976, 1, 47–75. [Google Scholar]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Li, Z.; Hu, L.; Yang, G.; Zhao, C.; Fairbairn, D.; Watson, D.; Ge, M. Multi-GNSS Precise Point Positioning for Precision Agriculture. Precis. Agric. 2018, 19, 895–911. [Google Scholar] [CrossRef]
- Kouba, J. Measuring Seismic Waves Induced by Large Earthquakes with GPS. Stud. Geophys. Geod. 2003, 47, 741–755. [Google Scholar] [CrossRef]
- Xu, P.; Shi, C.; Fang, R.; Liu, J.; Niu, X.; Zhang, Q.; Yanagidani, T. High-Rate Precise Point Positioning (PPP) to Measure Seismic Wave Motions: An Experimental Comparison of GPS PPP with Inertial Measurement Units. J. Geod. 2013, 87, 361–372. [Google Scholar] [CrossRef]
- Jin, S.; Su, K. Co-Seismic Displacement and Waveforms of the 2018 Alaska Earthquake from High-Rate GPS PPP Velocity Estimation. J. Geod. 2019, 93, 1559–1569. [Google Scholar] [CrossRef]
- Oku Topal, G.; Karabulut, M.F.; Aykut, N.O.; Akpınar, B. Performance of Low-Cost GNSS Equipment in Monitoring of Horizontal Displacements. Surv. Rev. 2023, 55, 536–545. [Google Scholar] [CrossRef]
- Yu, C.; Penna, N.T.; Li, Z. Generation of Real-Time Mode High-Resolution Water Vapor Fields from GPS Observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Alkan, R.M.; Selbesoğlu, M.O.; Yavaşoğlu, H.H.; Arkalı, M. Seamless precise kinematic positioning in the high-latitude environments: Case study in the antarctic region. Rud. Geol. Naft. Zb. 2024, 39, 31–43. [Google Scholar] [CrossRef]
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 978-1-118-67557-1. [Google Scholar]
- Xiao, G.; Yang, C.; Wei, H.; Xiao, Z.; Zhou, P.; Li, P.; Dai, Q.; Zhang, B.; Yu, C. PPP Ambiguity Resolution Based on Factor Graph Optimization. GPS Solut. 2024, 28, 178. [Google Scholar] [CrossRef]
- Hatch, R. The Synergism of GPS Code and Carrier Measurements. Int. Geod. Symp. Satell. Doppler Position. 1983, 2, 1213–1231. [Google Scholar]
- Melbourne, W.G. The Case for Ranging in GPS-Based Geodetic Systems. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 373–386. [Google Scholar]
- Wübbena, G. Software Developments for Geodetic Positioning with GPS Using TI-4100 Code and Carrier Measurements. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; Volume 19, pp. 403–412. [Google Scholar]
- Aykut, N.O.; Gülal, E.; Akpinar, B. Performance of Single Base RTK GNSS Method versus Network RTK. Earth Sci. Res. J. 2015, 19, 135–139. [Google Scholar] [CrossRef]
- AtiZ, Ö.F.; Konukseven, C.; Öğütcü, S.; Alçay, S. Comparative Analysis of the Performance of Multi-GNSS RTK: A Case Study in Turkey. Int. J. Eng. Geosci. 2022, 7, 67–80. [Google Scholar] [CrossRef]
- Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Coastal Mapping Using DJI Phantom 4 RTK in Post-Processing Kinematic Mode. Drones 2020, 4, 9. [Google Scholar] [CrossRef]
- Specs—DJI Mavic 3 Enterprise—DJI Enterprise. Available online: https://enterprise.dji.com/mavic-3-enterprise (accessed on 24 December 2024).
- İSKİ Uydulardan Konum Belirleme Sistemi—UKBS Nedir? Available online: https://ukbs.iski.gov.tr/icerik/ukbs-nedir (accessed on 30 November 2024).
- REDtoolbox—PPK and Geotagging. Available online: https://www.redcatch.at/redtoolbox/ (accessed on 20 December 2024).
- Geng, J.; Chen, X.; Pan, Y.; Mao, S.; Li, C.; Zhou, J.; Zhang, K. PRIDE PPP-AR: An Open-Source Software for GPS PPP Ambiguity Resolution. GPS Solut. 2019, 23, 91. [Google Scholar] [CrossRef]
- Vázquez-Ontiveros, J.R.; Padilla-Velazco, J.; Gaxiola-Camacho, J.R.; Vázquez-Becerra, G.E. Evaluation and Analysis of the Accuracy of Open-Source Software and Online Services for PPP Processing in Static Mode. Remote Sens. 2023, 15, 2034. [Google Scholar] [CrossRef]
Equipment | Category | Feature |
---|---|---|
UAV | Model | DJI Mavic 3M |
Camera Sensor | 20 Megapixels | |
Max Flight Time (without wind) | 43 min | |
Max Takeoff Weight | 1050 g | |
Max Flight Speed (at sea level, no wind) | 15 m/s (Normal Mode) | |
GNSS | G + R 1 + E + C | |
RTK Positioning Accuracy | RTK Fix: H: 1 cm + 1 ppm V: 1.5 cm + 1 ppm | |
Operating Temperature | 10° to 40° C (14° to 104° F) |
Item | Strategy |
---|---|
System | GNSS |
Positioning Mode | Kinematic |
Epoch Interval | 0.2 s (5 Hz) |
Cut Off Elevation Degree | 7 |
Ambiguity Resolution | Fixed |
Mapping Function | VMF3 |
2nd Ionospheric Delay Model | Yes |
Ambiguity Fixing Method | LAMBDA |
ZTD Model | STO |
Receiver Clock Model | White Noise |
HTG Model | NON |
Strict Editing | Disable |
No GCP | Model-1 | Model-2 | Model-3 | Model-4 | Model-5 | Model-6 | ||
---|---|---|---|---|---|---|---|---|
RTK | H | 2.7 | 2.6 | 2.7 | 2.6 | 2.7 | 2.7 | 2.8 |
V | 8.1 | 4.5 | 4.8 | 6.5 | 6.8 | 6.2 | 7.1 | |
3D | 8.5 | 5.2 | 5.5 | 7.0 | 7.3 | 6.7 | 7.7 | |
PPK | H | 2.9 | 2.9 | 2.8 | 2.7 | 2.9 | 3.0 | 3.0 |
V | 4.2 | 3.5 | 3.6 | 3.5 | 4.2 | 4.1 | 4.3 | |
3D | 5.0 | 4.5 | 4.5 | 4.4 | 5.1 | 5.1 | 5.2 | |
PPP-AR | H | 2.9 | 2.9 | 2.9 | 2.8 | 2.7 | 2.9 | 3.1 |
V | 9.9 | 4.1 | 4.3 | 6.6 | 6.9 | 6.4 | 8.8 | |
3D | 10.3 | 5.0 | 5.2 | 7.2 | 7.4 | 7.0 | 9.3 | |
Indirect | H | - | 2.9 | 2.8 | 2.5 | 3.0 | 3.0 | 2.7 |
V | - | 3.3 | 3.4 | 3.0 | 3.8 | 3.8 | 3.8 | |
3D | - | 4.4 | 4.4 | 3.9 | 4.9 | 4.9 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atik, M.E.; Arkali, M. Comparative Assessment of the Effect of Positioning Techniques and Ground Control Point Distribution Models on the Accuracy of UAV-Based Photogrammetric Production. Drones 2025, 9, 15. https://doi.org/10.3390/drones9010015
Atik ME, Arkali M. Comparative Assessment of the Effect of Positioning Techniques and Ground Control Point Distribution Models on the Accuracy of UAV-Based Photogrammetric Production. Drones. 2025; 9(1):15. https://doi.org/10.3390/drones9010015
Chicago/Turabian StyleAtik, Muhammed Enes, and Mehmet Arkali. 2025. "Comparative Assessment of the Effect of Positioning Techniques and Ground Control Point Distribution Models on the Accuracy of UAV-Based Photogrammetric Production" Drones 9, no. 1: 15. https://doi.org/10.3390/drones9010015
APA StyleAtik, M. E., & Arkali, M. (2025). Comparative Assessment of the Effect of Positioning Techniques and Ground Control Point Distribution Models on the Accuracy of UAV-Based Photogrammetric Production. Drones, 9(1), 15. https://doi.org/10.3390/drones9010015