Theoretical and Experimental Study of an Electrokinetic Micromanipulator for Biological Applications
Abstract
:1. Introduction
- (a)
- When the external ac electric field is slower than the fluid charging time (τq = ε/σ); since there is enough time to fully screen the electrodes by the electric field; therefore, no electric field is left in the medium.
- (b)
- When the external ac electric field is comparable to the fluid charging time (τq = ε/σ), which is shown in Figure 1A. The electrodes are partially screened by a part of the applied electric field, and the other part of the electric field falls over the fluid medium. As a result, the corresponding tangential force on the ions will cause AC electroosmotic flow in the medium.
- (c)
- When the external ac electric field is faster than the fluid charging time (τq = ε/σ) as illustrated in Figure 1B. Since there is no time to screen the electrodes, all the electric field falls over the fluid medium, but the ions do not have any role in the formation of the bulk electric field. In this frequency range, the ACEO flow is very poor, and instead, the ACET mechanism can occur due to the thermal effects inside the channel [15].
2. Theory and Material Properties
3. Design and Simulation Study
4. Fabrication and Test Process
4.1. First Process Flow
4.2. Second Process Flow
4.3. Microchannel Fabrication
4.4. Test Process
5. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Abdalkader, R.; Konishi, S.; Fujita, T. The development of biomimetic aligned skeletal muscles in a fully 3d printed microfluidic device. Biomimetics 2021, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Saylan, Y.; Erdem, Ö.; Inci, F.; Denizli, A. Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics 2020, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Lee, S.W.; Kwon, T.H.; Lee, S.S. A barrier embedded chaotic micromixer. J. Mi-Cromechanics Microeng. 2004, 14, 798. [Google Scholar] [CrossRef]
- Domachuk, P.; Tsioris, K.; Omenetto, F.G.; Kaplan, D.L. Bio-microfluidics: Biomaterials and biomimetic designs. Adv. Mater. 2010, 22, 249–260. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Wang, B.; Cai, Y.; Song, Q. An overview on state-of-art of micromixer designs, characteristics and applications. Anal. Chim. Acta 2023, 1279, 341685. [Google Scholar] [CrossRef]
- Manshadi, M.K.D.; Saadat, M.; Mohammadi, M.; Nezhad, A.S. A Novel Electrokinetic-Based Technique for the Isolation of Circulating Tumor Cells. Micromachines 2023, 14, 2062. [Google Scholar] [CrossRef]
- Bazant, M.Z.; Ben, Y. Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip 2006, 6, 1455–1461. [Google Scholar] [CrossRef]
- García-Sánchez, P.; Ramos, A. The effect of electrode height on the performance of travelling-wave electroosmotic micropumps. Microfluid. Nanofluidics 2007, 5, 307–312. [Google Scholar] [CrossRef]
- Chen, J.S.; Yarn, K.F.; Cheng, S.F.; LUOa, W.I.N.J.E.T.; Chung, M.H. Effects of Electrode Array Dimensions on the Pumping Performance of Traveling-Wave Electroosmotic Micro-Pumps. Dig. J. Nanomater. Biostructures DJNB 2011, 6, 2. [Google Scholar]
- Alizadeh, A.; Hsu, W.; Wang, M.; Daiguji, H. Electroosmotic flow: From microfluidics to nanofluidics. Electrophoresis 2021, 42, 834–868. [Google Scholar] [CrossRef]
- Chen, C.-K.; Cho, C.-C. Electrokinetically driven flow mixing utilizing chaotic electric fields. Microfluid. Nanofluidics 2008, 5, 785–793. [Google Scholar] [CrossRef]
- Chen, J.; Yang, R. Electroosmotic flow mixing in zigzag microchannels. Electrophoresis 2007, 28, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.S.; Chung, S.; Kim, C.-B.; Lee, S.-H. Applications of micromixing technology. Analyst 2010, 135, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A. Electrokinetics and Electrohydrodynamics in Microsystems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 530. [Google Scholar]
- Ahmadirad, Z. The Beneficial Role of Silicon Valley’s Technological Innovations and Venture Capital in Strengthening Global Financial Markets. Int. J. Mod. Achiev. Sci. Eng. Technol. 2024, 1, 9–17. [Google Scholar] [CrossRef]
- Zhang, R.; Dalton, C.; Jullien, G.A. Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array. Microfluid. Nanofluidics 2011, 10, 521–529. [Google Scholar] [CrossRef]
- Hong, F.J.; Cao, J.; Cheng, P. A parametric study of AC electrothermal flow in microchannels with asymmetrical inter-digitated electrodes. Int. Commun. Heat Mass Transf. 2011, 38, 275–279. [Google Scholar] [CrossRef]
- Cao, J.; Cheng, P.; Hong, F.J. A numerical study of an electrothermal vortex enhanced micromixer. Microfluid. Nanofluidics 2008, 5, 13–21. [Google Scholar] [CrossRef]
- Liu, R.H.; Yang, J.; Lenigk, R.; Bonanno, J.; Grodzinski, P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 2004, 76, 1824–1831. [Google Scholar] [CrossRef]
- Yun, K.-S.; Yoon, E. Microfluidic components and bio-reactors for miniaturized bio-chip applications. Biotechnol. Bioprocess Eng. 2004, 9, 86–92. [Google Scholar] [CrossRef]
- Chen, X.; Cui, D.; Liu, C.; Li, H.; Chen, J. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal. Chim. Acta 2007, 584, 237–243. [Google Scholar] [CrossRef]
- Ukita, Y.; Asano, T.; Fujiwara, K.; Matsui, K.; Takeo, M.; Negoro, S.; Kanie, T.; Katayama, M.; Utsumi, Y. Application of vertical microreactor stack with polystylene microbeads to immunoassay. Sens. Actuators A Phys. 2008, 145, 449–455. [Google Scholar] [CrossRef]
- Lavrentovich, O.D. Transport of particles in liquid crystals. Soft Matter 2014, 10, 1264–1283. [Google Scholar] [CrossRef] [PubMed]
- Garrido, J.; Ibañez, J.; Pellicer, J.; Tejerina, A. On the streaming current of electrokinetic processes. J. Electrost. 1982, 12, 469–476. [Google Scholar] [CrossRef]
- Jayaram, S.; Cross, J.; Weckman, E. Electrokinetic study in non-polar liquids by laser Doppler anemometry. J. Electrost. 1995, 34, 1–16. [Google Scholar] [CrossRef]
- Gagnon, Z.R.; Chang, H.-C. Electrothermal ac electro-osmosis. Appl. Phys. Lett. 2009, 94, 024101. [Google Scholar] [CrossRef]
- Morgan, H.; Green, N.G. AC Electrokinetics: Colloids and Nanoparticles; No. Research Studies Press: Hitchin, UK, 2003. [Google Scholar]
- Mehta, S.K.; Mondal, P.K. AC electrothermal effect promotes enhanced solute mixing in a wavy microchannel. Langmuir 2023, 39, 16797–16806. [Google Scholar] [CrossRef]
- Bouchaar, Z.; Set, Y.T.; Lagae, L.; Campos, C.D.M. Study of AC Electrothermal Effect in Microfluidics. IEEE Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Green, N.G.; Ramos, A.; González, A.; Morgan, H.; Castellanos, A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys. Rev. E 2000, 61, 4011. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Liu, G. Influence of surface charge mobility on alternating current electroosmotic flow in graphene nanochannels. Phys. Scr. 2024, 100, 015001. [Google Scholar] [CrossRef]
- Abdelghany, A.; Ichikawa, Y.; Motosuke, M. Tuning AC Electrokinetic Flow to Enhance Nanoparticle Accumulation in Low-Conductivity Solutions. Adv. Mater. Interfaces 2023, 10, 2300478. [Google Scholar] [CrossRef]
- Draz, M.S.; Uning, K.; Dupouy, D.; Gijs, M.A. Efficient AC electrothermal flow (ACET) on-chip for enhanced immunoassays. Lab Chip 2023, 23, 1637–1648. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Yang, K.; Wu, J. Optimization of planar interdigitated microelectrode array for biofluid transport by AC electrothermal effect. Microfluid. Nanofluidics 2014, 16, 167–178. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Huang, K.-R.; Chang, J.-S.; Chao, S.D.; Wu, K.-C.; Yang, C.-K.; Lai, C.-Y.; Chen, S.-H. Simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect. J. Appl. Phys. 2008, 104, 064702. [Google Scholar] [CrossRef]
- Hadjiaghaie Vafaie, R. A high-efficiency micromixing effect by pulsed AC electrothermal flow. COMPEL-Interna-Tional J. Comput. Math. Electr. Electron. Eng. 2018, 37, 418–431. [Google Scholar] [CrossRef]
- Lang, Q.; Wu, Y.; Ren, Y.; Tao, Y.; Lei, L.; Jiang, H. AC electrothermal circulatory pumping chip for cell culture. ACS Appl. Mater. Interfaces 2015, 7, 26792–26801. [Google Scholar] [CrossRef]
- Mashaei, P.; Asiaei, S.; Hosseinalipour, S. Mixing efficiency enhancement by a modified curved micromixer: A numerical study. Chem. Eng. Process.-Process Intensif. 2020, 154, 108006. [Google Scholar] [CrossRef]
- Jebelli, F.; Hasheminejad, H.; Felegari, N. Efficiency Assessment of Permeable Reactive Barriers for Methyl tert-Butyl Ether (MTBE) Remediation in Groundwater Using Novel Adsorbents: Aerogel, Sillimanite, Andalusite, and Tourmaline-Insights from Batch and Column Studies. Case Stud. Chem. Environ. Eng. 2024, 10, 100962. [Google Scholar] [CrossRef]
- Huang, K.R.; Chang, J.S. Three dimensional simulation on binding efficiency of immunoassay for a bio-sensor with applying electrothermal effect. Heat Mass Transf. 2013, 49, 1647–1658. [Google Scholar] [CrossRef]
- Vafaie, R.H.; Mehdipour, M.; Pourmand, A.; Ghavifekr, H.B. A novel miniaturized electroosmotically-driven micromixer modified by surface channel technology. In Proceedings of the 2012 20th Iranian Conference on Electrical Engineering (ICEE2012), Tehran, Iran, 15–17 May 2012; IEEE: New York, NY, USA, 2012; pp. 124–129. [Google Scholar]
- Vafaie, R.H.; Mehdipoor, M.; Pourmand, A.; Poorreza, E.; Ghavifekr, H.B. An electroosmotically-driven micromixer modified for high miniaturized microchannels using surface micromachining. Biotechnol. Bioprocess Eng. 2013, 18, 594–605. [Google Scholar] [CrossRef]
- Petkewich, R. Research Profiles: Integrating Micromixer and Microcoils for Time-Resolved NMR; ACS Publications: Washington, DC, USA, 2003. [Google Scholar]
- Tseng, W.-K.; Lin, J.-L.; Sung, W.-C.; Chen, S.-H.; Lee, G.-B. Active micro-mixers using surface acoustic waves on Y-cut 128 LiNbO3. J. Micromech. Microeng. 2006, 16, 539. [Google Scholar] [CrossRef]
- Miller, E.M.; Wheeler, A.R. A digital microfluidic approach to homogeneous enzyme assays. Anal. Chem. 2008, 80, 1614–1619. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, P.S.; Manz, A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 2006, 5, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Kakuta, M.; Hinsmann, P.; Manz, A.; Lendl, B. Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: Application to protein conformation study using the example of ubiquitin. Lab Chip 2003, 3, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.-T.; Wereley, S.T.; Shaegh, S.A.M. Fundamentals and Applications of Microfluidics; Artech House: New York, NY, USA, 2019. [Google Scholar]
- Carstea, E.M.; Popa, C.L.; Baker, A.; Bridgeman, J. In situ fluorescence measurements of dissolved organic matter: A review. Sci. Total Environ. 2020, 699, 134361. [Google Scholar] [CrossRef] [PubMed]
- Baker, G.L.; Gollub, J.P. Chaotic Dynamics: An Introduction; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Splechtna, R.; Behravan, M.; Jelovic, M.; Gracanin, D.; Hauser, H.; Matkovic, K. Interactive Design-of-Experiments: Optimizing a Cooling System. IEEE Trans. Vis. Comput. Graph. 2024, 1–10. [Google Scholar] [CrossRef]
- Arastonejad, M.; Arab, D.; Fatemi, S.; Golshanrad, P. Unveiling the Significance of NCAP Family Genes in Adrenocortical Carcinoma and Adenoma Pathogenesis: A Molecular Bioinformatics Exploration. Cancer Inform. 2024, 23, 11769351241262211. [Google Scholar] [CrossRef]
- Azadmanesh, M.; Roshanian, J.; Georgiev, K.; Todrov, M.; Hassanalian, M. Synchronization of Angular Velocities of Chaotic Leader-Follower Satellites Using a Novel Integral Terminal Sliding Mode Controller. Aerosp. Sci. Technol. 2024, 109211. [Google Scholar] [CrossRef]
- Mohammadabadi, S.M.S.; Zawad, S.; Yan, F.; Yang, L. Speed Up Federated Learning in Heterogeneous Environments: A Dynamic Tiering Approach. IEEE Internet Things J. 2024, 1. [Google Scholar] [CrossRef]
- Sajjadi Mohammadabadi, S.M.; Seyedkhamoushi, F.; Mostafavi, M.; Borhani Peikani, M. Examination of AI’s Role in Diagnosis, Treatment, and Patient Care. In Transforming Gender-Based Healthcare with AI and Machine Learning; Gupta, M., Kumar, R., Lu, Z., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 221–238. [Google Scholar]
- Afrasiabi, A.; Faramarzi, A.; Chapman, D.; Keshavarzi, A. Optimising Ground Penetrating Radar Data Interpretation: A Hybrid Approach with AI-Assisted Kalman Filter and Wavelet Transform for Detecting and Locating Buried Utilities. J. Appl. Geophys. 2025, 232, 105567. [Google Scholar] [CrossRef]
- Danesh, S.; Ahadi, M.; Nikoo, M.H. Septal Thickness as a Predictor for Appropriate ICD Shocks in Hypertrophic Cardiomyopathy Patients. Res. Sq. 2024.
- Bokaii Hosseini, Z.; Rajabi, F.; Morovatshoar, R.; Ashrafpour, M.; Behboodi, P.; Zareie, D.; Natami, M. Downregulation of LPAR1 Promotes Invasive Behavior in Papillary Thyroid Carcinoma Cells. Cancer Inform. 2024, 23, 11769351241277012. [Google Scholar] [CrossRef] [PubMed]
- Gorgzadeh, A.; Hheidari, A.; Ghanbarikondori, P.; Arastonejad, M.; Ghasemi Goki, T.; Aria, M.; Allahyartorkaman, A.; Moazzam, F.; Jabbari Velisdeh, Z.; Saberian, E.; et al. Investigating the Properties and Cytotoxicity of Cisplatin-Loaded Nano-Polybutylcyanoacrylate on Breast Cancer Cells. Asian Pac. J. Cancer Biol. 2023, 8, 345–350. [Google Scholar] [CrossRef]
- Musazadeh, V.; Assadian, K.; Rajabi, F.; Faghfouri, A.H.; Soleymani, Y.; Kavyani, Z.; Najafiyan, B. The Effect of Synbiotics on Liver Enzymes, Obesity Indices, Blood Pressure, Lipid Profile, and Inflammation in Patients with Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2024, 208, 107398. [Google Scholar] [CrossRef] [PubMed]
- Dargie, W.; Farrokhi, S.; Poellabauer, C. Identification of Persons Based on Electrocardiogram and Motion Data. Authorea Prepr. 2024. [Google Scholar] [CrossRef]
- Basmenj, E.R.; Arastonejad, M.; Mamizadeh, M.; Alem, M.; KhalatbariLimaki, M.; Ghiabi, S.; Khamesipour, A.; Majidiani, H.; Shams, M.; Irannejad, H. Engineering and Design of Promising T-Cell-Based Multi-Epitope Vaccine Candidates Against Leishmaniasis. Sci. Rep. 2023, 13, 19421. [Google Scholar] [CrossRef]
- Amiri Khoshkar Vandani, S.; Farhadian, L.; Pennycuick, A.; Ji, H.-F. Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma. Plasma 2024, 7, 867–876. [Google Scholar] [CrossRef]
- Salehi, F.; Pariafsai, F.; Dixit, M.K. The Impact of Misaligned Idiotropic and Visual Axes on Spatial Ability Under Altered Visuospatial Conditions. Virtual Real. 2023, 27, 3633–3647. [Google Scholar] [CrossRef]
- Seifi, N.; Ghoodjani, E.; Majd, S.S.; Maleki, A.; Khamoushi, S. Evaluation and Prioritization of Artificial Intelligence Integrated Block Chain Factors in Healthcare Supply Chain: A Hybrid Decision Making Approach. Comput. Decis. Mak. Int. J. 2025, 2, 374–405. [Google Scholar] [CrossRef]
Symbol | Description | Value |
---|---|---|
D | Diffusion coefficient | 2 × 10−11 m2.s−1 |
U | Average inlet velocity | 0.1 mm.s−1 |
ρm | Viscosity of fluid | 1 × 10−3 N.s.m−2 |
μ | Density of fluid | 103 kg.m−3 |
σ | Electric conductivity of fluid | 0.2–0.6 [S/m] |
εr | Dielectric constant of fluid | 80.2 |
ε0 | Vacuum permittivity | 8.854 × 10−12 F.m−1 |
f | Applied electric field frequency | 100 kHz–140 MHz |
V0 | Electric potential | 1–8 V |
cp | Heat capacity of fluid | 4.184 [kJ/(kg × K)] |
k | Thermal conductivity of fluid | 0.598 [W/(m × K)] |
Tambient | Ambient temperature | 300.15 [K] |
Cin1 | Species concentration of fluid A | 1 [mol.m−3] |
Cin2 | Species concentration of fluid B | 0 [mol.m−3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadjiaghaie Vafaie, R.; Fardi-Ilkhchy, A.; Sheykhivand, S.; Danishvar, S. Theoretical and Experimental Study of an Electrokinetic Micromanipulator for Biological Applications. Biomimetics 2025, 10, 56. https://doi.org/10.3390/biomimetics10010056
Hadjiaghaie Vafaie R, Fardi-Ilkhchy A, Sheykhivand S, Danishvar S. Theoretical and Experimental Study of an Electrokinetic Micromanipulator for Biological Applications. Biomimetics. 2025; 10(1):56. https://doi.org/10.3390/biomimetics10010056
Chicago/Turabian StyleHadjiaghaie Vafaie, Reza, Ali Fardi-Ilkhchy, Sobhan Sheykhivand, and Sebelan Danishvar. 2025. "Theoretical and Experimental Study of an Electrokinetic Micromanipulator for Biological Applications" Biomimetics 10, no. 1: 56. https://doi.org/10.3390/biomimetics10010056
APA StyleHadjiaghaie Vafaie, R., Fardi-Ilkhchy, A., Sheykhivand, S., & Danishvar, S. (2025). Theoretical and Experimental Study of an Electrokinetic Micromanipulator for Biological Applications. Biomimetics, 10(1), 56. https://doi.org/10.3390/biomimetics10010056