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Abstract: Purpose: Sex classification is a major benchmark of previous work in learning 

on the structural connectome, a naturally occurring brain graph that has proven useful for 

studying cognitive function and impairment. While graph neural networks (GNNs), spe-

cifically graph convolutional networks (GCNs), have gained popularity lately for their 

effectiveness in learning on graph data, achieving strong performance in adult sex classi-

fication tasks, their application to pediatric populations remains unexplored. We seek to 

characterize the capacity for GNN models to learn connectomic patterns on pediatric data 

through an exploration of training techniques and architectural design choices. Methods: 

Two datasets comprising an adult BRIGHT dataset (N = 147 Hodgkin’s lymphoma survi-

vors and N = 162 age similar controls) and a pediatric Human Connectome Project in De-

velopment (HCP-D) dataset (N = 135 healthy subjects) were utilized. Two GNN models 

(GCN simple and GCN residual), a deep neural network (multi-layer perceptron), and 

two standard machine learning models (random forest and support vector machine) were 

trained. Architecture exploration experiments were conducted to evaluate the impact of 

network depth, pooling techniques, and skip connections on the ability of GNN models 

to capture connectomic patterns. Models were assessed across a range of metrics includ-

ing accuracy, AUC score, and adversarial robustness. Results: GNNs outperformed other 

models across both populations. Notably, adult GNN models achieved 85.1% accuracy in 

sex classification on unseen adult participants, consistent with prior studies. The exten-

sion of the adult models to the pediatric dataset and training on the smaller pediatric da-

taset were sub-optimal in their performance. Using adult data to augment pediatric mod-

els, the best GNN achieved comparable accuracy across unseen pediatric (83.0%) and 

adult (81.3%) participants. Adversarial sensitivity experiments showed that the simple 

GCN remained the most robust to perturbations, followed by the multi-layer perceptron 

and the residual GCN. Conclusions: These findings underscore the potential of GNNs in 

advancing our understanding of sex-specific neurological development and disorders 

and highlight the importance of data augmentation in overcoming challenges associated 

with small pediatric datasets. Further, they highlight relevant tradeoffs in the design land-

scape of connectomic GNNs. For example, while the simpler GNN model tested exhibits 

marginally worse accuracy and AUC scores in comparison to the more complex residual 

GNN, it demonstrates a higher degree of adversarial robustness. 
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1. Introduction 

The human structural connectome represents an individual’s brain connectivity net-

work by quantifying the white matter tracts connecting anatomical gray matter regions in 

the brain using diffusion-weighted magnetic resonance imaging (DW-MRI). Structural 

connectome data has been a valuable tool for linking brain structure to neurological func-

tion and dysfunction [1]. Specifically, it has enhanced our understanding of typical brain 

development [2,3] as well as various neurological disorders, including epilepsy [4–6], 

schizophrenia [7,8], Alzheimer’s disease [9–12], and autism [12,13]. 

Due to its promising clinical relevance, the structural connectome has been the focus 

of multiple machine learning studies [14–16]. Among these, structural connectome classi-

fication stands out as a clinically important task, as classification algorithms could facili-

tate early diagnosis of neurological disorders and improve our understanding of relevant 

clinical characteristics at a neuroanatomical level. Such analysis employs graph theory, 

where the structural connectome represents a brain graph G = (V, E), in which brain re-

gions make up the set of vertices V, and tract connections between these regions make up 

the set of weighted edges E (with the number of tracts between two regions determining 

the relative weight of the corresponding edge). 

Although the structural connectome includes many descriptive cerebral features, its 

inherent graph structure poses challenges for traditional learning methods. Conventional 

machine learning and deep learning approaches, which are designed for Euclidean data 

like text and images, struggle with non-Euclidean graph data due to their inability to cap-

ture a graph’s topological structure [17]. Graph neural networks (GNNs) were developed 

to address these shortcomings [18]. GNNs are capable of learning and preserving topo-

logical patterns, enabling the training of generalizable, high-performance models on 

graph data [19]. 

Sex classification has been a major focal point of previous brain connectivity research 

[20–22]. Differentiating sex in the structural connectome may lead to a better understand-

ing of neurological disorders with sex-specific presentations. For example, studies have 

shown sex-specific brain connectivity patterns in patients with autism [23], mild cognitive 

impairment [24], and conduct disorder [25], which could help explain the differing 

presentations of these disorders across sexes. Furthermore, studies show differing devel-

opmental brain connectivity patterns between male and female adolescents [22,26]. De-

veloping connectivity-based sex prediction models for pediatric patients therefore could 

improve the understanding of brain development in children and aid in identifying risk 

factors and early diagnosis of certain neurological disorders [20]. Moreover, since early 

machine learning works on the structural connectome focused on sex and standard de-

mographic information, this information is routinely available in most publicly available 

datasets. Sex classification also represents an intuitive classification benchmark for as-

sessing how models perform across structural connectome datasets [27]. 

While GNN models have achieved reasonable success in classifying sex in adult pa-

tients [20,27], this work has not been extended to pediatric populations. Pediatric patients 

exhibit distinct brain connectivity patterns, particularly in developing white matter tracts, 

which form the edges of the structural connectome [3,28,29]. Consequently, models 

trained on adult structural connectome data may not be directly applicable to pediatric 

patients. Moreover, the typically smaller size of pediatric datasets presents additional 

challenges in training effective pediatric models. 
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One approach to address this problem of small sample sizes in pediatric datasets is 

to use few-shot leaning, which learns to make accurate classifications by training on a very 

small number of labeled cases when suitable training data is scarce. Few-shot learning 

approaches for GNNs in connectomics are not well studied [19]. Here, as a few-shot learn-

ing approach, a small pediatric dataset was enriched with a much larger adult data to test 

if GNN models were able to leverage this additional connectomic data to learn to make 

more accurate predictions. 

In this study, GNNs and other standard machine learning models were trained on 

whole brain structural connectome data for sex classification of both pediatric and adult 

participants. Classification accuracy for the larger adult dataset was compared to previous 

studies to compare the performance of the learning models [20,27]. Trained adult, pediat-

ric, and enriched adult/pediatric models were tested on the pediatric dataset [20]. 

After exploring training approaches using two selected GNN architectures and three 

other deep and machine learning models for comparison, a series of GNN architecture 

exploration experiments were conducted to determine the impact of pooling and aggre-

gation function, model depth, and skip connections on the ability for GNNs to capture 

connectomic patterns. Further, adversarial robustness experiments were conducted to as-

sess how models responded to adversarial attacks. These experiments sought to charac-

terize the landscape of design choices and performance tradeoffs for connectomic models. 

The primary objectives of this study are to evaluate whether an enriched training 

approach enables the GNN to generalize across age groups, achieving pediatric classifica-

tion accuracy comparable to that of adult GNN models tested on adult datasets and to 

explore the impact of GNN architectural design choices on connectomic learning ability. 

2. Materials and Methods 

2.1. Datasets 

The Human Connectome Project in Development (HCP-D) sought to characterize 

brain connectivity over the course of typical development. The pediatric HCP-D dataset 

included 135 healthy participants, ranging from 8 to 20 years of age with a mean age of 16 

years. Participants with health conditions that might have impacted typical development 

or jeopardized their inclusion within the dataset were excluded. 3D T1 weighted images 

and DW-MRI sequences were acquired with 3T Siemens Prisma scanners in two shells of 

b = 1500 and 3000 s/mm2 along 185 gradient directions [3]. 

The BRIGHT dataset included 147 adult survivors of childhood Hodgkin’s lym-

phoma (HL) and 162 control participants recruited to frequency match survivors across 

sex, age, and race/ethnicity. All survivors were 18 years of age or older with a mean age 

of 36 years. All survivors received thoracic radiation during initial treatment and were 5 

or more years from diagnosis at the time of data collection. 3D T1 weighted images and 

DW-MRI sequences were acquired with a 3T scanner in a single shell of b = 700 s/mm2 

along 30 gradient directions. Demographics from both cohorts are reported in Table 1. 

Table 1. Summary statistics for adult BRIGHT and pediatric HCP-D datasets. 

Dataset Patient Population N % Female 

BRIGHT Adult 309 53.40 

HCP-D Pediatric 135 56.30 

2.2. Structural Connectome Processing 

The processing pipeline includes multiple workflows implemented in succession. 

First, raw DW-MRI data were corrected for noise, motion, and Eddy currents [30]. Images 

were then analyzed using a spherical deconvolution diffusion model to generate fiber 
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orientation distribution functions (FOD) and probabilistic tractography was performed to 

attain whole brain tractograms using the MRtrix3 (https://www.mrtrix.org (accessed on 

12 Mar 2023)) iFOD2 algorithm [31]. The whole brain streamlines were filtered using the 

SIFT2 method to extract realistic streamlines [32]. Whole brain structural connectomes 

were computed for each subject based on weighted streamline density from the whole 

brain tractograms and based on the parcellations in the HCP-MMP1.0 atlas consisting of 

379 cortical and sub-cortical regions as nodes [33]. 

2.3. Graph Convolutional Network (GCN) Model Definition 

Let a dataset 𝑫 of size N be defined as 𝑫 = (𝑫𝟏, 𝑫𝟐, … , 𝑫𝑵). The i-th patient in da-

taset 𝑫  can be described as 𝑫𝒊 = (𝑮𝒊, 𝑿𝒊, 𝒚𝒊) , where 𝑮𝒊 = (𝑽𝒊, 𝑬𝒊)  is the patient’s struc-

tural connectivity graph with its corresponding node feature matrix 𝑿𝒊 ∈  ℝ|𝑽𝒊|×𝒅  and 

class label 𝒚𝒊 = {𝟎, 𝟏}. Any patient graph 𝑮𝒊 can also be represented as an adjacency ma-

trix 𝑨𝒊 ∈  ℝ|𝑽𝒊|×|𝑽𝒊|. A model function 𝒇𝜽: (𝑮𝒊, 𝑿𝒊) → 𝒚̂𝒊 was defined where 𝜽 is the set of 

learnable parameters and 𝒚̂𝒊  is the model’s predicted class label. The objective was to 

learn a function 𝒇 which minimizes the classification loss over the dataset 𝑫. 

This study focuses on GNN models, specifically Graph Convolutional Networks 

(GCNs). GCNs aim to create s-dimensional node embeddings for each node in a graph 

𝑮𝒊. These individual node embeddings can subsequently be pooled into a single s-dimen-

sional graph embedding vector, which can finally be fed into a downstream classifier for 

prediction of the output label. GCNs generate node embeddings through an iterative, 

message passing algorithm. Nodes send messages to their surrounding neighborhoods, 

and these messages are aggregated and used to update each node’s current embedding. 

A single layer of a GCN model can be defined as: 

𝑯𝒊
𝒍 = 𝛔(𝑨𝒊

∗𝑯𝒊
(𝒍−𝟏)

𝑾 + 𝒃) (1) 

𝑯𝒊
𝟎 = 𝑿𝒊 (2) 

where 𝑨𝒊
∗  is the normalized adjacency matrix representation of the patient graph 𝑮𝒊 , 

which is derived from structured connectome data. 𝑨𝒊
∗ is a symmetric matrix with dimen-

sions corresponding to the number of nodes in the graph. In this study, we utilized 379 

nodes defined by the HCP-MMP1.0 atlas for the whole brain, resulting in 𝑨𝒊
∗ being a 379 

× 379 matrix. 𝑯𝒊
(𝒍−𝟏)

 is the node embedding matrix from the previous iteration, 𝑾 is the 

learnable weight matrix, 𝒃 is the learnable bias term, 𝝈 is the non-linear activation func-

tion. In this study, we use the ReLU (Rectified Linear Unit) and tanh activation functions 

for σ. 𝑯𝒊
𝒍 is the resulting node embedding matrix of the GCN layer at the i-th iteration. 

The node embedding matrix is initialized with the node feature matrix in the first itera-

tion. In the above equation, 𝑯𝒊
(𝒍−𝟏)

𝑾 represents the messages passed from each node to 

its surrounding neighborhood, and 𝑨𝒊
∗𝑯𝒊

(𝒍−𝟏)
𝑾  represents the weighted aggregation of 

these outgoing messages based upon the strength of the connection between nodes in the 

normalized adjacency matrix. Individual GCN layers can be stacked or joined via skip 

connections to build larger networks. 

2.4. Model Architecture 

Two GCN models (simple [34] and residual), a deep neural network (multi-layer per-

ceptron (MLP)), and two standard machine learning models (random forest (RF) and sup-

port vector machine (SVM)) were trained. Random Forest and SVM were selected as base-

line models to enable a meaningful comparison with GNNs. Random Forest was chosen 

for its resilience to noise, capability to manage high-dimensional data like structural con-

nectome features. SVM was included for its proven effectiveness in binary classification 

tasks and its capacity to capture non-linear relationships through kernel methods. Unlike 
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GNNs, which directly utilize the graph structure of the connectome, these models rely on 

predefined features, offering a contrasting perspective. This comparison allowed us to 

highlight the benefits of graph-based learning and demonstrate the superior performance 

of GNNs in this context. Model architectures for both GCN models and the MLP are 

shown in Figure 1, and model sizes for these models are displayed in Table 2. The simple 

GCN model contains GCN layers with 64 neurons each, while the residual GCN model 

contains GCN layers with 32 neurons each. The simple GCN model uses ReLU activation 

functions between graph convolutional layers and mean global pooling for the generation 

of a graph embedding vector, while the residual GCN model uses tanh activation and 

mean aggregation functions between graph convolutional layers to create intermediate 

graph embedding matrices. The model architecture for the residual GCN is adapted from 

a model proposed in a brain connectomics benchmarking paper [5]. For the MLP network, 

hidden layers with 512, 256, and 128 neurons are used with ReLU activation. All models 

were implemented with PyTorch Geometric. 

 

Figure 1. Model architecture illustrations for simple GCN (a), residual GCN (b), and multi-layer 

perceptron (c) networks. 

Table 2. Model sizes for multi-layer perceptron (MLP), simple graph convolutional neural network 

(GCN simple), and residual graph convolutional neural network (GCN residual). 

 MLP GCN (Simple) GCN (Residual) 

Number of Model Parameters 7.37 × 107 3.89 × 104 4.78 × 106 

2.5. Training Procedure 

The hyperparameter space for all deep learning models was explored extensively. 

All deep learning models trained with a learning rate of 1 × 10−3 for 100 epochs using 

weighted binary cross entropy loss. A number of regularization techniques were em-

ployed to mitigate overfitting. 50% dropout was added between GCN layers and fully 

connected layers for GNN and MLP models, respectively. All deep learning models were 

trained using a weight decay of 5 × 10−4, and early stopping was adopted with a patience 

of 35 epochs. 

For the RF and SVM models, principal component analysis was used to reduce con-

nectivity matrix data to 100 dimensions. The random forest model was initialized with 
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100 estimators, and the support vector machine applies the radial basis function (rbf) ker-

nel. All other parameters are left as default. 

Data was split with 70% for training, 10% for validation, and 20% testing in all deep 

learning experiments. For the two standard machine learning models (RF and SVM), 80% 

of the data was used for training and the remaining 20% was used for testing. Five-fold 

cross validation was employed to generate five unique testing sets. The mean accuracy 

and AUC scores across all sets is reported. 

2.6. Model Evaluation Experiments 

First, all models were trained and tested against the two available datasets individu-

ally. For experiments on individual datasets, data from a single dataset was split into 

training, validation, and testing sets and each model’s mean accuracy and AUC score on 

the unseen test data is reported. Models trained on the adult BRIGHT dataset were also 

externally validated on pediatric HCP-D data to test how well structural connectivity 

models trained solely on adult participants generalize to pediatric participants. 

Finally, models were trained and tested on the adult-enriched pediatric dataset. Data 

from both datasets was shuffled together and split into training, validation, and testing 

sets. The ratio of adults and pediatric data was held constant across all sets. Each model’s 

accuracy on the unseen test data was reported both as an overall score and stratified by 

the dataset of origin. 

2.7. GNN Architecture Exploration Experiments 

After initial model evaluations, a variety of architectural exploration and ablation 

experiments were conducted to characterize the impact and effect of different model com-

ponents on performance. 

Mean and max pooling and aggregation approaches were compared to investigate 

the impact of these pooling and aggregation methods on the ability of the GNN models 

to learn connectomic patterns. The simple GCN, which initially used a mean global pool-

ing function to generate a graph embedding vector, was tested with a max global pooling 

function replacement, while the residual GCN, which uses a mean node aggregation for 

graph feature generation, was tested with a max aggregation function replacement. Both 

tests were performed using the adult-enriched dataset for training and evaluation. 

Next, the effect of model depth was investigated for both GNNs. The simple GNN 

was initially evaluated with two GCN layers. Deeper analogs with additional GCN layers 

were tested to determine if increasingly depth would improve the model. The residual 

GCN was initially evaluated with three GCN layers. Two- and four-layer analogs were 

tested on the adult-enriched dataset to determine the effect of decreasing or increasing the 

depth on the residual network. 

Finally, an ablation experiment was performed to test how skip connections contrib-

uted to the ability of the residual GCN model to learn on connectomic data. All skip con-

nections were removed, and the resulting model was trained and tested on the adult-en-

riched dataset. 

2.8. Adversarial Sensitivity Experiments 

Adversarial attacks are small, targeted perturbations applied to input data in order 

to mislead classification models. In the medical domain, robustness to adversarial attacks 

is important, as errors caused by such attacks could result in harmful or even fatal conse-

quences. Further, a model’s sensitivity to small adversarial perturbations may be an indi-

cator of robustness to general noise, which is an inevitable component of real-world med-

ical data. 
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Adversarial robustness for all deep learning models was evaluated using the fast gra-

dient sign method (FGSM) adversarial attack. FGSM is a white-box adversarial evasion 

attack which can be defined as: 

𝐗𝐢
𝐚𝐝𝐯 = 𝑿𝒊 + 𝝐 ∗ 𝒔𝒊𝒈𝒏(𝛁𝑿𝑳(𝜽, 𝑿𝒊, 𝒚𝒊))  (3) 

where 𝐗𝐢 is a node feature matrix corresponding to an input graph 𝑮𝒊, 𝑳 is the loss as 

function of the model’s trainable parameters 𝜽, the node feature matrix 𝑿𝒊 and the cor-

responding label 𝒚𝒊, 𝝐 is the size of the adversarial perturbation, and 𝐗𝐢
𝐚𝐝𝐯 is the result-

ing perturbed node feature matrix. 

White box attacks like FGSM enjoy full access to a model’s loss function and trainable 

parameters. As such, they can construct powerful, targeted adversarial examples. Increas-

ing the value of epsilon increases the distance between the original graph and the adver-

sarial example, therefore leading to stronger adversarial attacks. All deep learning models 

trained on the adult-enriched dataset were tested on target adversarial examples gener-

ated by the FGSM method for a range of epsilon values. The average resulting accuracy 

and AUC scores across the five cross validation test sets are reported. 

All code used in this study is publicly available: https://github.com/Srini-

vasanAnand/GNN_structural_connectivity (accessed on 10 Dec 2024). 

3. Results 

3.1. Adult Training and Adult Testing 

The two standard machine learning models RF and SVM, the deep learning neural 

network MLP, and the two GCN models (simple and residual) were trained and tested on 

the adult BRIGHT dataset. The corresponding accuracy and AUC score for each model is 

shown in Table 3. The GCN models outperform others on the adult dataset, with accura-

cies exceeding 82%, followed by the multi-layer perceptron model at 77%. GCN models 

also demonstrate the best AUC scores, exceeding 0.90 for both models. 

Table 3. Sex classification mean accuracy and AUC score results for random forest (RF), support 

vector machine (SVM), multi-layer perceptron (MLP), simple graph convolutional neural network 

(GCN simple), and residual graph convolutional neural network (GCN residual) classifiers trained 

and tested on the BRIGHT (adult) dataset with errors determined by the sample standard deviation. 

Red indicates overall best results; bold indicates overall second-best results. 

Metric RF SVM MLP 
GCN 

(Simple) 

GCN 

(Residual) 

Accuracy (%) 73.13 ± 2.05 76.37  ± 5.84 77.66 ± 3.18 85.10 ± 2.84 82.82 ± 5.30 

AUC Score 0.80 ± 0.01 0.86 ± 0.03 0.89 ± 0.01 0.91 ± 0.03 0.93 ± 0.03 

3.2. Adult Training and Pediatric Testing 

All classification models were next trained on the adult BRIGHT dataset and tested 

on the pediatric HCP-D dataset. Experimental results are shown in Table 4. The residual 

GCN model remains the most robust, achieving an accuracy above 74% and an AUC score 

of 0.86. All other models lagged with accuracies of 50–60%. Although the residual GCN 

exhibits a degree of robustness, all models trained on adult data performed sub-optimally 

for classification of the pediatric datasets. 
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Table 4. Sex classification mean accuracy and AUC score results for random forest (RF), support 

vector machine (SVM), multi-layer perceptron (MLP), simple graph convolutional neural network 

(GCN simple), and residual graph convolutional neural network (GCN residual) classifiers trained 

on the BRIGHT (adult) dataset and tested on the HCP-D (pediatric) dataset with errors determined 

by the sample standard deviation. Red indicates overall best results; bold indicates overall second-

best results. 

Metric RF SVM MLP 
GCN 

(Simple) 

GCN 

(Residual) 

Accuracy (%) 55.70 ± 3.23 56.15 ± 3.79 53.93 ± 3.85 60.74 ± 3.47 74.96 ± 2.41 

AUC Score 0.62 ± 0.01 0.64 ± 0.03 0.60 ± 0.01 0.71 ± 0.03 0.86 ± 0.03 

3.3. Pediatric Training and Pediatric Testing 

Given the anticipated sub-optimal performance of the adult models for external val-

idation on the pediatric dataset, all classification models were next trained and tested on 

the pediatric HCP-D dataset. The corresponding accuracy and AUC score for each model 

is shown in Table 5. The simple GCN model demonstrated the highest accuracy in the 

low-70% range, while the residual GCN achieved the highest AUC score of 0.85. The re-

sidual GCN shows strong discriminative power in terms of AUC score, but all models 

achieve sub-optimal classification accuracy. 

Table 5. Sex classification mean accuracy and AUC score results for random forest (RF), support 

vector machine (SVM), multi-layer perceptron (MLP), simple graph convolutional neural network 

(GCN simple), and residual graph convolutional neural network (GCN residual) classifiers trained 

and tested on the HCP-D (pediatric) dataset with errors determined by the sample standard devia-

tion. Red indicates overall best results; bold indicates overall second-best results. 

Metric RF SVM MLP 
GCN 

(Simple) 

GCN 

(Residual) 

Accuracy (%) 66.67 ± 8.76 65.93 ± 8.25 56.30 ± 7.55 71.11 ± 10.84 66.67 ± 12.83 

AUC Score 0.73 ± 0.13 0.80 ± 0.04 0.67 ± 0.05 0.76 ± 0.09 0.85 ± 0.05 

3.4. Adult-Enriched Pediatric Dataset Training and Testing 

Given the sub-optimal performance of the models trained on either the adult or pe-

diatric datasets for classification of the pediatric testing set, an adult-enriched pediatric 

dataset was then used for both training and testing. Table 6 displays the performance of 

the models when classifying the HCP-D pediatric data within the adult-enriched pediatric 

testing dataset. The residual GCN model excels in the pediatric subset of the test set, 

achieving an accuracy of 83%, and the simple GCN model reaches 79% classification ac-

curacy. These model performances demonstrate a noticeable improvement compared to 

the next best classifier within this training approach and any other classifier’s performance 

across all training approaches on the HCP-D pediatric dataset. 

Table 6. Sex classification mean accuracy and AUC score results for random forest (RF), support 

vector machine (SVM), multi-layer perceptron (MLP), simple graph convolutional neural network 

(GCN simple), and residual graph convolutional neural network (GCN residual) classifiers trained 

on the adult-enriched pediatric dataset and tested on the pediatric subset of the test set with errors 

determined by the sample standard deviation. Red indicates overall best results; bold indicates over-

all second-best results. 

Metric RF SVM MLP 
GCN 

(Simple) 

GCN 

(Residual) 

Accuracy (%) 65.93 ± 10.32 67.41 ± 8.25 72.59 ± 6.46 79.26 ± 6.46 82.96 ± 5.02 

AUC Score 0.74 ± 0.01 0.80 ± 0.08 0.79 ± 0.06 0.84 ± 0.05 0.91 ± 0.04 
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For completeness, the overall classification accuracies of the models of the adult-en-

riched pediatric dataset are presented in Figure 2 for the overall testing set and the sub-

sets of adult and pediatrics. Overall, the GCN models demonstrate the strongest perfor-

mance across accuracy and AUC metrics. Notably, the multi-layer perceptron also exhib-

its strong classification ability under this training approach. 

 

Figure 2. Sex classification mean accuracy (a) and AUC score (b) results for random forest (RF), 

support vector machine (SVM), multi-layer perceptron (MLP), simple graph convolutional neural 

network (GCN simple), and residual graph convolutional neural network (GCN residual) classifiers 

trained on the adult-enriched pediatric dataset. Results for pediatric (blue), adult (dark gray), and 

overall (black) subsets of the test dataset were displayed. Standard deviations of classification accu-

racy shown by whiskers. AUC and accuracy score results are displayed in tabular format in (c). Red 

indicates overall best results; bold indicates overall second-best results. 

Loss curves for all deep learning models from a representative cross validation split 

for this training approach are shown in Figure 3. All models exhibit an ability to learn 

connectomic features. Both GCNs show signs of overfitting, but this trend is more pro-

nounced in the residual model. 

 

Figure 3. Representative training and validation loss curves for multi-layer perceptron (a), simple 

graph convolutional neural network (b), and residual graph convolutional neural network (c) clas-

sifiers trained on the adult-enriched pediatric dataset. 
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Receiver operating characteristic (ROC) curves on the training and test set for all 

models from a representative cross validation split are depicted in Figure 4. Three ROC 

curves are displayed for each test set, corresponding to the overall test set and the pediat-

ric and adult stratifications. As follows from the AUC score results, the GCN models 

demonstrate the strongest ROC curves. 

 

Figure 4. Representative receiver operating characteristic (ROC) curves for multi-layer perceptron 

(a), simple graph convolutional neural network (b), residual graph convolutional neural network 

(c), support vector machine (d), and random forest (e) classifiers trained on the adult-enriched pe-

diatric dataset. Three test set ROC curves are displayed for each model corresponding to pediatric 

(blue), adult (gray), and overall (black) subsets. A single ROC curve corresponding to the overall 

training set (green) is displayed for each model. 

3.5. GNN Architecture Exploration Results 

Architecture exploration experiments were conducted in order to determine the im-

pact of architectural design choices on the ability of the GNN models to learn connectomic 

patterns. Since the focus of this study is the pediatric connectome, pediatric classification 

accuracy and AUC scores were used as the primary measure of model performance for 

exploration experiments. All models were trained on the adult-enriched pediatric dataset 

since this training method was previously determined to produce the strongest models. 

Max and mean pooling and aggregation types were compared across the two GCN 

models. Tables 7 and 8 display accuracy and AUC scores for the simple and residual GCN 

models trained with mean and max pooling and aggregation approaches on the combined 

dataset. The choice of pooling or aggregation type does not show any major effect. 

Table 7. Sex classification mean accuracy and AUC score results simple graph convolutional neural 

network using mean and max pooling functions for graph embedding vector generation. 

Pooling Function Accuracy (%) AUC Score 

Mean 79.26 ± 6.46 0.91 ± 0.05 

Max 77.04 ± 7.18 0.85 ± 0.04 
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Table 8. Sex classification mean accuracy and AUC score results for the residual graph convolu-

tional neural network model using mean and max aggregation functions for graph embedding ma-

trix generation. 

Aggregation Function Accuracy (%) AUC Score 

Mean 82.96 ± 5.02 0.91 ± 0.04 

Max 81.48 ± 5.24 0.90 ± 0.04 

Simple and residual GCN models of varying depth were tested to assess the impact 

of depth on learning ability. Results for depth experiments are presented in Figure 5. 

Again, no major effect is observed, although it is noteworthy that the 3-layer residual net-

work outperforms its 2-layer and 4-layer analogs by 3 accuracy points. For the simple 

GCN model architecture, shallow networks perform just as well as deeper ones. 

 

Figure 5. Sex classification mean accuracy (a) and AUC score (b) results for simple graph convolu-

tional neural network (simple GCN) and residual graph convolutional neural network (residual 

GCN) architectures with varying model depth analogs. 

Skip ablation experimental results are shown in Table 9. Removing skip connections 

from the residual GCN network results in a large deterioration in performance, with a 14-

point accuracy drop on the pediatric stratification of the dataset, highlighting the im-

portance of skip connections for allowing the residual network to learn connectomic pat-

terns. 

Table 9. Sex classification mean accuracy and AUC score results for the residual graph convolu-

tional neural network with and without skip connections. 

Residual GCN Model (with/without skips) Accuracy (%) AUC Score 

Without Skips 68.89 ± 9.54 0.74 ± 0.07 

With Skips 82.96 ± 5.02 0.91 ± 0.04 

3.6. Adversarial Sensitivity Experiment Results 

All deep learning models trained on the adult-enriched dataset were tested on ad-

versarial test sets, generated by targeted FGSM attacks on the pediatric stratification of the 

enriched test dataset. Perturbation sizes between 1.0 × 10−5 and 1.0 × 10−3 were tested. Ac-

curacy and AUC score results for all deep learning models on perturbed examples are 

shown in Figure 6. The simple GCN model remains the most robust to adversarial attacks, 

followed by the multi-layer perceptron and the residual GCN, respectively. 
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Figure 6. Adversarial accuracy (a) and AUC score (b) results for multi-layer perceptron (MLP), sim-

ple graph convolutional neural network (GCN simple), and residual graph convolutional neural 

network (GCN residual) classifiers trained on the adult-enriched pediatric dataset. 

4. Discussion 

Experimental results on the adult BRIGHT dataset indicated that graph neural net-

works outperform traditional machine learning and deep learning approaches in classify-

ing adult structural connectome data. The highest classification accuracy (85.1%) was 

achieved by the simple GCN model, which surpasses the best non-GCN model by 7.5%. 

These findings were consistent with the 86.7% reported in previous studies [20,27]. 

To assess the robustness of the models trained on the adult dataset, external valida-

tion was conducted using the pediatric dataset, allowing us to evaluate the generalizabil-

ity of these models across different patient age demographics. The results reveal that most 

models were not robust to this demographic shift, an outcome that was anticipated given 

the inherent variability between the two datasets. The adult dataset, comprising both HL 

survivors and community controls, used a slightly different diffusion imaging protocol 

compared to the pediatric dataset, which included only healthy controls. Moreover, it is 

well-documented that adults exhibit distinct structural connectivity patterns compared to 

neurologically developing children and teenagers [3,22,26]. Given these distinctions, it is 

unsurprising that most models trained on the adult BRIGHT dataset struggled to gener-

alize the HCP-D data. 

However, it is noteworthy that the residual GCN model exhibited a degree of robust-

ness in the external validation, maintaining an accuracy of over 74% on the pediatric da-

taset. This performance suggests that the residual GCN model could capture highly gen-

eralizable patterns within graph data, extending applicability from adult participants to 

their pediatric counterparts. Consequently, robust adult-trained graph neural network 

connectome models may hold potential for direct application to pediatric populations in 

future clinical settings. This observed generalizability could be particularly valuable in 

extending the benefits of future connectome-based algorithms to pediatric participants, 

especially given that the limited size of pediatric datasets often constrains the develop-

ment of models trained exclusively on pediatric data. 

Experiments on the pediatric HCP-D dataset demonstrated that all models were un-

able to learn highly generalizable patterns on the pediatric connectome without any form 

of data enrichment. The best model tested was the simple GCN model, which achieves a 

classification accuracy of 71.1%. The 14-point performance gap observed between the top-

performing adult and pediatric models is likely attributable to the smaller size of the pe-

diatric dataset, a limitation that subsequent experiments aimed to address. 

An adult-enriched pediatric dataset training approach was employed to assess 

whether this method could yield stronger models for pediatric participants. This approach 

functions as a form of data enrichment, utilizing adult patient data to enhance the 
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pediatric dataset and thereby facilitate the training of more robust pediatric models. Ad-

ditionally, a subset of the adult data was reserved to enable testing of each model’s per-

formance on both unseen pediatric and adult datasets. The enrichment approach allowed 

deep learning models to achieve strong classification performance, with the residual GCN 

reaching 81.8% and the simple GCN and multi-layer perceptron both following at 79.3%. 

Notably, the residual GCN model also performed exceptionally well across both pediatric 

and adult participants, attaining an accuracy of 83.0% and 81.3%, respectively. The pedi-

atric test accuracy of the residual GCN model is higher than that of all other pediatric 

models across all training approaches, narrowing the gap between the best achievable 

pediatric and adult test accuracies to within about two percentage points (83.0 vs. 85.1%). 

Thus, enriching smaller pediatric datasets with adult structural connectome data can en-

hance model performance, enabling the development of pediatric models that achieve 

performance levels comparable to state-of-the-art adult models. While this study enriches 

pediatric data using adult data to improve model performance, alternative strategies for 

addressing the limited availability of pediatric connectome datasets should be explored. 

One potential approach is to collaborate with other pediatric research institutes or initia-

tives, which may provide access to larger and more diverse pediatric datasets. Examples 

include publicly available repositories like the Pediatric Imaging, Neurocognition, and 

Genetics (PING) study [35] or the ABCD dataset [36], which, although limited in diffusion 

MRI, could still complement structural connectome analyses. Another promising strategy 

involves leveraging data augmentation techniques specific to connectome graphs, such as 

perturbation or simulation of biologically plausible variations. These approaches could 

mitigate the dependence on adult data enrichment while ensuring that the model remains 

focused on pediatric specific characteristics. 

The limited availability of structural connectome data led to the selection of an adult 

dataset comprising both HL survivors and community controls, while the pediatric da-

taset included only healthy controls. These datasets were collected using slightly different 

DW-MRI protocols including different gradient directions and b-values. Additionally, 

preprocessing pipelines varied, with adult dataset employing standard motion correction 

and eddy current correction, while pediatric dataset incorporated advanced susceptibility 

artifact correction. These variations can impact the derived connectome features, with 

lower b-values or few-er directions potentially reducing tractography accuracy and voxel 

resolution differences influencing connectivity matrix representations. Consequently, the 

observed poor external validation results may reflect these protocol differences rather 

than a lack of model robustness to the population demographics. While this study focuses 

on improving model generalizability, future work could benefit from using datasets col-

lected with consistent DW-MRI protocols to better isolate the effects of patient de-

mographics. Alternatively, protocol harmonization techniques, such as advanced prepro-

cessing or domain adaptation methods, could mitigate these challenges and enhance 

model robustness. Despite these limitations, the inclusion of datasets with differing DW-

MRI protocols reflects the practical challenges of applying machine learning models 

across diverse clinical and research settings. Models that generalize well across such var-

iations are more likely to succeed in real-world applications, making this an important 

avenue for further investigation. Nevertheless, the residual GCN model’s strong external 

validation performance suggested its capacity to learn highly generalizable patterns that 

extend from adult to pediatric participants. These generalizable patterns likely represent 

biologically relevant and stable features within structural connectomes. For instance, the 

model appeared to leverage connectivity profiles of key hub regions such as the precu-

neus, posterior cingulate cortex, and superior frontal gyrus, which are central nodes in the 

brain’s structural network and play a crucial role in maintaining global communication 

[37–39]. These regions are recognized as stable and central nodes, showing relatively low 
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variability across demographic groups [40,41]. Additionally, strong patterns were re-

ported previously in inter-hemispheric connections, particularly in commissural path-

ways like the corpus callosum. These connections are highly conserved across individuals 

and age groups, making them reliable features for model generalization [42–46]. The 

model likely captured patterns of hierarchical organization, including connectivity differ-

ences between primary sensory-motor regions, which mature earlier, and higher-order 

associative areas, which exhibit prolonged development and greater integration over 

time. These patterns align with established neurodevelopmental trajectories and demon-

strate consistency across age groups [47–51]. These patterns suggest that the residual GCN 

model leveraged features that are biologically consistent and less variable across de-

mographics, contributing to its generalizability. 

The differences between the two datasets may have limited the effectiveness of the 

adult-enriched pediatric dataset training approach. Ideally, data enrichment should be 

performed using data that closely resembles the original dataset. The pediatric dataset in 

this study covered ages 8–20 years, while the adult dataset ranged from 18–65 years with 

a mean age of 35 years. The overlap between the older pediatric participants (18–20 years) 

and younger adults (18–20 years) helped bridge the two datasets and reduce discontinui-

ties in connectome patterns. Furthermore, the relatively stable nature of structural con-

nectomes in adulthood supports the use of a broader adult age range [52–54]. To minimize 

potential biases, stratified sampling was used during training and cross-validation to en-

sure proportional representation of both groups. While these strategies mitigated bias, 

future work could refine this approach by exploring harmonization methods or focusing 

on more age-restricted datasets to ensure even greater neurodevelopmental consistency. 

Additionally, employing an adult dataset composed solely of healthy controls and col-

lected using the same DW-MRI protocol as the pediatric dataset might have further en-

hanced the models’ performance. Future research should explore the efficacy of the data 

enrichment approach using other adult and pediatric datasets across a range of tasks to 

validate its ability to improve pediatric models. Although the enrichment of pediatric da-

tasets using adult structural connectomes improved classification performance, achieving 

83% accuracy on pediatric data, further gains might be possible through explicit domain 

adaptation techniques. Methods such as adversarial domain adaptation, which aligns fea-

ture distributions between source (adult) and target (pediatric) domains, could help ad-

dress inherent differences in brain connectivity patterns between age groups. Addition-

ally, transfer learning approaches, where a model pre-trained on adult data is fine-tuned 

on pediatric data, could allow the model to learn pediatric-specific features more effec-

tively. These strategies could complement the enrichment approach and enhance the gen-

eralizability and robustness of the GNN for pediatric classification tasks. 

Graph neural network architecture exploration experiments elucidated the impact of 

several architectural design choices on model performance and learning ability. Depth 

experiments revealed that increasing the number of GCN layers did not improve the sim-

ple GCN model. A moderate 3% accuracy improvement was observed on the pediatric 

stratification of the combined test set on increasing the depth of the residual GCN from 2 

to 3 layers, but the further addition of a fourth GCN layer led to a performance drop on 

the pediatric stratification. These results indicate that for connectomic applications, a shal-

low depth of 2 to 3 GCN layers is sufficient for strong performance. 

Architecture experiments also highlighted the importance of skip connections for the 

residual GCN model’s ability to learn pediatric connectomic patterns. An ablation study 

removing skip connections resulted in a 14-point performance drop in pediatric classifi-

cation accuracy. Because the only major distinction between the ablated residual network 

and the simple GCN model was the use of aggregation versus pooling in order to create 

an embedded graph representation, these results may suggest that connectomic models 
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which employ node aggregation approaches should introduce skip connections for opti-

mal performance. 

In addition to accuracy and AUC score metrics, models were assessed on adversarial 

robustness. The simple GCN model demonstrated the strongest adversarial robustness to 

FGSM attacks for larger perturbations. The residual GCN, on the other hand, demon-

strated a notable lack of adversarial robustness, falling to below 40% classification accu-

racy for adversarial attacks with epsilon greater than or equal to 0.0005. The residual GCN 

model’s lack of robustness may in part be a result of its higher complexity. Previous work 

has shown that higher complexity models exhibit greater sensitivity to adversarial attacks 

[55]. Further, training and validation loss curves illustrated that the residual GCN over-

fitted the training set. It is likely that the residual GCN model learned patterns derived 

from noise in the training set, making it more susceptible to adversarial attacks. Therefore, 

although the residual GCN model’s higher complexity likely allowed it to learn more gen-

eralizable connectomic patterns than the other tested models, this complexity also resulted 

in a weakness to adversarial attacks. This potential tradeoff between raw test accuracy 

and adversarial robustness should be considered during model development, especially 

in the medical domain, where robustness is a key consideration for deploying trustworthy 

models. 

While structural connectome data has recently been applied in graph classification 

tasks (e.g., sex classification) and graph prediction tasks (e.g., functional connectome pre-

diction), graph regression tasks such as cognitive score prediction remain largely unex-

plored. These regression tasks hold potential for linking specific brain structural patterns 

to cognitive functions, thereby enhancing our understanding of cognitive processes and 

dysfunctions. Although both datasets selected for this study included measures of work-

ing memory and sustained attention for most participants, models developed here were 

not successful in predicting cognitive scores from structural connectome data. Future re-

search with larger datasets or alternative learning approaches may provide better out-

comes in this area. 

5. Conclusions 

This study demonstrated the effectiveness of GNNs in classifying sex based on struc-

tural connectome data, particularly in pediatric populations, a domain previously unex-

plored. Training and evaluating GNNs alongside standard machine learning models con-

firmed that GNNs outperformed other methods in both adult and pediatric datasets. 

While adult-trained models exhibit limited applicability to pediatric participants, enrich-

ing a pediatric dataset with adult data enables the development of a robust pediatric GNN 

model with performance comparable to adult models. A complex residual GCN architec-

ture enables the best model performance in terms of classification accuracy and AUC 

score, while a simpler GCN architecture demonstrates greater adversarial robustness at 

the expense of a moderate performance drop. These findings underscored the potential of 

GNNs in advancing our understanding of sex-specific neurological development and dis-

orders, highlighting important tradeoffs in the GNN architectural landscape and under-

scoring the importance of data enrichment in overcoming challenges associated with 

small pediatric datasets. Future research should continue to explore the application of 

GNNs to diverse clinical populations and investigate additional strategies for enhancing 

model generalizability across demographic groups. 
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