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Abstract: Objectives: Accurate kidney and tumor segmentation of computed tomography
(CT) scans is vital for diagnosis and treatment, but manual methods are time-consuming
and inconsistent, highlighting the value of AI automation. This study develops a fully
automated AI model using vision transformers (ViTs) and convolutional neural networks
(CNNs) to detect and segment kidneys and kidney tumors in Contrast-Enhanced (CECT)
scans, with a focus on improving sensitivity for small, indistinct tumors. Methods: The
segmentation framework employs a ViT-based model for the kidney organ, followed by a
3D UNet model with enhanced connections and attention mechanisms for tumor detection
and segmentation. Two CECT datasets were used: a public dataset (KiTS23: 489 scans) and
a private institutional dataset (Private: 592 scans). The AI model was trained on 389 public
scans, with validation performed on the remaining 100 scans and external validation
performed on all 592 private scans. Tumors were categorized by TNM staging as small
(≤4 cm) (KiTS23: 54%, Private: 41%), medium (>4 cm to ≤7 cm) (KiTS23: 24%, Private:
35%), and large (>7 cm) (KiTS23: 22%, Private: 24%) for detailed evaluation. Results:
Kidney and kidney tumor segmentations were evaluated against manual annotations
as the reference standard. The model achieved a Dice score of 0.97 ± 0.02 for kidney
organ segmentation. For tumor detection and segmentation on the KiTS23 dataset, the
sensitivities and average false-positive rates per patient were as follows: 0.90 and 0.23
for small tumors, 1.0 and 0.08 for medium tumors, and 0.96 and 0.04 for large tumors.
The corresponding Dice scores were 0.84 ± 0.11, 0.89 ± 0.07, and 0.91 ± 0.06, respectively.
External validation on the private data confirmed the model’s effectiveness, achieving
the following sensitivities and average false-positive rates per patient: 0.89 and 0.15 for
small tumors, 0.99 and 0.03 for medium tumors, and 1.0 and 0.01 for large tumors. The
corresponding Dice scores were 0.84 ± 0.08, 0.89 ± 0.08, and 0.92 ± 0.06. Conclusions: The
proposed model demonstrates consistent and robust performance in segmenting kidneys
and kidney tumors of various sizes, with effective generalization to unseen data. This
underscores the model’s significant potential for clinical integration, offering enhanced
diagnostic precision and reliability in radiological assessments.

Keywords: kidney cancer; tumor detection and segmentation; deep learning; CECT; vision
transformers; convolutional neural networks

Tomography 2025, 11, 3 https://doi.org/10.3390/tomography11010003

https://doi.org/10.3390/tomography11010003
https://doi.org/10.3390/tomography11010003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/tomography
https://www.mdpi.com
https://orcid.org/0000-0003-4786-7165
https://orcid.org/0000-0002-2041-6199
https://doi.org/10.3390/tomography11010003
https://www.mdpi.com/article/10.3390/tomography11010003?type=check_update&version=1


Tomography 2025, 11, 3 2 of 15

1. Introduction
Kidney cancer is among the most frequently diagnosed cancers worldwide, and

early detection is essential for improving survival rates. Renal cell carcinoma (RCC) is
the predominant type of kidney cancer, and its clear cell variant (ccRCC) accounts for
approximately 85% of all RCC cases, making it the most malignant subtype [1]. The
aggressive nature of ccRCC is further evidenced by its potential to metastasize to other
sites, including the lungs, liver, bones, and lymph nodes [2,3]. Computed tomography, a
frequently used imaging modality for screening ccRCC, benefits from CECT to improve the
visualization of renal tumors and vascular structures [4]. However, accurately identifying
ccRCC in CECT images remains challenging, even for experienced radiologists, due to
overlapping image features [5] and the presence of benign tumors like angiomyolipoma
and oncocytoma [6,7], which have similar imaging characteristics [8]. This is particularly
challenging for detecting and characterizing T1a-stage tumors (≤4 cm) that are confined
within the kidney [9,10].

An automated AI pipeline enhances kidney cancer diagnosis by integrating imag-
ing, radiomics, genomic, and clinical data through deep learning (DL) for kidney and
kidney tumor detection, segmentation, and characterization. This study focuses on the
initial pipeline stages: detecting and segmenting kidneys and kidney tumors. Accurate,
reproducible segmentation is crucial for diagnosis, treatment planning, and monitoring.
Manual segmentation by radiologists is tedious, time-consuming, and variable, leading to
inconsistent outcomes, particularly when tumors are indistinguishable radiologically and
macroscopically without pathology [11,12].

Despite advances in DL for medical imaging, kidney tumor detection and segmen-
tation still face challenges, particularly with small tumors. These tumors often lack dis-
tinctive features and exhibit low soft-tissue contrast in the background of normal kidney
parenchyma, especially in early stages, leading to decreased sensitivity and increased false
positives (FPs) in state-of-the-art (SOTA) models [13,14]. However, early detection is crucial,
as identifying tumors when they are smaller than 1 cm significantly increases the likelihood
of successful treatment with less invasive interventions [15]. By improving the sensitivity
of DL models in detecting and segmenting small tumors, we can better identify those more
likely to be cured before they reach a size where the risk of metastasis and complexity of
treatment increase.

Recently, CNNs and ViTs have shown promising results in medical imaging [16–18].
CNNs are effective at feature extraction and local information integration [18–20] but
struggle with global spatial context [21], potentially reducing segmentation performance for
large organs. ViTs overcome this limitation by capturing long-range dependencies, although
they are less effective with low-level features [22,23]. While ViTs excel at segmenting large
organs, they are less accurate for small tumors [24]. Moreover, ViTs require significantly
larger datasets and greater computational resources for training compared to CNNs due to
their reliance on self-attention mechanisms and absence of inductive biases.

In 2015, UNet [25], a U-shaped CNN, set the benchmark for medical image seg-
mentation, later leading to nnUNet [26]. nnUNet excelled in kidney and kidney tumor
segmentation, winning the KiTS Grand Challenge (Kidney Tumor Segmentation Challenge)
in 2019 [27] and 2021 [28]. Approaches to kidney tumor segmentation models can be
categorized as single-stage (SS) and dual-stage (DS). DS models, similar to a coarse-to-fine
strategy, use two networks: one for initial localization and another for refined segmenta-
tion. In contrast, SS models use a single network to simultaneously segment the kidney
organ and tumors. A CNN-based DS model [29] uses AlexNet [30] to select kidney slices
along the Z-axis, followed by 2D UNet segmentation, trained solely on the KiTS19 dataset
(210 CECT scans), which may limit generalizability. Another DS model [31] utilizes a 2D
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UNet for both kidney and kidney tumor segmentation, training on KiTS19 and a privately-
owned dataset (315 RCC CECT scans), unlike our use of only public data. A study [32]
employed a pretrained 3D UNet for initial masks and another for fine segmentation, val-
idated on KiTS19 and a small external set (20 patients), limiting robust generalization.
Another model [33] uses a low-resolution 3D UNet for region-of-interest extraction, fol-
lowed by a finer 3D UNet, tested on a privately owned dataset (441 CECT scans).

As CNNs laid the foundation for kidney and kidney tumor segmentation, recent
advances have incorporated ViTs to address some of their limitations. The study reported
in [34] proposed a modified UNETR [35] for kidney and kidney tumor segmentation in
CECT scans, replacing multi-head self-attention with squeeze and excitation layers for
efficiency. Another approach [36] combines convolution and transformer layers for multi-
scale feature learning. Using 2D slices may not fully capture the 3D spatial information of
CECT scans. A hybrid CNN and ViT model proposed in [37] targets kidney and kidney
tumor segmentation, but the authors note limitations in generalization and robustness.
While integrating transformers with CNNs, such as in the UNETR model, can enhance
performance, it also introduces design and training complexities, including potential
increases in FPs for smaller tumors. In [38], a transformer–convolution hybrid network
was proposed for kidney segmentation using minimal labeled data, inspiring our method
that employs a ViT for kidney segmentation in the first stage.

In this paper, we aim to enhance the nnUNet 3D network using a DS approach. First,
we segment the kidney using SwinUNETR [39], a ViT-based network that combines the
strengths of Swin transformers with the U-Net architecture. By leveraging hierarchical
feature extraction and self-attention mechanisms, SwinUNETR effectively captures global
context and spatial details, making it particularly suitable for segmenting large organs.
Then, we enhance nnUNet 3D for tumor detection and segmentation by incorporating resid-
ual blocks (RBs) and an attention mechanism, inspired by ResNet [40], to capture complex
features and improve precision. Our goal is to develop a robust AI model that increases
detection sensitivity, reduces FPs, and improves segmentation accuracy for kidney tumors.

2. Materials and Methods
This section outlines the dataset and model development.

2.1. Dataset Information

We used the public KiTS23 dataset for training and internal validation, following
an 80/20 split: 389 CECT scans for training and 100 scans for internal validation. The
private dataset from our institute, consisting of 592 CECT scans, was used for model
validation. The KiTS23 dataset includes corticomedullary and nephrogenic phase scans,
with slice thicknesses ranging from 0.5 mm to 5.0 mm. The training set contains various
tumor subtypes: ccRCC with 247 cases (63.49%), papillary RCC with 39 cases (10.03%),
chromophobe RCC with 33 cases (8.48%), oncocytoma with 19 cases (4.88%), transitional
cell carcinoma with 17 cases (4.37%), and other subtypes with 34 cases (8.74%). The internal
validation set comprises 100 cases, with subtype proportions of 63% ccRCC, 6% papillary
RCC, 5% chromophobe RCC, 7% oncocytoma, and 19% other subtypes. The private dataset
consists exclusively of nephrogenic phase scans with slice thicknesses ranging from 1.0 mm
to 7.5 mm, focusing solely on the ccRCC subtype.

2.2. Data Preprocessing and Augmentation

Data preprocessing is crucial for effective building of DL models in medical imaging,
as it eliminates artifacts, standardizes data, and enhances training efficiency [41]. In our
preprocessing steps, we retained only the intensity range between the lower and upper
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0.5% of Hounsfield unit values, resampled the data isotropically to a 1.0 mm voxel spacing,
and normalized the intensity values by clipping them within this range. Each image was
then adjusted to have a zero mean and unit variance based on the dataset’s overall statistics.

Beyond preprocessing, data augmentation is also essential in DL training for medical
imaging to enhance target representation diversity. To address the under-representation of
small tumors and rare cases, we employed techniques such as random rotations, scaling,
mirroring, axis transposition, and gamma corrections to increase variability during training.
These augmentations enhanced the model’s robustness and generalization, yielding a 5.5%
increase in overall Dice scores during training. Additionally, the augmentation techniques
mitigated overfitting and improved balance across various tumor size classes, as evidenced
by more consistent performance on the private dataset.

2.3. DL Model Development

Figure 1 illustrates the proposed DS pipeline for kidney organ and tumor segmentation.
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Figure 1. Proposed dual-stage kidney and tumor segmentation framework.

2.3.1. Kidney Organ Segmentation

For kidney segmentation, we used SwinUNETR, chosen for its superior boundary
capture and consistency. SwinUNETR uses a shifted window transformer to create non-
overlapping 128*3-sized patches from the input 3D data for self-attention computation.
Its encoder has four steps, each with two transformer blocks. Encoded features are fed
into a CNN-based decoder via skip connections. At each step, features are reshaped
and processed through residual blocks with 3D convolutions and instance normalization.
Feature map resolution is doubled using deconvolution, and final segmentation outputs
are generated with a pointwise convolution and a sigmoid activation function.

We optimized the model with the AdamW optimizer, using an initial learning rate
of 3.5 × 10−4; adaptive weight decay; and DiceCE loss, which combines the Dice and
cross-entropy loss functions. We also leveraged transfer learning by initializing the model
with pre-trained weights from [42].

2.3.2. Kidney Tumor Segmentation

The proposed Kidney Tumor 3D UNet model enhances feature extraction and seg-
mentation accuracy. Configured with a batch size of 5 and a patch size of 192 × 128 × 128,
the network (see Figure 2) is optimized for efficient training and precise feature extraction
across six stages, with feature map sizes of 32, 64, 128, 256, 320, and 320.

The encoder consists of six stages, each with RBs, which use skip connections to
address the vanishing gradient problem and enhance feature learning [27,43]. These blocks,
with 1, 3, 4, 6, 6, and 6 RBs per stage, gradually increase feature complexity to capture
both low- and high-level features. The decoder mirrors the encoder, focusing on up-
sampling to reconstruct high-resolution segmentation maps, using one convolution per
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stage. LeakyReLU handles non-linearity. Attention gates (AGs) emphasize informative
regions by weighting input feature maps, using a sigmoid activation on a linear transfor-
mation, followed by element-wise multiplication, to focus on significant areas, improving
small and indistinct tumor segmentation and reducing FPs. The model uses a learning rate
of 0.001, optimized with stochastic gradient descent (SGD) and DiceCE loss. Both the net-
works were implemented using Python 3.10 and PyTorch 2.2, with additional dependencies
including CUDA 11.1. All training was carried out on an NVIDIA A40 48GB GPU.
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2.4. Evaliation Metrics

We assessed kidney tumor detection and segmentation using traditional evaluation
metrics. For tumor detection, we used sensitivity and the average false-positive count
(FPC) per patient. Sensitivity was calculated as the proportion of correctly detected tumors,
categorized by size. A 3D object-wise Intersection over Union (IoU) threshold of 0.25 was
used to determine detection.

For segmentation, we evaluated using following metrics:
The Dice coefficient (Dice) measures the overlap between the predicted segmentation

and the ground truth (GT).

Dice = 2TP/(2TP + FP + FN), (1)

Precision indicates the proportion of true-positive segmentations out of all positive
segmentations predicted by the model.

Precision = TP/(TP + FP), (2)

Volumetric Distance (VD) [44] evaluates the difference in volume between the predicted
segmentation and the GT, providing insight into the spatial accuracy of the segmentation.

VD = |FN − FP|/(2TP + FP + FN), (3)
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The Over-Segmentation Ratio (OSR) evaluates the excess voxels included by the DL
model outside the GT region. The OSR is calculated as the number of false-positive voxels
divided by the total number of positive voxels in the GT.

OSR = FP/(TP + FN), (4)

The Under-Segmentation Ratio (USR) measures voxels missed by the DL model within
the GT region. The USR is calculated as the number of false-negative voxels divided by the
total number of positive voxels in the GT.

USR = FN/(TP + FN), (5)

where TP is true positives, FP is false positives, and FN is false negatives.

3. Results
The following section presents the detection and segmentation results for kidneys and

kidney tumors.

3.1. Organ Segmentation

Kidney organ segmentation was evaluated exclusively using KiTS23, as the private
data only include kidney tumor annotations. Table 1 shows the quantitative segmentation
results for kidney segmentation in KiTS23. The table includes segmentation metrics for the
nnUNet-3D and SwinUNETR models, along with the p-value for the Dice coefficient.

Table 1. Segmentation performance for kidney organ in KiTS23.

Model Dice Precision p-Value

nnUNet-3D 0.95 ± 0.05 0.95 ± 0.08 0.0498
SwinUNETR 0.97 ± 0.02 0.97 ± 0.02 -

The results show that SwinUNETR achieves a higher precision (0.97) and Dice (0.97)
compared to nnUNet-3D (precision: 0.95; Dice: 0.95), with a statistically significant p-value
of 0.0498. The lower standard deviations associated with SwinUNETR further highlight
its consistency across the dataset. This superior accuracy in segmenting large 3D objects,
such as organs, can be attributed to the transformer architecture’s ability to leverage spatial
awareness for better distinction between object and background. Consequently, Swin-
UNETR was selected for stage one of our study to effectively capture kidney boundaries.

3.2. Tumor Detection and Segmentation

To evaluate the kidney tumor detection and segmentation, we compare four seg-
mentation models: SS models SS_SwinUNETR and SS_nnUNet-3D and DS models
DS_SwinUNETR and DS_nnUNet-3D. For the DS models, the first stage uses the same
network (e.g., SwinUNETR for DS_SwinUNETR) to perform organ segmentation before
tumor segmentation in the second stage. All models were trained using their provided
standard training parameters to ensure a fair comparison. Table 2 presents the sensitivity
and FPC values for small, medium, and large tumors for all models, representing the
tumor detection results. For small tumors, the proposed Kidney Tumor 3D UNet achieves a
sensitivity of 0.90 for KiTS23 and 0.89 for the private data. Benchmark models demonstrate
notable improvements with DS configurations. The sensitivity of SS_SwinUNETR for small
tumors in KiTS23 increases from 0.62 to 0.67, an 8.06% improvement, when upgraded
to DS_SwinUNETR. Similarly, in the private data, sensitivity improves from 0.70 to 0.80,
indicating a 14.29% increase. This trend is also observed in nnUNet-3D, where sensitivity
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for KiTS23 rises from 0.59 to 0.74, a 25.42% improvement from SS to DS and, in the private
data, from 0.62 to 0.84, showing a 35.48% improvement.

Table 2. Tumor detection performance for kidney organ for the KiTS23 and private datasets.

Model\Metric

Small Tumors Medium Tumors Large Tumors

KiTS23 Private KiTS23 Private KiTS23 Private
Sen FPC Sen FPC Sen FPC Sen FPC Sen FPC Sen FPC

SS_SwinUNETR 0.62 2.04 0.70 1.87 0.96 0.20 0.95 0.19 0.87 0.09 0.96 0.05
SS_nnUNet-3D 0.59 2.71 0.62 2.81 1.00 0.75 0.98 0.69 0.91 0.19 0.99 0.26

DS_SwinUNETR 0.67 0.91 0.80 0.60 1.00 0.24 0.99 0.12 0.91 0.05 1.00 0.02
DS_nnUNet-3D 0.74 0.60 0.84 0.33 1.00 0.23 0.98 0.08 0.96 0.10 0.99 0.03

Proposed Method 0.90 0.23 0.89 0.15 1.00 0.08 0.99 0.03 0.96 0.04 1.00 0.01

For medium-sized tumors, all models exhibit high sensitivity. DS_SwinUNETR and
Kidney Tumor 3D UNet demonstrated maximum sensitivity for KiTS23, with Kidney Tu-
mor 3D UNet also achieving the highest sensitivity in the private data, showing strong
adaptability to unseen data. For large tumors, all models show a variation in sensitivity be-
tween KiTS23 and the private data. In KiTS23, SS_SwinUNETR achieves a sensitivity of 0.87,
while SS_nnUNet-3D shows an improvement, with a sensitivity of 0.91. DS_SwinUNETR
and DS_nnUNet-3D further increase sensitivity to 0.91 and 0.96, respectively. The proposed
Kidney Tumor 3D UNet achieves the highest sensitivity of 0.96, representing a 9.3% in-
crease compared to SS_SwinUNETR. In the private data, all models demonstrate excellent
performance, with the Kidney Tumor 3D UNet achieving the highest sensitivity of 1.00,
alongside DS_SwinUNETR and DS_nnUNet-3D.

Figures S1 and S2 (see the Supplementary Materials) illustrate the sensitivity and FPC
across all models for the validation datasets. The Kidney Tumor 3D UNet achieves the
lowest FPC in the small tumor category, with 0.23 in KiTS23 and 0.15 in the private data, as
well as in the medium and large tumor categories. The figures show a clear improvement
in performance from the SS to DS model.

Figure 3 presents boxplots of Dice scores for all models across different tumor sizes in
both datasets, accompanied by p-values for statistical comparisons. The boxplots clearly
illustrate the distribution, median, interquartile range, and outliers, providing a detailed
view of the models’ performance. The Kidney Tumor 3D UNet consistently achieves the
highest median Dice scores across all tumor size categories, particularly excelling in the
segmentation of small tumors. This indicates its ability to handle challenging cases with
greater precision. The narrow interquartile range for this model further demonstrates its
stability and reliability. The p-values confirm statistically significant improvements over
other SOTA models, especially for small tumors, where detection and precise segmentation
are critical. These findings underscore the advantages of the 3D UNet in achieving robust
and accurate segmentation across tumor sizes, with particular emphasis on small, clinically
significant lesions.

Table S1 in the Supplementary Materials presents segmentation results for small
tumors. The Kidney Tumor 3D UNet outperforms all models, achieving the highest Dice
score of 0.84 for both KiTS23 and the private data, indicating excellent overlap with the
GT. The VD is lowest for this model, with 0.10 for KiTS23 and 0.11 for the private data,
indicating minimal discrepancies between predicted and GT tumor volumes. Comparing
these results with DS models, the proposed model shows significant advantages. The
Dice scores are 3.7% and 5% higher than DS_SwinUNETR for KiTS23 and the private data,
respectively, and 5% higher than DS_nnUNet-3D for both datasets. The Kidney Tumor 3D
UNet achieves a lower OSR and USR, with an OSR of 0.12 in KiTS23 and 0.23 in the private
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data and a USR of 0.18 in KiTS23 and 0.10 in the private data, indicating fewer excess and
missed voxels compared to the benchmark models.

Tomography 2025, 11, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 3. Boxplot of Dice scores with statistical significance for all models across different tumor 

sizes in KiTS23 and private data. The statistical significance is indicated as follows: **** (p ≤ 0.0001), 

*** (p ≤ 0.001), ** (p ≤ 0.01), * (p ≤ 0.05). 

Table S1 in the Supplementary Materials presents segmentation results for small tu-

mors. The Kidney Tumor 3D UNet outperforms all models, achieving the highest Dice 

score of 0.84 for both KiTS23 and the private data, indicating excellent overlap with the 

GT. The VD is lowest for this model, with 0.10 for KiTS23 and 0.11 for the private data, 

indicating minimal discrepancies between predicted and GT tumor volumes. Comparing 

these results with DS models, the proposed model shows significant advantages. The Dice 

scores are 3.7% and 5% higher than DS_SwinUNETR for KiTS23 and the private data, 

respectively, and 5% higher than DS_nnUNet-3D for both datasets. The Kidney Tumor 3D 

UNet achieves a lower OSR and USR, with an OSR of 0.12 in KiTS23 and 0.23 in the private 

data and a USR of 0.18 in KiTS23 and 0.10 in the private data, indicating fewer excess and 

missed voxels compared to the benchmark models. 

Table S2 presents the segmentation results for medium-sized tumors, with the Kid-

ney Tumor 3D UNet achieving the highest Dice scores of 0.89 for both datasets. The model 

maintains high precision, scoring 0.90 for KiTS23 and 0.86 for the private data. The VD 

remains low, at 0.06 for KiTS23 and 0.07 for the private data. Additionally, the model 

achieves OSR values of 0.11 in KiTS23 and 0.17 in the private data and USR values of 0.09 

in KiTS23 and 0.07 in the private data. Compared to the results for small tumors in Table 

S1, the Kidney Tumor 3D UNet demonstrates a reduction in OSR by 8.33% in KiTS23, 

decreasing from 0.12 to 0.11, and by 26.09% in the private data, decreasing from 0.23 to 

0.17. Similarly, USR decreases by 50% in KiTS23, from 0.18 to 0.09, and by 30% in the 

private data, from 0.10 to 0.07. The average Dice scores for DS models show slight im-

provements over their SS counterparts. DS_SwinUNETR achieves an average Dice score 

of 0.87 in both datasets, compared to 0.85 in KiTS23 and 0.86 in the private data for 

SS_SwinUNETR, representing a 2.4% and 1.2% increase, respectively. Similarly, 

DS_nnUNet-3D improves to a sensitivity of 0.86 in KiTS23 and 0.87 in the private data, up 

from 0.83 in KiTS23, which is a 3.61% increase, and from 0.85 in the private data, which is 

a 2.35% increase for SS_nnUNet-3D. Table S3 presents the segmentation performance for 

large tumors in KiTS23 and the private data. The Kidney Tumor 3D UNet excels, achiev-

ing the highest Dice scores of 0.90 in KiTS23 and 0.92 in the private data. It also demon-

strates high precision, with scores of 0.93 in KiTS23 and 0.90 in the private data. The model 

maintains low VD values of 0.06 in KiTS23 and 0.04 in the private data, low OSR values 

of 0.07 in KiTS23 and 0.12 in the private data, and low USR values of 0.11 in KiTS23 and 

0.05 in the private data, demonstrating robust performance, even for larger tumors. 
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Table S2 presents the segmentation results for medium-sized tumors, with the Kidney
Tumor 3D UNet achieving the highest Dice scores of 0.89 for both datasets. The model
maintains high precision, scoring 0.90 for KiTS23 and 0.86 for the private data. The VD
remains low, at 0.06 for KiTS23 and 0.07 for the private data. Additionally, the model
achieves OSR values of 0.11 in KiTS23 and 0.17 in the private data and USR values of
0.09 in KiTS23 and 0.07 in the private data. Compared to the results for small tumors in
Table S1, the Kidney Tumor 3D UNet demonstrates a reduction in OSR by 8.33% in KiTS23,
decreasing from 0.12 to 0.11, and by 26.09% in the private data, decreasing from 0.23 to 0.17.
Similarly, USR decreases by 50% in KiTS23, from 0.18 to 0.09, and by 30% in the private
data, from 0.10 to 0.07. The average Dice scores for DS models show slight improvements
over their SS counterparts. DS_SwinUNETR achieves an average Dice score of 0.87 in
both datasets, compared to 0.85 in KiTS23 and 0.86 in the private data for SS_SwinUNETR,
representing a 2.4% and 1.2% increase, respectively. Similarly, DS_nnUNet-3D improves
to a sensitivity of 0.86 in KiTS23 and 0.87 in the private data, up from 0.83 in KiTS23,
which is a 3.61% increase, and from 0.85 in the private data, which is a 2.35% increase
for SS_nnUNet-3D. Table S3 presents the segmentation performance for large tumors in
KiTS23 and the private data. The Kidney Tumor 3D UNet excels, achieving the highest Dice
scores of 0.90 in KiTS23 and 0.92 in the private data. It also demonstrates high precision,
with scores of 0.93 in KiTS23 and 0.90 in the private data. The model maintains low VD
values of 0.06 in KiTS23 and 0.04 in the private data, low OSR values of 0.07 in KiTS23 and
0.12 in the private data, and low USR values of 0.11 in KiTS23 and 0.05 in the private data,
demonstrating robust performance, even for larger tumors.

Figure S3 shows the kidney segmentation results, demonstrating the model’s accuracy.
Figure 4 shows segmentation results for a small ccRCC tumor. The original CECT image
slices display a tumor with a unidirectional diameter (UD) of 2.84 cm, shown across
adjacent slices for comparison. The green contour represents the GT, while the red contour
represents the segmentation produced by each AI model. The third and fourth rows show
segmentation results from the SS models, while the fifth and sixth rows show results from
the DS models. Both the SS and DS SwinUNETR models exhibit under-segmentation. The
final row features the proposed Kidney Tumor 3D UNet, which achieves the highest Dice
score of 0.90. These results demonstrate varying levels of accuracy, with the Kidney Tumor
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3D UNet providing the closest match to the GT and superior performance in segmenting
small tumors, highlighting the effectiveness of its architectural enhancements.
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Figure 4. Examples of tumor segmentation results for small tumors: from left to right, the slices
present the tumor in adjacent slices. The green contour indicates the GT, and the red contour indicates
the resultant segmentation.

3.3. Further Segmentation Analysis for Small Tumors (≤4 cm)

To highlight the advantages of the proposed Kidney Tumor 3D UNet model for small
tumors, out of a total of 607 tumors in the private data, we further analyzed its performance
across the following three subcategories: ≤2 cm (44 tumors), >2 cm–≤3 cm (97 tumors),
and >3 cm–≤4 cm (110 tumors). This analysis focused on the homogeneous ccRCC subtype
to provide insights into the model’s effectiveness and robustness compared to other DS
models. Figure 5 shows the detection and segmentation results for these subcategories,
revealing that sensitivity for tumors with a UD ≤ 2 cm was lower than for the larger
subcategories, likely due to unreliable CECT attenuation in smaller tumors [45].
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The sensitivity analysis reveals that the proposed model consistently achieves higher
sensitivity across these size subcategories. For tumors ≤ 2 cm, sensitivity values are
0.50 for DS_SwinUNETR, 0.54 for DS_nnUNet-3D, and 0.63 for the Kidney Tumor 3D
UNet, representing a 26% improvement over DS_SwinUNETR and a 16.7% improve-
ment over DS_nnUNet-3D. For tumors > 2 cm–≤3 cm, sensitivity values are 0.81 for
DS_SwinUNETR, 0.83 for DS_nnUNet-3D, and 0.93 for the Kidney Tumor 3D UNet, in-
dicating a 14.8% increase over DS_SwinUNETR and a 12% increase over DS_nnUNet-3D.
For the >3 cm–≤4 cm subcategory, sensitivity values are 0.93, 0.96, and 0.97, respectively.
These results highlight the Kidney Tumor 3D UNet’s ability to correctly identify tumors,
particularly smaller ones.

In terms of Dice scores, the proposed model shows better performance. For
tumors ≤ 2 cm, average Dice values are 0.77 for DS_SwinUNETR, 0.74 for DS_nnUNet-
3D, and 0.81 for the Kidney Tumor 3D UNet, reflecting a 5.2% improvement over
DS_SwinUNETR and a 9.5% improvement over DS_nnUNet-3D. For the >2 cm–≤3 cm
category, average Dice values are 0.79 for both DS models and 0.83 for the Kidney Tumor
3D UNet, showing a 5.1% increase. In the > 3cm–≤4 cm category, average Dice values
are 0.82, 0.83, and 0.86 respectively, representing a 4.9% improvement. The consistently
higher Dice scores indicate better overlap with the GT and more accurate segmentation.
These analyses confirm that the Kidney Tumor 3D UNet model excels in detecting and
segmenting small tumors and maintains high performance across all subcategories.

4. Discussion
In this study, we developed a fully automated detection and segmentation algorithm

for kidneys and kidney tumors in CECT images, utilizing transformer and 3D UNet
architectures. Detecting kidney tumors, especially those ≤ 4 cm, is a crucial yet tedious task
in clinical practice. Although various UNet architectures have been extensively studied
for kidney tumor segmentation [29,31–33], our experiments revealed that these models
often miss small tumors due to insufficient feature extraction and exhibit high FPs due
to expansive search areas. To address these issues, we employed a DS approach and
incorporated residual connections and attention mechanisms to enhance feature extraction.
Our proposed AI model demonstrated accurate detection and segmentation of RCC tumors
and the kidney organ across two different datasets. Notably, we trained our model using
the publicly available KiTS23 dataset and tested it on a large external validation dataset
consisting of 592 CECT scans from our institute, which includes a well-designed patient
cohort with the ccRCC subtype acquired using different CECT systems.

Our results demonstrate that the DS approach effectively reduces FPs and increases
the detection rate by narrowing the search space to relevant areas and excluding other
organs. SOTA transformer models such as SwinUNETR and UNETR excel in detection
and segmentation tasks, especially when the object size is significant relative to the search
space. This success is also attributed to the use of homogeneous objects, large training
datasets, and pretrained weights, which enhance the models’ ability to generalize and
accurately segment target structures. This justified our use of SwinUNETR for kidney
organ segmentation. Conversely, CNN-based models tend to perform poorly in large
search spaces but excel with a reduced search space, which is particularly relevant in the
complex domain of medical imaging. CNNs are adept at identifying local features, while
ViTs may lose reasoning ability when the feature space is too localized.

Existing DS segmentation models often overlook the importance of the initial stage,
treating it as merely a coarse step. However, our research indicates that this oversight
can increase FPs due to poor organ localization, especially with large and heterogeneous
datasets common in clinical practice. Thus, the initial localization process is as crucial as
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the tumor detection and segmentation process. We found that enhancing localization is
essential for the success of the second stage. In our approach, we expanded the VOI by
25% in the first stage, ensuring that the tumor detection and segmentation network had
access to sufficient background features, striking a balance between too much and too little
contextual information.

Figure 6 compares segmentation results across all models, illustrating their perfor-
mance in terms of FPs. The original CECT image slices display a tumor, shown across
adjacent slices for comparison. The SS models show FPs outside the kidney region, as
indicated by the yellow arrows. As shown in Figure 6, SS SwinUNETR misclassifies the
kidney tumor as being in the vertebral body area, while SS nnUNet 3D mistakenly identifies
a tumor in the small intestine, which is outside the kidney, highlighting the disadvantage
of SS models in predicting outside the VOI. The Kidney Tumor 3D UNet outperforms all
benchmark models in both sensitivity and FPC.
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We observed that the Dice scores for small and medium-sized tumors in the private
data were notably better than those in KiTS23 (Figure 3). This discrepancy likely results
from the clearer definition and visibility of ccRCC tumors, which are more homogeneous in
the private data (Figure S5) compared to the heterogeneous tumor subtypes in KiTS23. To
further investigate, we compared the ccRCC cases across both datasets. The resulting box-
plots (Figure S4) show quite similar distributions and medians, suggesting that the ccRCC
subtype shows consistent segmentation performance across the two datasets. Additionally,
our analysis of non-ccRCC subtype Dice scores (Figure S6) revealed that the ‘other’ subtype
exhibited the lowest performance. These findings highlight the challenges of achieving
consistent segmentation results across diverse tumor subtypes, emphasizing the need for
careful consideration of subtype variability in model evaluation.

Additionally, we observed that as tumor size increases, the advantage of using DS
models over SS models becomes less pronounced in terms of Dice score. For large tu-
mors, SS_SwinUNETR and SS_nnUNet-3D achieved Dice scores of 0.84 in KiTS23, with
slight improvements in the private data, reaching 0.90 for SS_SwinUNETR and 0.88 for
SS_nnUNet-3D. DS models DS_SwinUNETR and DS_nnUNet-3D achieved Dice scores of
0.86 and 0.90, respectively, in the private data. However, FPC values reveal further nuances
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in model performance. SS_nnUNet-3D, despite its high Dice score, exhibited higher FPC
values of 0.19 in KiTS23 and 0.26 in the private data, indicating a greater number of false
positives compared to other models. On the other hand, SS_SwinUNETR showed lower
FPC values, with 0.09 in KiTS23 and 0.05 in the private data. In contrast, DS models showed
consistently lower FPC values, with DS_SwinUNETR recording 0.05 in KiTS23 and 0.02 in
the Private data, and DS_nnUNet-3D recording 0.10 in KiTS23 and 0.03 in the private data.
These results suggest that for large tumors, while DS models offer slight improvements in
Dice scores, their more significant benefit lies in reducing false positives, thereby providing
more reliable segmentation.

Despite achieving high performance in RCC tumor detection and segmentation, our
research has several limitations. First, the private dataset only includes annotations for
malignant tumors, without labels for benign tumors or cysts. To ensure consistency in the
training process, we aligned the KiTS23 dataset by focusing on malignant tumor labels
and not considering benign tumors and cysts, despite KiTS23 having labels for kidney,
tumor, and mass. This resulted in a few FP cases due to cyst detection. Mitigating this
issue would require annotating cysts in our private dataset or incorporating a portion of
it into the training process. However, we did not use the private dataset for training in
this research to evaluate the model’s adaptability to unseen data. Secondly, the private test
data included only the ccRCC subtype, which limits our ability to generalize the model’s
performance to datasets with multiple RCC subtypes. However, the training and validation
data did include other RCC subtypes, although ccRCC was the predominant focus. Future
work will expand experiments to include a larger dataset with a more diverse range of
RCC subtypes.

We believe that ViTs are gaining popularity due to their capabilities, despite requiring
more data and computational resources for training. As SOTA ViTs are combined with
CNNs to create hybrid models, further experimentation is needed to understand how to
effectively integrate the feature extraction strengths of CNNs with the global contextual
understanding of ViTs. Our future work will focus on developing hybrid models by
optimally fusing CNN layers with ViTs to leverage their combined power. Additionally,
we aim to create a single recursive network that achieves optimal results for both organ
and tumor segmentation, simplifying the training and execution phases and making the
framework more efficient and streamlined.

5. Conclusions
In conclusion, we have presented a fully automated, end-to-end model for kidney or-

gan and tumor detection and segmentation in CECT images. Our model has demonstrated
the capability to accurately detect and segment kidney tumors of various sizes, achieving
performance comparable to that of human experts and exhibiting significant robustness on
unseen data. This highlights the potential of our deep learning model for integration into
clinical workflows, providing a valuable tool to enhance diagnostic precision in radiology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tomography11010003/s1, Figure S1: Sensitivity bar chart com-
paring all models across the KiTS23 and private data.; Figure S2: FPC for all the models across the
KiTS23 and private data.; Figure S3: Kidney segmentation results: The first column shows the original
CT slices, the second column displays the Ground Truth annotations, the third column presents the
results from the nnUNet 3D model, and the fourth column shows the results from the SwinUNETR
model. Selected slices are presented to represent segmentation performance across the region of
interest.; Figure S4: Boxplot of Dice scores only for ccRCC subtype, with statistical significance for all
models across different tumor sizes in KiTS23 and private data. The statistical significance is indicated
as follows: **** (p ≤ 0.0001), *** (p ≤ 0.001), ** (p ≤ 0.01), * (p ≤ 0.05).; Figure S5: Distribution of KiTS23
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validation set tumor histological subtypes by category.; Figure S6: Distribution of Dice scores of
KiTS23 validation set by tumor histological subtypes.; Table S1: Segmentation Results for small-sized
kidney tumors KiTS23 and private data.; Table S2: Segmentation Results for medium-sized kidney
tumors KiTS23 and private data.; Table S3: Segmentation Results for large-sized kidney tumors
KiTS23 and private data..
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