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Abstract: Neural audio reconstruction is an important subtopic of Neural Audio Synthesis
(NAS), which is a current emerging topic of modern Artificial Intelligence (AI) applications.
The objective of a neural audio reconstruction model is to achieve a viable audio waveform
from an audio feature representation that excludes the phase information. Since the data-
dependent nature of such systems demands an increased quantity of data, methods of
increasing the quantity of data for neural network training arise as a topic of substantial
interest. Although the applications of data augmentation methods for classification tasks
are well documented, there is still room for development for applications of such methods
on signal synthesis tasks. Additionally, the Fractional-Order Calculus (FOC) framework
provides possibilities for quality applications for the signal processing domain. Still, it
is important to show that the methods based on the FOC framework can be applied to
different application domains to show the capabilities of this framework. In this paper, FOC-
based methods are applied to a speech dataset for data augmentation purposes to increase
the audio reconstruction performance of a neural network, a spectral consistency-based
neural audio reconstruction model called Deep Griffin-Lim Iteration (DeGLI), with respect
to objective measures PESQ and STOI. An FOC-based method for rescaling linear frequency
for augmenting magnitude spectrogram data is proposed. Furthermore, together with an
FOC-based phase estimation method, it is shown that an augmentation strategy that has
the objective of increased spectral consistency should be considered in data augmentation
for audio reconstruction tasks. The test results reveal that this type of strategy increases the
performance of a spectral consistency-based neural audio reconstruction model by over
13% for smaller depths.

Keywords: fractional-order calculus; neural audio reconstruction; data augmentation;
spectral consistency

1. Introduction
Fractional-Order Calculus (FOC) extends the concepts of differentiation and integra-

tion to non-integer orders, which traces back to discussions between Leibniz and L’Hospital
in the 17th century [1]. By incorporating non-integer derivation orders, fractional calculus
introduces an additional degree of flexibility, making it particularly effective in areas such
as object modeling, performance optimization, and describing natural dynamic systems
with memory [2]. Additionally, signal processing tools that are based on the FOC are
also developed. FOC has a significant connection to fractal theory, which is also used for
signal-processing applications [3]. For instance, assuming a stochastic signal following a
well-defined fractal model, FOC-based methods can estimate the frequency characteristics
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of a signal [4]. Moreover, the model parameters derived within the fractal framework
have applications in tasks such as signal texture segmentation [5]. Fractal theory can be
used to describe local properties of signals, offering simplified geometrical or statistical
descriptions regardless of whether the signal exhibits fractal properties [6].

In the literature, FOC-based models are used for reducing the number of linear pre-
diction parameters. Differentiating a signal by an appropriate fractional order allows
manipulation of its autocorrelation function, thereby reducing the number of linear pre-
diction parameters needed. Improved signal prediction performance is documented in
applications such as speech signal prediction, where fractional linear prediction methods
based on weighted sums of fractional derivatives outperformed conventional techniques [7].
Given its non-local nature, fractional calculus is particularly suitable for handling signals
with memory. The approaches that incorporate limited memory demonstrated both high
prediction accuracy and a reduction in the number of linear prediction coefficients [8,9]
required for audio signal encoding [10]. Similarly, the excitation in an autoregressive model
of speech can be modeled with respect to the fractional derivatives of Gaussian noise [11].
Fractional derivatives can also serve as a framework for fractal analysis in audio process-
ing with applications in speech recognition, voiced–unvoiced speech separation [12], and
speaker emotion classification [13]. Notably, the fractal geometry-based features perform
comparably to the Mel Frequency Cepstral Coefficients in speech classification tasks [14].

In image processing, FOC-based approaches are applied primarily through fractional
differential masks, which are integral to edge detection algorithms [15]. The flexibility
of tuning fractional derivative orders can enhance the performance of edge detection
and segmentation filters. This methodology is successfully employed in diverse applica-
tions, including satellite image segmentation [16] and biomedical imaging, such as brain
tomography analysis [17].

Recent works increased the applications of FOC-based methods on neural network-
based signal processing approaches [18]. Especially in computer vision tasks, FOC ap-
proaches are used for denoising [19,20], medical image enhancement [21], and satellite and
medical image segmentation [22,23]. Additionally, FOC-based approaches can be useful in
accelerating the optimization of neural network training [24].

The speech synthesis problem is one of the most interested areas of research due to
its effects on various engineering fields such as building interactive engineering products,
audiobooks, navigation services, home automation products, or providing quality commu-
nication tools [25]. The purpose of speech synthesis is to produce a natural and intelligible
waveform from a set of conditional variables.

The most significant application of speech synthesis procedures has been as a part of
Text-to-Speech (TTS) applications. TTS applications provide frameworks for generating
speech waveforms from text inputs [26]. These frameworks consist of two separate stages.
Conventionally, the first stage is tasked with producing intermediate acoustic features from
the input text. This stage is called the acoustic model. The second stage, which is also called
a vocoder, then produces audio waveforms from the given representations [27]. Especially
after the surge of deep learning, the models that are motivated to combine the two separate
parts into one gained traction [28]. These types of approaches are called Neural Audio
Synthesis (NAS) approaches. In the literature, the WaveNet architecture is often regarded
as the benchmark generative model in the neural audio synthesis field [29]. WaveNet takes
raw audio samples as input and models the joint probability of a waveform as a product
of conditional probabilities [30]. In practical applications, WaveNet generates signals by
conditioning on acoustic features, such as Mel Spectrograms [31]. Utilizing a Convolutional
Neural Network (CNN) architecture, WaveNet defines causal convolutions to maintain
causal output and employs dilated convolutions to reduce computational costs. This par-
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allel processing approach, enabled by the CNN architecture, results in a faster system
compared to Recurrent Neural Network (RNN) approaches [32]. The dilated convolution
method also expands the receptive field of the network. By employing different optimiza-
tion techniques, the WaveRNN model became one of the first sequential neural models
capable of real-time audio synthesis on limited resource setups such as mobile phone
CPUs [33]. Achieving competitive results with WaveNet, WaveRNN incorporated recurrent
elements for a data-driven approach to audio synthesis. Essentially, WaveRNN consists of
two neural networks: one models the most significant half of a 16-bit sampled speech signal,
while the other models the least significant half [33]. This approach practically separates
the tasks of estimating a signal’s spectral shape and its stochastic elements. Generative
Adversarial Networks (GANs) show promise in representing data features, making them
applicable to audio synthesis problems. WaveGAN which processes waveforms as input
and SpecGAN which uses spectrograms became the premier GAN-based models for audio
synthesis [34].

A dominant number of audio-related applications dictate the analysis and modifica-
tion of the Short-Time Fourier Transform (STFT) and the Short-Time Fourier Transform
Magnitude (STFTM) representations of audio signals [35]. Audio enhancement [36], time
and pitch modification [37], or reverberation analyses [38] are some examples of this proce-
dure. In terms of TTS, transforming acoustic features to time-frequency representations,
such as STFTM, is relatively easier than producing the waveform itself [28]. In such cases,
the complex characteristics the phases of signals, are generally lost.

In the literature, it has been shown that an appropriate estimation of phase from the
STFTM is possible [39]. This family of approaches is called audio reconstruction. Con-
ventional methods for audio reconstruction are usually a member of the phase vocoder
family. The basic phase vocoder method represents a signal as a combination of sine
waves, where the key factors that need to be identified through analysis are the changing
amplitude and frequency of each individual sine wave over time, which are present in the
STFTM representation [40]. Additionally, spectral consistency-based approaches are used
for audio reconstruction. The limited length of signal segments and the form of the spectral
analysis window cause dependencies between the spectral coefficients of neighboring
frequency bands, known as spectral redundancy which affects both spectral amplitudes
and phases [36]. Exploiting the spectral redundancy, Griffin and Lim’s Algorithm (GLA)
estimates the spectral phases based on the spectral amplitudes of a speech signal with
iterations [41]. In this method, the STFT and its inverse (ISTFT) are computed repeatedly
while keeping the spectral amplitude fixed and only updating the phase. The STFTM-based
phase reconstruction and iterative methods can be used together to improve audio recon-
struction performance [42]. Because GLA and its derivatives are iterative algorithms, they
are time-consuming [41,43]. Therefore, in areas where application speed is a concern, differ-
ent algorithms have been proposed, such as Single-Pass Spectrogram Inversion (SPSI) [44].
The SPSI not only outputs applicable results but also provides a better initial phase estimate
for iterative methods, such as GLA [44]. Recently, various methods have been proposed
for non-iterative signal reconstruction problems that claimed improved results concerning
SPSI [39,45].

The success of neural network approaches in audio synthesis is well-documented in
the literature [46,47]. On the other hand, the focus of this research is intentionally limited
to neural network models with a reduced number of parameters, in line with the hardware
constraints of this study. In this study, a relatively humble PC setup that has NVIDA
GeForce 1650Ti GPU is used. Furthermore, a network model with an especially smaller
number of parameters is used for the experiments [48]. Since the smaller number of param-
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eters of a network model indicates a limited performance, additional data augmentation
methods have been employed to increase the capability of the neural network model.

This work aims to contribute to the literature as follows. Firstly, an FOC-based
data augmentation method that works on STFT representations of data is introduced.
Secondly, two data augmentation strategies are proposed. The first strategy employs only
the proposed method which is similar to conventional data augmentation approaches
for classification problems. The second strategy uses an additional FOC-based phase
estimation procedure, aiming to create consistent spectrograms. It must be noted that the
proposed strategies are based on FOC for both STFT representation augmentation and
phase estimation, expanding the area of usage of fractional calculus. The experiments show
the advantages of the second strategy for neural audio reconstruction problems. Thirdly,
it is shown that a data augmentation strategy that has an objective of creating consistent
spectrograms increases the evaluation performance of a neural audio reconstruction model
with respect to the baseline implementation, providing an opportunity for smaller-sized
network implementation.

This paper is organized as follows. In Section 2, in addition to discussing the concept
of data augmentation, the proposed FOC-based data augmentation method that works on
the linear spectrogram of a signal is introduced. Background information about the network
that is used in this work, data augmentation strategies with or without a phase vocoding
structure, and the dataset are also provided in this section as subsections. Section 3 contains
information about the neural network implementation and neural audio reconstruction
result comparisons of two different data augmentation strategies. An additional comparison
of the data augmentation strategies in terms of spectral consistency is also provided in this
section. Section 4 discusses the experiment results and provides conclusions about a data
augmentation strategy that aims to produce consistent spectrograms. Section 5 summarizes
the overall contributions of this work.

2. Materials and Methods
Since the data-dependent nature of deep learning systems demands an increased

quantity of data, methods to increase the data quantity to train a neural network create
a substantial interest [49]. Although the applications of data augmentation methods for
classification tasks are well-documented [50], the number of applications of such methods
on signal synthesis tasks is relatively lower.

Data augmentation is designed to expand the feature space while retaining the original
labels of given data, thereby enhancing model performance and reducing overfitting [51,52].
For example, speech recognition systems frequently utilize artificially generated data [53,54].
Common applications of audio data augmentation in the time domain or time-frequency
domain include noise addition, time stretching, time shifting, and pitch shifting [54].
Other methods involve warping the linear frequency scale during spectrogram creation to
generate new data [55]. In many deep-learning audio applications, the log-Mel Spectrogram,
which is a transformation of audio samples, is treated as an image-like input for neural
networks. Consequently, data augmentation techniques developed for images, such as
sparse image warping and masking, are adapted for audio applications, as seen in the
SpecAugment strategy [55]. In [55], it is also shown that in addition to an augmentation
method, the application policy or strategy is also important for successful results.

The popularity of computer vision-based deep learning has led to the development of
diverse data augmentation strategies for images, such as flipping, rotation, cropping, color
jittering, and edge enhancement. For example, Sobel operator-based edge enhancement
has been effectively used in CNN-based image classification tasks [52]. Since the 2D
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spectrogram representation of an audio sample resembles an image, these augmentation
methods can be directly applied to audio-related problems.

One of the widely used data augmentation methods in speech recognition is called
Vocal Tract Length Perturbation (VTLP) [56]. By addressing the speaker variability caused
by differences in vocal tract length, the linear frequency axis of an audio spectrogram is
warped using a randomly selected warp factor derived from audio sample statistics. VTLP
procedure produces a new spectrogram by applying different weights that are based on the
warped frequency scale of the old spectrogram representation of the audio sample. Beyond
speech recognition, VTLP is also applied to tasks such as animal audio classification [57]
and environmental sound classification tasks [57]. Similar warping-based techniques have
shown promising results in acoustic event detection problems [58].

2.1. Fractional Order Scaling

Warping methods such as VTLP show that warping the frequency scale and increasing
data size enhance a deep learning model’s classification accuracy [56]. In this work, a method
based on fractional-order differentiation is proposed for data augmentation purposes.

For fractional differ-integration of linear frequency scale, the Riemann–Liouville
(RL) definition of fractional derivative is used [1]. It must be noted that a similar ap-
proach could be applied with using other definitions of fractional derivatives such as the
Grünwald–Letnikov (GL) derivative. The numerical algorithm for the RL definition of the
fractional derivative at point j [59,60] can be given as in Equation (1).

[
Dαf

(
xj
)]

RL = h−α
j

∑
k=0

Ak,jf(xk) (1)

The Ak,j parameters can be calculated as shown in Equation (2).

Ak,j =
1

Γ(2 − α)


(j − 1)1−α − (j + α− 1)k−α,
(j − k + 1)1−α + (j − k − 1)1−α − 2(j − k)1−α,
1,

k = 0
1 ≤ k ≤ j − 1
k = 1

(2)

A lower triangular matrix can be produced by calculated Ak,j parameters. This matrix
R can be seen in Equation (3).

R =
1

Γ(2 − α)


1 0 0 · · · 0

A0,1 1 0 · · · 0
A0,2 A1,2 1 · · · 0

...
...

...
. . .

...
A0,N A1,N A2,N · · · 1

 (3)

This numerical approach can be represented in a matrix multiplication form as in
Equation (4), where R is a matrix that consists of Ak,j parameters as shown in Equation (3)
and f is a vector that contains N + 1 function value of f(x).

[Dαf(x)]RL = h−αR·f (4)

In practice, the f vector contains frequency values that correspond to each frequency
bin for a selected window size. Since every step represents a frequency bin number, the h
value in (4) and the function step size can be taken as 1.
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By taking the information above into consideration, a method named the Fractional-
Order Frequency Scale is given in Equation (5). This approach enables the production of a
corresponding value for each value on a frequency scale.

[Dαf(x)]RL = R·f (5)

For α = −0.1 and α = 0.1 the process can be visualized as in Figure 1.
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Following the production of the new frequency scale, a new spectrogram is generated
by applying different weights that are based on the new frequency scale of a given audio
spectrogram. This mapping approach uses similar designs of mapping spectrograms on
different psychoacoustic scales [56]. In practice, by applying a set of equally distanced and
overlapping triangular filters on the new frequency scale, a set of weights is calculated to
be applied to the complex coefficients of the STFT.

2.2. Data Augmentation Strategies

Using the proposed method, two augmentation strategies depicted in Figure 2 are
applied. Augmentation Strategy 1 is quite straightforward. Firstly, for each complex
STFT matrix of audio samples, a new frequency scale is calculated with respect to a
randomly given fractional order. Then, the audio sample is mapped and warped on a
fractionally differentiated frequency scale to produce a complex augmented STFT matrix.
Augmentation Strategy 2 differs from the first strategy with the added method to its output.
The complex STFT matrix is mapped and warped on the fractionally derived frequency
scale to produce a complex augmented STFT matrix as in the first strategy. Additionally,
the amplitude of the complex augmented STFT matrix is calculated and the new phase
structure is produced by estimating with the Fractional Differential Equation (FDE)-based
phase estimation method [61] to produce a new augmented STFT. Proposed by the authors
of this work, this method is shown to be capable of producing consistent spectrograms.
Further information is provided in depth in [61]. Additionally, in a related work by the
authors [62], the mapping procedure of spectrogram coefficients on a new frequency-like
scale is also explained.
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2.3. Deep Griffin-Lim Iteration

In this work, a recent approach for audio reconstruction with deep neural networks
called Deep Griffin-Lim Iteration (DeGLI) is applied [48]. DeGLI is intentionally chosen
because, the proposed implementation of this approach requires a smaller number of
trainable parameters, resulting in less training time and the architecture enables a flexible
implementation for evaluation in terms of network depth. In Table 1, trainable parameter
comparisons of some NAS architectures are provided.

Table 1. Number of trainable parameters for some NAS architectures.

Neural Audio Synthesis Architecture Number of Trainable Parameters

Wavenet-30 [63] 4.57 M
WaveRNN-896 [33] 3 M

LPCNet [64] 843 K–1.24 M
GlotNet [32] 602 K–1.56 M

DeGLI is a method for reconstructing audio signals that combines the GLA approach
(Appendix A) with a deep neural network (DNN). To reconstruct the phase for a given
STFTM representation, this approach uses a number of concatenated sub-blocks as shown
in Figure 3.
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A unique feature of DeGLI is the training strategy for the DNN, which is specifically
designed for iterative use. The DNN is trained on a denoising task with a single sub-block,
which reduces the memory required for training and improves stability compared to end-
to-end training. A similar approach in the literature is called Plug-and-Play (PnP). In PnP,
arbitrary denoiser models are applied to increase the training efficiency [66]. More in-depth
information about the DeGLI architecture can be found in [48].

2.4. Dataset

In this work, the Texas Instruments/Massachusetts Institute of Technology (TIMIT)
dataset is used. TIMIT is a read speech corpus, which has been used for benchmarking
speech processing implementations [67]. The corpus contains 16-bit, 16 kHz speech sam-
ples from various dialects of American English from male and female participants. This
dataset contains training and test subsets. Since this dataset provides gender and dialect
variabilities it is preferred for this work. In comparison to the datasets such as LJSpeech,
TIMIT is sampled with a smaller sampling frequency [48]. This property enables the imple-
mentation of DeGLI in a reduced size without the need for downsampling or upsampling
the training data.

3. Results
Due to hardware constraints of the experiment setup, actions are taken to reduce

network parameter size. For this purpose, the channel size of Complex Convolutional
Layers [48] is reduced from 64 to 32, resulting in nearly four times smaller trainable network
parameters. Additionally, two training parameters, batch size, and the number of epochs
for training are also reduced. The reduced batch size enables using less memory and the
reduced epoch number results in shorter training time. Lastly, the learning rate is kept the
same for the duration of training. The implemented network for the present experiments
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and its training parameters are selected as given in Table 2, in comparison to the original
DeGLI implementation.

Table 2. Implemented network architecture and training parameters in comparison with original
DeGLI implementation.

Architecture and Training Parameters Original DeGLI [48] Implemented DeGLI

# of Amplitude Informed Gated Convolutional
(AI-GC) Layers 3 3

# of Complex Convolutional Layers 1 1
# of Channels 64 32

Filter size of AI-GC 5 × 3 5 × 3
Filter size of Last Complex Convolutional

Layer 1 × 1 1 × 1

Stride for Convolutional Layers 1 × 1 1 × 1
# of Trainable Parameters 380 k 98 k

Optimizer ADAM ADAM
Initial Learning Rate Step Size 0.0004 0.0004

Batch Size 32 16
# of Epochs 300 100

Randomly selected SNR values for Denoiser
Training [−6, 12] dB [−6, 12] dB

Additionally, similar reasons that lead to implementing a smaller network also dictate
the use of a different dataset than the one used in the original DeGLI paper. The original
DeGLI paper employs the LJSpeech dataset [48]; however, the TIMIT dataset is used for
training in this work. The implemented DeGLI block is trained on 16 kHz sampled TIMIT
samples, each with 1 s of duration. The window length for STFT and ISTFT is 512 and the
hop length is 128.

In this work, audio reconstruction results of two different augmentation strategies
are compared with respect to an objective measure called Perceptual Evaluation of Speech
Quality (PESQ) [68]. The PESQ is a correlated measure with human audio perception.
A dataset of 11,071 audio samples is augmented with respect to an arbitrarily chosen
fractional derivative order from a set of [−0.1, −0.05, 0.05, 0.1]. Each audio sample is
augmented with respect to randomly selected two-order values from the given set. As a
result, when combined with the original data, a three times larger dataset is produced for
testing with each strategy. A DeGLI sub-block is trained as a denoiser. The Gaussian Noise
is added to each training data sample to produce noisy inputs between [−6, 12] dB. Using
an L2 loss [48], the neural network is tasked to denoise the noisy input samples.

In the first test, the effect of Augmentation Strategy 1 is compared with the audio
reconstruction using a baseline DeGLI model that is trained on a non-augmented dataset.
The result can be seen in Figure 5. It shows that the direct application of fractional-order
scaling on complex STFT, a strategy that can be applied to classification problems, reduces
the capability of the DeGLI network.
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neural network depth.

In Figure 5, the “DeGLI + Zero” curve shows the PESQ result when the complex
component of the spectrogram is initialized as 0 and the non-augmented dataset is used for
neural network model training. The “DeGLI + Rand” curve represents the results when the
complex component of the spectrogram is initialized randomly and the non-augmented
dataset is used for model training. “DeGLI + Aug + Zero” and “DeGLI + Aug + Rand” are
results for 0 and random initializations on a network trained on the augmented dataset.

This result outlines the inapplicability of such an augmentation strategy on a neural
network model that takes spectral consistency into account. To further analyze the reasons
for this result, Figure 6 shows the Log-Spectral Convergence (A6) measures for two sets of
augmented TIMIT datasets.
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The measure in Figure 6 is calculated by one iteration result of GLA on 30% of the
training dataset. This result shows that using Strategy 2 with the added vocoder structure
creates a more consistent spectrogram after augmenting a sample.

Repeating the audio reconstruction test with Augmentation Strategy 2 resulted in an
increased reconstruction performance as seen in Figure 7a,b. The curve names have the
same meanings as in Figure 5.
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better performance.

From the results, it can be seen that augmenting the dataset three times with Aug-
mentation Strategy 2 substantially increases the reconstruction performance of DeGLI not
only in terms of PESQ but also STOI. The novel method proposed in this work successfully
increases the performance of the neural network-based audio reconstruction model for
both zero and random phase initialization.

The comparison of loss function values of DeGLI sub-block training for each training
configuration also indicates the success of the Augmentation Strategy 2 as seen in Figure 8.
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mented dataset with Strategy 1, and augmented dataset with Strategy 2.

In Figure 8, it can be seen that the training of a sub-block as a denoiser with Augmen-
tation Strategy 1 increases the L2-loss of training. Since the number of batches is higher
than the non-augmented dataset test, the loss curves for both augmentation tests are less
steep than the test with the original dataset. As a result, Augmentation Strategy 2 produced
both a less steep and reduced loss curve.

4. Discussion
In this work, two data augmentation strategies that employ the proposed Fractional

Order Frequency Scale method are tested in terms of the audio reconstruction quality. For
the tests, the dataset size is increased three times by augmenting each sample with different
values of derivation order α. The important differences between these two strategies are as
follows: Strategy 1 directly uses the complex spectrogram and augments it by applying the
data augmentation method; Strategy 2 calculates the amplitude spectrogram of augmented
data, and by employing the FOC-based phase estimation method reproduces new data. The
experiments with Strategy 1 produced catastrophic results in terms of reconstruction quality.
This is due to its effect on spectral consistency. Comparing two augmentation methods in
terms of log-SC shows that Strategy 2 is capable of producing more spectrally consistent
data. The difference in spectral convergence results can be expected. In Augmentation
Strategy 1, the resulting augmented complex STFT representation has a different STFTM
but the same phase information, with respect to the original data. This causes an increased
spectral redundancy for the augmented data. Since the classification problems mostly
exclude phase (complex) information from data, Augmentation Strategy 1 can be useful
in such tasks. On the contrary, the phase information is calculated from the augmented
STFTM representation for Augmentation Strategy 2 using an FOC-based phase estimation
method. In the training stage of the neural network, using the augmented dataset with
Strategy 2, the denoiser model learns to produce consistent spectrograms. As a result, this
novel strategy increases the audio spectrogram reconstruction quality of the implemented
DeGLI model by up to 13.4% (10 subblocks) for a smaller number of sub-blocks, while
using randomly assigned initial complex coefficients in terms of PESQ and STOI. The
increase, in terms of STOI is relatively small. The experiment results give an idea about the
inclusion of phase information in data augmentation approaches and provide an intuition
for the capabilities of data augmentation methods that produce more spectrally consistent
augmented data for training audio synthesis models. It must be noted that the DeGLI is
designed to leverage spectral consistency. For future works, to further understand the
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general performance of the proposed data augmentation strategies, NAS architectures that
use features that are derived from STFTM, e.g., Mel spectrograms, should be considered.

The capability of increased performance for smaller network sizes provides an advan-
tage of fewer computation resources in the implementation of the audio reconstruction
network. Additionally, a smaller-sized network makes it possible for implementations on
limited hardware resources.

5. Conclusions
This work aims to provide three contributions to the literature. Firstly, an FOC-based

data augmentation method that works on STFT representations of data is introduced. In
relation to the similar approaches from the literature, this method can have possible applica-
tions for classification problems. On the other hand, this work focuses on the neural audio
reconstruction task to understand the limitations of a warping-based data augmentation
method for such problems. This objective provides the second contribution. To understand
the applicability of the proposed method to a specific neural audio reconstruction prob-
lem, two data augmentation strategies are proposed. The first strategy employs only the
fractional order scaling-based method which is similar to conventional data augmentation
approaches for classification problems. In the second strategy, an additional FOC-based
phase estimation procedure is used with the purpose of creating consistent spectrograms.
In addition to expanding the application domains of FOC-based methods, the experiments
show the advantage of a strategy that aims to create consistent spectrograms for neural
audio reconstruction problems. Lastly, by increasing the evaluation performance of the
neural network implementation in terms of widely accepted objective psychoacoustic
measures, namely PESQ and STOI, especially for smaller depths, the proposed data aug-
mentation strategy enables the implementation with a smaller-sized network using reduced
computation resources.
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Appendix A. Spectral Consistency
The STFT is a commonly used technique for analyzing signals in the time-frequency

domain. However, it has some inherent limitations due to the windowing process involved,
which can result in redundant information in the spectrogram. The spectral redundancy
means that the coefficients obtained from the STFT may not necessarily form a valid
spectrogram [41]. Spectral redundancy occurs because the windowing process in the STFT
introduces overlaps between adjacent windows, causing redundant information in the
frequency domain. This redundancy can lead to multiple possible signals having the same
STFT coefficients, making it impossible to uniquely reconstruct the original signal from the
STFT alone.

https://www.kaggle.com/datasets/nltkdata/timitcorpus
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The problem of reconstructing a signal can be formulated as constructing a signal from
a non-valid STFT magnitude. The problem can be expressed as finding a signal x* ∈ RL

from a given set of non-negative coefficients S, such that the magnitude of the STFT of
x*, |Gx|, is as close as possible to S [69]. L represents the dimension of the space.

As a measure of closeness, the L2-norm provides a sufficient measure. The mathemati-
cal formulation for the problem in terms of optimization can be described as a minimization
problem. Since G is a frame-dependent Gabor-based transform and S = |S| is the real
positive coefficients, the problem of finding a signal x* that has a valid spectrogram can be
defined in the following form (A1) [41].

minimizex∈RL∥|Gx| − S∥2 (A1)

The problem can be translated as S is a valid STFT magnitude if there exists an x such
that |Gx| = S. For consistency with optimization problem definitions, the problem can be
defined with an optimization variable on the coefficient side. Here C corresponds to the
complex coefficients of a spectrogram.

minimizeC∈CM×N∥|C| − S∥2 s.t. ∃x ∈ RL
∣∣∣C = Gx (A2)

The measure of error for the problem in (A2) is given in the form (A3).

E(x) =
∥|Gx| − S∥2

∥S∥2
(A3)

This error measure can be represented in the form of Spectral Signal to Noise Ratio
(SSNR) as in (A4).

SSNR(x) = −10log10(E(x)) (A4)

Another representation of this measure is the Spectral Convergence (SC) as given in
the Equation (A5) [43]. The SC is one of the most used objective speech quality metrics.

E(x) =
∥S − |Gx|∥2

∥S∥2
(A5)

The log-SC can be calculated as (A6).

log-SC = 10log(E(x)) (A6)

The GLA is a double projection algorithm. It employs iterative projections of signal on
set C1, which is the set of the admissible points of the optimization problem (A2) and set
C2, which is the set of coefficients minimizing the optimization problem (A2). C1 and C2

constraints are sets that are in CM×N [41]. Here, M corresponds to the number of frequency
channels, and N corresponds to the number of time indexes.

Since C1 is the set of admissible points for the problem as given in (A7), it is a hard
constraint. It corresponds to the set of coefficients C that can be reached from the solution
x* ∈ RL by applying transform G.

C1 =
{

C
∣∣∣∃x ∈ RL s.t. C = Gx

}
(A7)

The constraint C1 forces the solution to satisfy the consistency criterion. The projection
can be defined as two transforms, ISTFT and STFT [42]. In Equation (A8), STFT is denoted
as G and its pseudo inverse ISTFT is denoted as G†.

Pc1(C) = GG†C (A8)
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The C2 constraint can be defined as in (A9).

C2 =
{

C ∈ CMxN
∣∣∣|C| = S

}
(A9)

This constraint forces non-negative coefficients S to be equivalent to the coefficients C
that are in the set C1. This soft constraint can be met with the following projection onto C2

as in (A10).
Pc2(C) = S·e·j∠C (A10)

The GLA can now be formulated as shown in the Algorithm A1.

Algorithm A1 Griffin–Lim Algorithm [41]

Fix the initial phase ∠C0

Initialize C0 = S·e·j∠C

Iterate for n = 1, 2, . . . do
Cn = Pc1(Pc2(Cn−1))

Until convergence
x* = G†Cn

The iterative process of GLA aims to increase the spectral consistency to approximate
a valid spectrogram for a given audio waveform.
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