Digital Eye-Movement Outcomes (DEMOs) as Biomarkers for Neurological Conditions: A Narrative Review
Abstract
:1. Introduction
2. A Brief Overview of Eye Movements
2.1. Saccades
2.2. Smooth Pursuit
2.3. Nystagmus
2.4. Convergence
2.5. Vestibular Ocular Reflex
2.6. Pupillary Response
2.7. Ocular Microtremor
3. Methods to Objectively Measure Eye Movements
3.1. Scleral Search Coils
3.2. Video and Infrared Eye Trackers
3.3. Electro-Oculography
3.4. Laser-Based Eye Tracking
3.5. Analytical Validation of Objective Eye-Movement Measurement
4. “Models” of Neurological Disease and Injury
4.1. Parkinson’s Disease
4.2. Traumatic Brain Injury
4.3. PD and TBI: A Common Neurological Thread
5. Overview of Eye-Movement Impairment in PD
5.1. Saccades
5.2. Smooth Pursuits
5.3. Nystagmus
5.4. Pupillary Response
5.5. Convergence
5.6. Vestibular Ocular Reflex (VOR)
5.7. Ocular Microtremor
PD | TBI | |
---|---|---|
Saccades |
| |
Smooth Pursuits |
| |
Nystagmus |
| |
Pupillary Response |
| |
Convergence |
| |
VOR |
| |
Ocular Microtremor |
|
|
6. Overview of Eye-Movement Impairment in TBI
6.1. Saccades
6.2. Smooth Pursuits
6.3. Nystagmus
6.4. Pupillary Response
6.5. Convergence
6.6. Vestibular Ocular Reflex (VOR)
7. DEMOs as Neurological Biomarkers
7.1. Diagnosis
7.2. Prognosis/Prediction
7.3. Monitoring and Response to Intervention
7.4. Common Trends in DEMOs Across Neurological Conditions
7.5. Current Limitations and Future Prospects for DEMOs in Neurology
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graham, L.; Das, J.; Moore, J.; Godfrey, A.; Stuart, S. The Eyes as a Window to the Brain and Mind. In Eye Tracking: Background, Methods, and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–14. [Google Scholar]
- Moran, A.; Campbell, M.; Ranieri, D. Implications of eye tracking technology for applied sport psychology. J. Sport Psychol. Action 2018, 9, 249–259. [Google Scholar] [CrossRef]
- The Oxford Handbook of Eye Movements; Oxford University Press: Oxford, UK, 2011. [CrossRef]
- Bueno, A.P.A.; Sato, J.R.; Hornberger, M. Eye tracking—The overlooked method to measure cognition in neurodegeneration? Neuropsychologia 2019, 133, 107191. [Google Scholar] [CrossRef] [PubMed]
- Band, T.G.; Bar-Or, R.Z.; Ben-Ami, E. Advancements in eye movement measurement technologies for assessing neurodegenerative diseases. Front. Digit. Health 2024, 6, 1423790. [Google Scholar] [CrossRef]
- Stuart, S.; Parrington, L.; Martini, D.; Peterka, R.; Chesnutt, J.; King, L. The Measurement of Eye Movements in Mild Traumatic Brain Injury: A Structured Review of an Emerging Area. Front. Sports Act. Living 2020, 2, 5. [Google Scholar] [CrossRef]
- Larrazabal, A.J.; García Cena, C.E.; Martínez, C.E. Video-oculography eye tracking towards clinical applications: A review. Comput. Biol. Med. 2019, 108, 57–66. [Google Scholar] [CrossRef]
- Rucci, M.; Poletti, M. Control and Functions of Fixational Eye Movements. Annu. Rev. Vis. Sci. 2015, 1, 499–518. [Google Scholar] [CrossRef]
- Wade, N.J.; Tatler, B.W.; Heller, D. Dodge-Ing the Issue: Dodge, Javal, Hering, and the Measurement of Saccades in Eye-Movement Research. Perception 2003, 32, 793–804. [Google Scholar] [CrossRef]
- Van der Stigchel, S.; van Koningsbruggen, M.; Nijboer, T.C.W.; List, A.; Rafal, R.D. The role of the frontal eye fields in the oculomotor inhibition of reflexive saccades: Evidence from lesion patients. Neuropsychologia 2012, 50, 198–203. [Google Scholar] [CrossRef]
- Naicker, P.; Anoopkumar-Dukie, S.; Grant, G.D.; Kavanagh, J.J. Medications influencing central cholinergic neurotransmission affect saccadic and smooth pursuit eye movements in healthy young adults. Psychopharmacology 2017, 234, 63–71. [Google Scholar] [CrossRef]
- Waldthaler, J.; Tsitsi, P.; Svenningsson, P. Vertical saccades and antisaccades: Complementary markers for motor and cognitive impairment in Parkinson’s disease. NPJ Park. Dis. 2019, 5, 11. [Google Scholar] [CrossRef]
- Cullen, K.E.; Horn, M.R.V. Brainstem pathways and premotor control. In The Oxford Handbook of Eye Movements; Liversedge, S.P., Gilchrist, I., Everling, S., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 151–172. [Google Scholar]
- Basinger, H.; Hogg, J.P. Neuroanatomy, Brainstem; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Mustari, M.J.; Ono, S.; Das, V.E. Signal Processing and Distribution in Cortical-Brainstem Pathways for Smooth Pursuit Eye Movements. Ann. New York Acad. Sci. 2009, 1164, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.A. The mechanics of human smooth pursuit eye movement. J. Physiol. 1965, 180, 569–591. [Google Scholar] [CrossRef] [PubMed]
- Abadi, R.V. Mechanisms Underlying Nystagmus. J. R. Soc. Med. 2002, 95, 231–234. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, H.; Naude, A.; Bornman, J. Investigating nystagmus in patients with traumatic brain injury: A systematic review (1996–2016). S. Afr. Med. J. 2017, 107, 957–964. [Google Scholar] [CrossRef]
- Santo, A.L.; Race, M.L.; Teel, E.F. Near Point of Convergence Deficits and Treatment Following Concussion: A Systematic Review. J. Sport Rehabil. 2020, 29, 1179–1193. [Google Scholar] [CrossRef]
- Mucha, A.; Collins, M.W.; Elbin, R.; Furman, J.M.; Troutman-Enseki, C.; DeWolf, R.M.; Marchetti, G.; Kontos, A.P. A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: Preliminary findings. Am. J. Sports Med. 2014, 42, 2479–2486. [Google Scholar] [CrossRef]
- Hess, B.J.M. Vestibular response. In The Oxford Handbook of Eye Movements; Liversedge, S.P., Gilchrist, I., Everling, S., Eds.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Crampton, A.; Teel, E.; Chevignard, M.; Gagnon, I. Vestibular-ocular reflex dysfunction following mild traumatic brain injury: A narrative review. Neurochirurgie 2021, 67, 231–237. [Google Scholar] [CrossRef]
- Wang, C.-A.; Munoz, D.P. A circuit for pupil orienting responses: Implications for cognitive modulation of pupil size. Curr. Opin. Neurobiol. 2015, 33, 134–140. [Google Scholar] [CrossRef]
- Bolger, C.; Sheahan, N.; Coakley, D.; Malone, J. High frequency eye tremor: Reliability of measurement. Clin. Phys. Physiol. Meas. 1992, 13, 151–159. [Google Scholar] [CrossRef]
- Bojanic, S.; Simpson, T.; Bolger, C. Ocular microtremor: A tool for measuring depth of anaesthesia? Br. J. Anaesth. 2001, 86, 519–522. [Google Scholar] [CrossRef]
- Bolger, C.; Bojanic, S.; Sheahan, N.F.; Coakley, D.; Malone, J.F. Ocular microtremor in oculomotor palsy. J. Neuroophthalmol. 1999, 19, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Bolger, C.; Bojanic, S.; Sheahan, N.; Malone, J.F.; Hutchinson, M.; Coakley, D. Ocular microtremor (OMT): A new neurophysiological approach to multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2000, 68, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Bolger, C.; Bojanic, S.; Sheahan, N.F.; Coakley, D.; Malone, J.F. Dominant frequency content of ocular microtremor from normal subjects. Vis. Res. 1999, 39, 1911–1915. [Google Scholar] [CrossRef] [PubMed]
- Bolger, C.; Bojanic, S.; Sheahan, N.F.; Coakley, D.; Malone, J.F. Effect of age on ocular microtremor activity. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M386–M390. [Google Scholar] [CrossRef]
- Robinson, D.A. A Method of Measuring Eye Movemnent Using a Scieral Search Coil in a Magnetic Field. IEEE Trans. Bio-Med. Electron. 1963, 10, 137–145. [Google Scholar] [CrossRef]
- Collewijn, H. Eye movement recording. In Vision Research: A Practical Guide to Laboratory Methods; Chapter 9; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- van der Geest, J.N.; Frens, M.A. Recording eye movements with video-oculography and scleral search coils: A direct comparison of two methods. J. Neurosci. Methods 2002, 114, 185–195. [Google Scholar] [CrossRef]
- Gorges, M.; Pinkhardt, E.H.; Kassubek, J. Alterations of Eye Movement Control in Neurodegenerative Movement Disorders. J. Ophthalmol. 2014, 2014, 658243. [Google Scholar] [CrossRef]
- Schmitt, K.-U.; Muser, M.H.; Lanz, C.; Walz, F.; Schwarz, U. Comparing eye movements recorded by search coil and infrared eye tracking. J. Clin. Monit. Comput. 2007, 21, 49–53. [Google Scholar] [CrossRef]
- Belkhiria, C.; Peysakhovich, V. Electro-Encephalography and Electro-Oculography in Aeronautics: A Review Over the Last Decade (2010–2020). Front. Neuroergon. 2020, 1, 606719. [Google Scholar] [CrossRef]
- Kenny, E.; Coakley, D.; Boyle, G. Biospeckle in the human sclera and impact on laser speckle correlation measurement of eye tremor. J. Biomed. Opt. 2013, 18, 097009. [Google Scholar] [CrossRef]
- Kenny, E.; Coakley, D.; Boyle, G. Ocular microtremor measurement using laser-speckle metrology. J. Biomed. Opt. 2013, 18, 16010. [Google Scholar] [CrossRef] [PubMed]
- Ryle, J.P.; Vohnsen, B.; Sheridan, J.T. Simultaneous drift, microsaccades, and ocular microtremor measurement from a single noncontact far-field optical sensor. J. Biomed. Opt. 2015, 20, 27004. [Google Scholar] [CrossRef] [PubMed]
- Ryle, J.P.; Al-Kalbani, M.; Collins, N.; Gopinathan, U.; Boyle, G.; Coakley, D.; Sheridan, J.T. Compact portable ocular microtremor sensor: Design, development and calibration. J. Biomed. Opt. 2009, 14, 014021. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, I.M.; Hernández Montes, M.d.S.; Flores-Moreno, J.M.; Santoyo, F.M. Laser speckle based digital optical methods in structural mechanics: A review. Opt. Lasers Eng. 2016, 87, 32–58. [Google Scholar] [CrossRef]
- Goldsack, J.C.; Coravos, A.; Bakker, J.P.; Bent, B.; Dowling, A.V.; Fitzer-Attas, C.; Godfrey, A.; Godino, J.G.; Gujar, N.; Izmailova, E.; et al. Verification, analytical validation, and clinical validation (V3): The foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). NPJ Digit. Med. 2020, 3, 55. [Google Scholar] [CrossRef]
- Brooks, J.S.; Smith, W.J.; Webb, B.M.; Heath, M.D.; Dickey, J.P. Development and validation of a high-speed video system for measuring saccadic eye movement. Behav. Res. Methods 2019, 51, 2302–2309. [Google Scholar] [CrossRef]
- Cohen, M.; Hesse, S.; Polet, K.; Louchart de la Chapelle, S.; Morisot, A.; Bresch, S.; Pesce, A.; Lebrun-Frenay, C. Reliability of mobile video-oculography in multiple sclerosis patients using an iPad: A prospective validation study. Mult. Scler. Relat. Disord. 2022, 64, 103944. [Google Scholar] [CrossRef]
- Lai, H.Y.; Saavedra-Peña, G.; Sodini, C.G.; Sze, V.; Heldt, T. Measuring Saccade Latency Using Smartphone Cameras. IEEE J. Biomed. Health Inform. 2020, 24, 885–897. [Google Scholar] [CrossRef]
- Valliappan, N.; Dai, N.; Steinberg, E.; He, J.; Rogers, K.; Ramachandran, V.; Xu, P.; Shojaeizadeh, M.; Guo, L.; Kohlhoff, K.; et al. Accelerating eye movement research via accurate and affordable smartphone eye tracking. Nat. Commun. 2020, 11, 4553. [Google Scholar] [CrossRef]
- Bastani, P.B.; Rieiro, H.; Badihian, S.; Otero-Millan, J.; Farrell, N.; Parker, M.; Newman-Toker, D.; Zhu, Y.; Tehrani, A.S. Quantifying Induced Nystagmus Using a Smartphone Eye Tracking Application (EyePhone). J. Am. Heart Assoc. 2024, 13, e030927. [Google Scholar] [CrossRef]
- McCamy, M.B.; Collins, N.; Otero-Millan, J.; Al-Kalbani, M.; Macknik, S.L.; Coakley, D.; Troncoso, X.G.; Boyle, G.; Narayanan, V.; Wolf, T.R.; et al. Simultaneous recordings of ocular microtremor and microsaccades with a piezoelectric sensor and a video-oculography system. PeerJ 2013, 1, e14. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.; Das, J.; Vitorio, R.; McDonald, C.; Walker, R.; Godfrey, A.; Morris, R.; Stuart, S. Ocular microtremor: A structured review. Exp. Brain Res. 2023, 241, 2191–2203. [Google Scholar] [CrossRef] [PubMed]
- Debacker, J.; Ventura, R.; Galetta, S.L.; Balcer, L.J.; Rucker, J.C. Chapter 15—Neuro-ophthalmologic disorders following concussion. In Handbook of Clinical Neurology; Hainline, B., Stern, R.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 158, pp. 145–152. [Google Scholar]
- Ventura, R.E.; Balcer, L.J.; Galetta, S.L.; Rucker, J.C. Ocular motor assessment in concussion: Current status and future directions. J. Neurol. Sci. 2016, 361, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kieburtz, K.; Wunderle, K.B. Parkinson’s disease: Evidence for environmental risk factors. Mov. Disord. 2013, 28, 8–13. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression, and mortality. Neurology 1998, 50, 318. [Google Scholar] [CrossRef]
- Stuart, S.; Lawson, R.A.; Yarnall, A.J.; Nell, J.; Alcock, L.; Duncan, G.W.; Khoo, T.K.; Barker, R.A.; Rochester, L.; Burn, D.J.; et al. Pro-Saccades Predict Cognitive Decline in Parkinson’s Disease: ICICLE-PD. Mov. Disord. 2019, 34, 1690–1698. [Google Scholar] [CrossRef]
- Michaud, M. Halting the Rise of Parkinson’s. 2023. Available online: https://www.urmc.rochester.edu/news/publications/neuroscience/halting-the-rise-of-parkinsons#:~:text=Parkinsons%20is%20the%20fastest%20growing,and%20a%20ubiquitous%20chemical%20pollutant (accessed on 22 August 2023).
- WHO. Parkinson’s Disease. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/parkinson-disease (accessed on 19 April 2024).
- Mosimann, U.P.; Müri, R.M.; Burn, D.J.; Felblinger, J.; O’Brien, J.T.; McKeith, I.G. Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain 2005, 128, 1267–1276. [Google Scholar] [CrossRef]
- Fotiou, D.F.; Stergiou, V.; Tsiptsios, D.; Lithari, C.; Nakou, M.; Karlovasitou, A. Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: Evaluation with pupillometry. Int. J. Psychophysiol. 2009, 73, 143–149. [Google Scholar] [CrossRef]
- Armstrong, R.A. Visual symptoms in Parkinson’s disease. Park. Dis. 2011, 2011, 908306. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D. Advances in markers of prodromal Parkinson disease. Nat. Rev. Neurol. 2016, 12, 622–634. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D. Prodromal Parkinson’s Disease: The Decade Past, the Decade to Come. Mov. Disord. 2019, 34, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Berg, D. Biomarkers for the Early Detection of Parkinson’s and Alzheimer’s Disease. Neurodegener. Dis. 2008, 5, 133–136. [Google Scholar] [CrossRef]
- Brien, D.C.; Riek, H.C.; Yep, R.; Huang, J.; Coe, B.; Areshenkoff, C.; Grimes, D.; Jog, M.; Lang, A.; Marras, C.; et al. Classification and staging of Parkinson’s disease using video-based eye tracking. Park. Relat. Disord. 2023, 110, 105316. [Google Scholar] [CrossRef] [PubMed]
- Lefevre-Dognin, C.; Cogné, M.; Perdrieau, V.; Granger, A.; Heslot, C.; Azouvi, P. Definition and epidemiology of mild traumatic brain injury. Neurochirurgie 2021, 67, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, R.; Bazaz, M.R.; Pasam, T.; Sharief, N.; Velip, L.; Samanthula, G.; Dandekar, M.P. Involvement of Microbiome Gut–Brain Axis in Neuroprotective Effect of Quercetin in Mouse Model of Repeated Mild Traumatic Brain Injury. NeuroMolecular Med. 2023, 25, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Echemendia, R.J.; Meeuwisse, W.; McCrory, P.; Davis, G.A.; Putukian, M.; Leddy, J.; Makdissi, M.; Sullivan, S.J.; Broglio, S.P.; Raftery, M.; et al. The Sport Concussion Assessment Tool 5th Edition (SCAT5): Background and rationale. Br. J. Sports Med. 2017, 51, 848. [Google Scholar] [CrossRef]
- King, N.S.; Crawford, S.; Wenden, F.J.; Moss, N.E.G.; Wade, D.T. The Rivermead Post Concussion Symptoms Questionnaire: A measure of symptoms commonly experienced after head injury and its reliability. J. Neurol. 1995, 242, 587–592. [Google Scholar] [CrossRef]
- Alla, S.; Sullivan, S.J.; Hale, L.; McCrory, P. Self-report scales/checklists for the measurement of concussion symptoms: A systematic review. Br. J. Sports Med. 2009, 43 (Suppl. S1), i3. [Google Scholar] [CrossRef]
- Lovell, M.R.; Collins, M.W.; Iverson, G.L.; Field, M.; Maroon, J.C.; Cantu, R.; Podell, K.; Powell, J.W.; Belza, M.; Fu, F.H. Recovery from mild concussion in high school athletes. J. Neurosurg. 2003, 98, 296–301. [Google Scholar] [CrossRef]
- Van Kampen, D.A.; Lovell, M.R.; Pardini, J.E.; Collins, M.W.; Fu, F.H. The “Value Added” of Neurocognitive Testing after Sports-Related Concussion. Am. J. Sports Med. 2006, 34, 1630–1635. [Google Scholar] [CrossRef]
- Gardner, R.C.; Byers, A.L.; Barnes, D.E.; Li, Y.; Boscardin, J.; Yaffe, K. Mild TBI and risk of Parkinson disease. Neurology 2018, 90, e1771–e1779. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.C.; Burke, J.F.; Nettiksimmons, J.; Goldman, S.; Tanner, C.M.; Yaffe, K. Traumatic brain injury in later life increases risk for Parkinson disease. Ann. Neurol. 2015, 77, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Etminan, M.; Aminzadeh, F.; Samii, A. Head injury and risk of Parkinson disease: A systematic review and meta-analysis. Mov. Disord. 2013, 28, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Daneshvar, D.H. The neuropathology of traumatic brain injury. Handb. Clin. Neurol. 2015, 127, 45–66. [Google Scholar] [CrossRef]
- Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009399. [Google Scholar] [CrossRef]
- Jon, S.P.; Kathryn, J.S.; Jiri, D.; Osman Hassan, A.; Cheri, B.; Robert, C.C.; Gavin, A.D.; Ruben, J.E.; Michael, M.; Michael, M.; et al. Consensus statement on concussion in sport: The 6th International Conference on Concussion in Sport–Amsterdam, October 2022. Br. J. Sports Med. 2023, 57, 695. [Google Scholar] [CrossRef]
- Mani, R.; Asper, L.; Khuu, S.K. Deficits in saccades and smooth-pursuit eye movements in adults with traumatic brain injury: A systematic review and meta-analysis. Brain Inj. 2018, 32, 1315–1336. [Google Scholar] [CrossRef]
- Gallagher, V.; Vesci, B.; Mjaanes, J.; Breiter, H.; Chen, Y.; Herrold, A.; Reilly, J. Eye movement performance and clinical outcomes among female athletes post-concussion. Brain Inj. 2020, 34, 1674–1684. [Google Scholar] [CrossRef]
- Brown, S.; Hawker, G.; Beaton, D.; Colantonio, A. Long-term musculoskeletal complaints after traumatic brain injury. Brain Inj. 2011, 25, 453–461. [Google Scholar] [CrossRef]
- McPherson, A.L.; Nagai, T.; Webster, K.E.; Hewett, T.E. Musculoskeletal Injury Risk After Sport-Related Concussion: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2019, 47, 1754–1762. [Google Scholar] [CrossRef]
- Luan, Y.; Jiang, L.; Luan, Y.; Xie, Y.; Yang, Y.; Ren, K.D. Mitophagy and Traumatic Brain Injury: Regulatory Mechanisms and Therapeutic Potentials. Oxidative Med. Cell. Longev. 2023, 2023, 1649842. [Google Scholar] [CrossRef] [PubMed]
- Takata, F.; Nakagawa, S.; Matsumoto, J.; Dohgu, S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front. Cell. Neurosci. 2021, 15, 661838. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.A.; Ryu, J.K.; Akassoglou, K. Fibrinogen in neurological diseases: Mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 2018, 19, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Garbutt, S.; Riley, D.E.; Kumar, A.N.; Han, Y.; Harwood, M.R.; Leigh, R.J. Abnormalities of optokinetic nystagmus in progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1386–1394. [Google Scholar] [CrossRef]
- Micieli, G.; Tassorelli, C.; Martignoni, E.; Pacchetti, C.; Bruggi, P.; Magri, M.; Nappi, G. Disordered pupil reactivity in Parkinson’s disease. Clin. Auton. Res. 1991, 1, 55–58. [Google Scholar] [CrossRef]
- Tsitsi, P.; Benfatto, M.N.; Seimyr, G.Ö.; Larsson, O.; Svenningsson, P.; Markaki, I. Fixation Duration and Pupil Size as Diagnostic Tools in Parkinson’s Disease. J. Park. Dis. 2021, 11, 865–875. [Google Scholar] [CrossRef]
- Ranchet, M.; Orlosky, J.; Morgan, J.; Qadir, S.; Akinwuntan, A.E.; Devos, H. Pupillary response to cognitive workload during saccadic tasks in Parkinson’s disease. Behav. Brain Res. 2017, 327, 162–166. [Google Scholar] [CrossRef]
- Corin, M.S.; Elizan, T.S.; Bender, M.B. Oculomotor function in patients with Parkinson’s disease. J. Neurol. Sci. 1972, 15, 251–265. [Google Scholar] [CrossRef]
- Frederick, E.; Lepore, M. Parkinson’s Disease and Diplopia. Neuro-Ophthalmology 2006, 30, 37–40. [Google Scholar] [CrossRef]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.-S.; McNamara, J.O.; Williams, S.M. Neural Control of Vergence Movements. In Neuroscience, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Bansal, S.; Sinha, S.K. Assessment of VOR gain function and its test–retest reliability in normal hearing individuals. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 3167–3173. [Google Scholar] [CrossRef]
- Anson, E.R.; Bigelow, R.T.; Carey, J.P.; Xue, Q.L.; Studenski, S.; Schubert, M.C.; Agrawal, Y. VOR Gain Is Related to Compensatory Saccades in Healthy Older Adults. Front. Aging Neurosci. 2016, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Qiongfeng, G.; Xingyue, H.; Jiaqi, C.; Hong, J.; Lisan, Z.; Weinv, F. Vestibulo-ocular reflex abnormality in Parkinson’s disease detected by video head impulse test. Neurosci. Lett. 2017, 657, 211–214. [Google Scholar] [CrossRef]
- White, O.B.; Saint-Cyr, J.A.; Sharpe, J.A. Ocular motor deficits in parkinson’s disease: I. the horizontal vestibulo-ocular reflex and its regulation. Brain 1983, 106, 555–570. [Google Scholar] [CrossRef] [PubMed]
- Bolger, C.; Bojanic, S.; Sheahan, N.F.; Coakley, D.; Malone, J.F. Ocular microtremor in patients with idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1999, 66, 528–531. [Google Scholar] [CrossRef]
- Robertson, J.; Timmons, S. Non-invasive brainstem monitoring: The ocular microtremor. Neurol. Res. 2007, 29, 709–711. [Google Scholar] [CrossRef]
- Coakley, D.; Thomas, J.G. The ocular microtremor record as a potential procedure for establishing brain death. J. Neurol. Sci. 1977, 31, 199–205. [Google Scholar] [CrossRef]
- Bolger, C.; Bojanic, S.; Phillips, J.; Sheahan, N.; Coakley, D.; Malone, J. Ocular microtremor in brain stem death. Neurosurgery 1999, 44, 1201–1206. [Google Scholar]
- Lirani-Silva, E.; Stuart, S.; Parrington, L.; Campbell, K.; King, L. Saccade and Fixation Eye Movements During Walking in People with Mild Traumatic Brain Injury. Front. Bioeng. Biotechnol. 2021, 9, 701712. [Google Scholar] [CrossRef]
- Johnson, B.; Zhang, K.; Hallett, M.; Slobounov, S. Functional neuroimaging of acute oculomotor deficits in concussed athletes. Brain Imaging Behav. 2015, 9, 564–573. [Google Scholar] [CrossRef]
- Cifu, D.X.; Wares, J.R.; Hoke, K.W.; Wetzel, P.A.; Gitchel, G.; Carne, W. Differential eye movements in mild traumatic brain injury versus normal controls. J. Head Trauma Rehabil. 2015, 30, 21–28. [Google Scholar] [CrossRef]
- Maruta, J.; Suh, M.; Niogi, S.N.; Mukherjee, P.; Ghajar, J. Visual Tracking Synchronization as a Metric for Concussion Screening. J. Head Trauma Rehabil. 2010, 25, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Maruta, J.; Jaw, E.; Modera, P.; Rajashekar, U.; Spielman, L.A.; Ghajar, J. Frequency Responses to Visual Tracking Stimuli May Be Affected by Concussion. Mil. Med. 2017, 182 (Suppl. S1), 120–123. [Google Scholar] [CrossRef] [PubMed]
- Walz, J.A.; Mani, R.; Asper, L.J.; Arunachalam, V.; Khuu, S. The impact of traumatic brain injury on pupillary responses in a delayed anti-saccade task. Investig. Ophthalmol. Vis. Sci. 2020, 61, 5069. [Google Scholar]
- Thiagarajan, P.; Ciuffreda, K.J. Pupillary responses to light in chronic non-blast-induced mTBI. Brain Inj. 2015, 29, 1420–1425. [Google Scholar] [CrossRef]
- Master, C.L.; Scheiman, M.; Gallaway, M.; Goodman, A.; Robinson, R.L.; Master, S.R.; Grady, M.F. Vision Diagnoses Are Common After Concussion in Adolescents. Clin. Pediatr. 2016, 55, 260–267. [Google Scholar] [CrossRef]
- McDonald, M.A.; Holdsworth, S.J.; Danesh-Meyer, H.V. Eye Movements in Mild Traumatic Brain Injury: Ocular Biomarkers. J. Eye Mov. Res. 2022, 15, 58–65. [Google Scholar] [CrossRef]
- Cusimano, M.; Gupta, N.; Mullen, S.J.; Oentoro, A.; Schweizer, T.A.; Yücel, Y.H. Saccadic Eye Movements in Mild Traumatic Brain Injury: A Pilot Study OPEN ACCESS. Can. J. Neurol. Sci. 2014, 41, 58–65. [Google Scholar] [CrossRef]
- Maruta, J.; Spielman, L.A.; Rajashekar, U.; Ghajar, J. Association of Visual Tracking Metrics with Post-concussion Symptomatology. Front. Neurol. 2018, 9, 611. [Google Scholar] [CrossRef]
- Pearce, K.L.; Sufrinko, A.; Lau, B.C.; Henry, L.; Collins, M.W.; Kontos, A.P. Near Point of Convergence After a Sport-Related Concussion:Measurement Reliability and Relationship to Neurocognitive Impairment and Symptoms. Am. J. Sports Med. 2015, 43, 3055–3061. [Google Scholar] [CrossRef]
- Anderson, T.J.; MacAskill, M.R. Eye movements in patients with neurodegenerative disorders. Nat. Rev. Neurol. 2013, 9, 74–85. [Google Scholar] [CrossRef]
- Armstrong, T.; Olatunji, B.O. Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clin. Psychol. Rev. 2012, 32, 704–723. [Google Scholar] [CrossRef] [PubMed]
- La Morgia, C.; Romagnoli, M.; Pizza, F.; Biscarini, F.; Filardi, M.; Donadio, V.; Carbonelli, M.; Amore, G.; Park, J.C.; Tinazzi, M.; et al. Chromatic Pupillometry in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov. Disord. 2022, 37, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Eden, G.F.; Stein, J.F.; Wood, H.M.; Wood, F.B. Differences in eye movements and reading problems in dyslexic and normal children. Vis. Res. 1994, 34, 1345–1358. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, G.D.; Christy, J.B.; Almutairi, A.; Busettini, C.; Swanson, M.W.; Weise, K.K. Visuo-oculomotor Function and Reaction Times in Athletes with and without Concussion. Optom. Vis. Sci. 2019, 96, 256–265. [Google Scholar] [CrossRef]
- Maruta, J.; Heaton, K.J.; Maule, A.L.; Ghajar, J. Predictive Visual Tracking: Specificity in Mild Traumatic Brain Injury and Sleep Deprivation. Mil. Med. 2014, 179, 619–625. [Google Scholar] [CrossRef]
- Perkins, J.E.; Janzen, A.; Bernhard, F.P.; Wilhelm, K.; Brien, D.C.; Huang, J.; Coe, B.C.; Vadasz, D.; Mayer, G.; Munoz, D.P.; et al. Saccade, Pupil, and Blink Responses in Rapid Eye Movement Sleep Behavior Disorder. Mov. Disord. 2021, 36, 1720–1726. [Google Scholar] [CrossRef]
- Braak, H.; Tredici, K.D.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Rietdijk, C.D.; Perez-Pardo, P.; Garssen, J.; van Wezel, R.J.A.; Kraneveld, A.D. Exploring Braak’s Hypothesis of Parkinson’s Disease. Front. Neurol. 2017, 8, 37. [Google Scholar] [CrossRef]
- Blekher, T.; Weaver, M.; Rupp, J.; Nichols, W.C.; Hui, S.L.; Gray, J.; Yee, R.D.; Wojcieszek, J.; Foroud, T. Multiple step pattern as a biomarker in Parkinson disease. Park. Relat. Disord. 2009, 15, 506–510. [Google Scholar] [CrossRef]
- MacAskill, M.R.; Graham, C.F.; Pitcher, T.L.; Myall, D.J.; Livingston, L.; van Stockum, S.; Dalrymple-Alford, J.C.; Anderson, T.J. The influence of motor and cognitive impairment upon visually-guided saccades in Parkinson’s disease. Neuropsychologia 2012, 50, 3338–3347. [Google Scholar] [CrossRef]
- Machner, B.; Klein, C.; Sprenger, A.; Baumbach, P.; Pramstaller, P.P.; Helmchen, C.; Heide, W. Eye movement disorders are different in Parkin-linked and idiopathic early-onset PD. Neurology 2010, 75, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Turcano, P.; Chen, J.J.; Bureau, B.L.; Savica, R. Early ophthalmologic features of Parkinson’s disease: A review of preceding clinical and diagnostic markers. J. Neurol. 2019, 266, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Pretegiani, E.; Optican, L.M. Eye Movements in Parkinson’s Disease and Inherited Parkinsonian Syndromes. Front. Neurol. 2017, 8, 592. [Google Scholar] [CrossRef] [PubMed]
- Pearson, H.C.; MacKenzie, D.E.; Oystreck, D.T.; Westwood, D.A. Using eye-tracking technology to measure cognitive function in mild traumatic brain injury: A scoping review. J. Concussion 2023, 7, 20597002231194151. [Google Scholar] [CrossRef]
- Antoniades, C.A.; Demeyere, N.; Kennard, C.; Humphreys, G.W.; Hu, M.T. Antisaccades and executive dysfunction in early drug-naive Parkinson’s disease: The discovery study. Mov. Disord. 2015, 30, 843–847. [Google Scholar] [CrossRef]
- DuPrey, K.M.; Webner, D.; Lyons, A.; Kucuk, C.H.; Ellis, J.T.; Cronholm, P.F. Convergence Insufficiency Identifies Athletes at Risk of Prolonged Recovery from Sport-Related Concussion. Am. J. Sports Med. 2017, 45, 2388–2393. [Google Scholar] [CrossRef]
- Master, C.L.; Master, S.R.; Wiebe, D.J.; Storey, E.P.; Lockyer, J.E.; Podolak, O.E.; Grady, M.F. Vision and Vestibular System Dysfunction Predicts Prolonged Concussion Recovery in Children. Clin. J. Sport Med. 2018, 28, 139–145. [Google Scholar] [CrossRef]
- McLaughlin, P.M.; Sunderland, K.M.; Beaton, D.; Binns, M.A.; Kwan, D.; Levine, B.; Orange, J.B.; Peltsch, A.J.; Roberts, A.C.; Strother, S.C.; et al. The Quality Assurance and Quality Control Protocol for Neuropsychological Data Collection and Curation in the Ontario Neurodegenerative Disease Research Initiative (ONDRI) Study. Assessment 2021, 28, 1267–1286. [Google Scholar] [CrossRef]
- Kroshus, E.; Garnett, B.; Hawrilenko, M.; Baugh, C.M.; Calzo, J.P. Concussion under-reporting and pressure from coaches, teammates, fans, and parents. Soc. Sci. Med. 2015, 134, 66–75. [Google Scholar] [CrossRef]
- Caron, J.G.; Bloom, G.A.; Johnston, K.M.; Sabiston, C.M. National Hockey League players' experiences with career-ending concussions. Br. J. Sports Med. 2013, 47, e1. [Google Scholar] [CrossRef]
- Graham, L.; Powell, D.; Campbell, K.R.; Morris, R.; Vitorio, R.; Parrington, L.; Antonellis, P.; Godfrey, A.; King, L.A.; Stuart, S. iVOMS: Instrumented Vestibular/Ocular motor screen in healthy controls and mild traumatic brain injury. Med. Eng. Phys. 2024, 129, 104180. [Google Scholar] [CrossRef] [PubMed]
- Esterov, D.; Greenwald, B.D. Autonomic Dysfunction after Mild Traumatic Brain Injury. Brain Sci. 2017, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Dean, P.; Sterr, A. Long-term effects of mild traumatic brain injury on cognitive performance. Front. Hum. Neurosci. 2013, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Thielen, H.; Tuts, N.; Welkenhuyzen, L.; Huenges Wajer, I.M.C.; Lafosse, C.; Gillebert, C.R. Sensory sensitivity after acquired brain injury: A systematic review. J. Neuropsychol. 2023, 17, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Watabe, T.; Suzuki, H.; Abe, M.; Sasaki, S.; Nagashima, J.; Kawate, N. Systematic review of visual rehabilitation interventions for oculomotor deficits in patients with brain injury. Brain Inj. 2019, 33, 1592–1596. [Google Scholar] [CrossRef]
- Thiagarajan, P.; Ciuffreda, K.J. Short-term persistence of oculomotor rehabilitative changes in mild traumatic brain injury (mTBI): A pilot study of clinical effects. Brain Inj. 2015, 29, 1475–1479. [Google Scholar] [CrossRef]
- Worth, P.F. How to treat Parkinson’s disease in 2013. Clin. Med. 2013, 13, 93–96. [Google Scholar] [CrossRef]
- Michell, A.W.; Xu, Z.; Fritz, D.; Lewis, S.J.G.; Foltynie, T.; Williams-Gray, C.H.; Robbins, T.W.; Carpenter, R.H.S.; Barker, R.A. Saccadic latency distributions in Parkinson’s disease and the effects of l-dopa. Exp. Brain Res. 2006, 174, 7–18. [Google Scholar] [CrossRef]
- Lu, Z.; Buchanan, T.; Kennard, C.; FitzGerald, J.J.; Antoniades, C.A. The effect of levodopa on saccades—Oxford Quantification in Parkinsonism study. Park. Relat. Disord. 2019, 68, 49–56. [Google Scholar] [CrossRef]
- Hood, A.J.; Amador, S.C.; E Cain, A.; A Briand, K.; Al-Refai, A.H.; Schiess, M.C.; Sereno, A.B. Levodopa slows prosaccades and improves antisaccades: An eye movement study in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 565. [Google Scholar] [CrossRef]
- Iwaki, H.; Sogo, H.; Morita, H.; Nishikawa, N.; Ando, R.; Miyaue, N.; Tada, S.; Yabe, H.; Nagai, M.; Nomoto, M. Using Spontaneous Eye-blink Rates to Predict the Motor Status of Patients with Parkinson’s Disease. Intern. Med. 2019, 58, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Terao, Y.; Fukuda, H.; Yugeta, A.; Hikosaka, O.; Nomura, Y.; Segawa, M.; Hanajima, R.; Tsuji, S.; Ugawa, Y. Initiation and inhibitory control of saccades with the progression of Parkinson’s disease—Changes in three major drives converging on the superior colliculus. Neuropsychologia 2011, 49, 1794–1806. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, O.; Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol. 1985, 53, 266–291. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, O.; Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. J. Neurophysiol. 1985, 53, 292–308. [Google Scholar] [CrossRef]
- Sam, C.; Bordoni, B. Physiology, Acetylcholine; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Aosaki, T.; Miura, M.; Suzuki, T.; Nishimura, K.; Masuda, M. Acetylcholine–dopamine balance hypothesis in the striatum: An update. Geriatr. Gerontol. Int. 2010, 10 (Suppl. S1), S148–S157. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res. 2011, 221, 564–573. [Google Scholar] [CrossRef]
- Brocks, D.R. Anticholinergic drugs used in Parkinson’s disease: An overlooked class of drugs from a pharmacokinetic perspective. J. Pharm Pharm Sci. 1999, 2, 39–46. [Google Scholar]
- Naicker, P.; Anoopkumar-Dukie, S.; Grant, G.D.; Kavanagh, J.J. Anticholinergic activity in the nervous system: Consequences for visuomotor function. Physiol. Behav. 2017, 170, 6–11. [Google Scholar] [CrossRef]
- Abasi, A.; Hoseinabadi, R.; Raji, P.; Friedman, J.H.; Hadian, M.-R. Evaluating Oculomotor Tests before and after Vestibular Rehabilitation in Patients with Parkinson’s Disease: A Pilot Pre-Post Study. Park. Dis. 2022, 2022, 6913691. [Google Scholar] [CrossRef]
- Srivastava, A.; Sharma, R.; Goyal, V.; Chaudhary, S.; Sood, S.K.; Kumaran, S.S. Saccadic Eye Movements in Young-Onset Parkinson’s Disease—A BOLD fMRI Study. Neuro-Ophthalmology 2020, 44, 89–99. [Google Scholar] [CrossRef]
- Gorges, M.; Müller, H.-P.; Lulé, D.; Ludolph, A.C.; Pinkhardt, E.H.; Kassubek, J. Functional Connectivity within the Default Mode Network Is Associated with Saccadic Accuracy in Parkinson’s Disease: A Resting-State fMRI and Videooculographic Study. Brain Connect. 2013, 3, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.; Armitage, J.; Vitorio, R.; Das, J.; Barry, G.; Godfrey, A.; McDonald, C.; Walker, R.; Mancini, M.; Morris, R.; et al. Visual Exploration While Walking with and without Visual Cues in Parkinson’s Disease: Freezer Versus Non-Freezer. Neurorehabilit. Neural Repair 2023, 37, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.; Alcock, L.; Galna, B.; Lord, S.; Rochester, L. The measurement of visual sampling during real-world activity in Parkinson’s disease and healthy controls: A structured literature review. J. Neurosci. Methods 2014, 222, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.; Hunt, D.; Nell, J.; Godfrey, A.; Hausdorff, J.M.; Rochester, L.; Alcock, L. Do you see what I see? Mobile eye-tracker contextual analysis and inter-rater reliability. Med. Biol. Eng. Comput. 2018, 56, 289–296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graham, L.; Vitorio, R.; Walker, R.; Barry, G.; Godfrey, A.; Morris, R.; Stuart, S. Digital Eye-Movement Outcomes (DEMOs) as Biomarkers for Neurological Conditions: A Narrative Review. Big Data Cogn. Comput. 2024, 8, 198. https://doi.org/10.3390/bdcc8120198
Graham L, Vitorio R, Walker R, Barry G, Godfrey A, Morris R, Stuart S. Digital Eye-Movement Outcomes (DEMOs) as Biomarkers for Neurological Conditions: A Narrative Review. Big Data and Cognitive Computing. 2024; 8(12):198. https://doi.org/10.3390/bdcc8120198
Chicago/Turabian StyleGraham, Lisa, Rodrigo Vitorio, Richard Walker, Gill Barry, Alan Godfrey, Rosie Morris, and Samuel Stuart. 2024. "Digital Eye-Movement Outcomes (DEMOs) as Biomarkers for Neurological Conditions: A Narrative Review" Big Data and Cognitive Computing 8, no. 12: 198. https://doi.org/10.3390/bdcc8120198
APA StyleGraham, L., Vitorio, R., Walker, R., Barry, G., Godfrey, A., Morris, R., & Stuart, S. (2024). Digital Eye-Movement Outcomes (DEMOs) as Biomarkers for Neurological Conditions: A Narrative Review. Big Data and Cognitive Computing, 8(12), 198. https://doi.org/10.3390/bdcc8120198