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Abstract: Liveness detection for fingerprint impressions plays a role in the meaningful prevention of
any unauthorized activity or phishing attempt. The accessibility of unique individual identification
has increased the popularity of biometrics. Deep learning with computer vision has proven remark-
able results in image classification, detection, and many others. The proposed methodology relies
on an attention model and ResNet convolutions. Spatial attention (SA) and channel attention (CA)
models were used sequentially to enhance feature learning. A three-fold sequential attention model is
used along with five convolution learning layers. The method’s performances have been tested across
different pooling strategies, such as Max, Average, and Stochastic, over the LivDet-2021 dataset.
Comparisons against different state-of-the-art variants of Convolutional Neural Networks, such as
DenseNet121, VGG19, InceptionV3, and conventional ResNet50, have been carried out. In particular,
tests have been aimed at assessing ResNet34 and ResNet50 models on feature extraction by further
enhancing the sequential attention model. A Multilayer Perceptron (MLP) classifier used alongside a
fully connected layer returns the ultimate prediction of the entire stack. Finally, the proposed method
is also evaluated on feature extraction with and without attention models for ResNet and considering
different pooling strategies.

Keywords: liveness detection; deep learning; computer vision; attention model; ResNet50

1. Introduction

Over the last few decades, much scholarly attention has been paid to the weaknesses of
biometric systems, which are victims of sensor attacks (conducted using synthetic biometric
characteristics such as sticky fingers or high-quality printed photographs of the iris). In the
digital age, automatic access to services is becoming increasingly crucial. As a result, the
field of technology known as “biometric recognition” has emerged.

In this regard, various standardization initiatives at the international level have been
established to address security evaluation in biometric systems, such as the Common Stan-
dards through various Supporting Documents or the Biometric Evaluation Methodology.

Subsequently, efforts in analyzing the direct attack weaknesses of automatic recogni-
tion systems have improved the security level provided by biometric systems.

Various liveness detection techniques have been presented in the past few years.
Anti-spoofing algorithms can differentiate between genuine and fake traits using multiple
physiological properties.

Due to their well-known uniqueness and persistence, fingerprints are one of the most
significant biometric characteristics. In addition to being employed by forensic and law
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enforcement organizations worldwide, fingerprint recognition systems are also used in
mobile devices for widespread use.

Most fingerprint capture techniques need the finger to contact the capturing appara-
tus’s surface. Some sensor-based systems suffer from technical issues, such as low contrast
from dirt or moisture on the plate of the capturing device or latent fingerprints from
past users (ghost fingerprints). Hygiene issues reduce the attractiveness of contact-based
fingerprint systems, which restricts their adoption, especially in multiuser applications.

Priesnitz et al. [1] surveyed touchless fingerprint systems and compared them to
traditional security measures based on something you know (PIN, password, etc.) or
something you have; biometric technology offers several advantages (key, card, etc.) [2].
Conventional authentication methods cannot distinguish between imposters who have
unlawfully obtained access rights and legitimate users and thus cannot substantiate false
identity claims.

Moreover, biometric systems do not require users to carry keys that may be misplaced
or stolen or to memorize complicated PINs that are quickly forgotten. However, biomet-
ric facilities also have some drawbacks. Because external attacks on biometric systems
could lower their level of security, it is essential to comprehend the risks they face. The
vulnerability analysis plays the same importance in identifying potential attack points and
suggests additional defences to increase their benefits to authentic users. Particular focus
has been placed on direct attacks against the fingerprint recognition mechanism among the
examined vulnerabilities. These attack techniques involve supplying a sensor with a fake
fingerprint to identify the user as legitimate and give access [3].

The International Fingerprint Liveness Detection Competition (LivDet) is one of many
projects highlighting the limitations and prospects of presentation attack detectors (PADs).
The tournament developed seven editions between 2009 [4] and 2021 [5], presenting brand-
new, complex falsification techniques, scanner types, and spoofs materials.

In this article, various software-based liveness detection systems are compared. To
this end, several experiments have been carried out with several methods to estimate the
top static and dynamic features for vitality identification and assess their effectiveness on
the task. The same finger must be placed on the sensor and pulled off it more than once to
obtain two or more static characteristics. Moreover, the dynamic features are taken from
numerous image frames (i.e., several photos are captured once the finger is positioned on
the sensor for a while) [6].

This work focuses on fingerprint liveness detection by investigating the effectiveness
of ResNet50 architecture, attention principles, pooling strategies, and several classifiers on
different datasets.

Therefore, the contribution is threefold: (1) a proposed novel attention-based ResNet
architecture for fingerprint liveness detection, (2) a thorough testing study to check the
effectiveness of different pooling strategies, and (3) a comparative analysis with standard
computer vision models and classifiers.

The remainder of the article is organized as follows: Section 2 provides a literature
survey and comparative analysis for liveness detection; Section 3 describes the proposed
methodology to recognize the realness of finger impression; Section 4 deepens the descrip-
tion of the experiment; and Section 5 draws a line on discussions and conclusions.

Literature Review

Using quality metrics to detect liveness has a new fingerprint parameterization that
authors [7] have suggested. They have built the unique system and tested it on a devel-
opment set of the LivDET competitions dataset, which comprises 4500 live and unreal
images procured from three different kinds of sensors. The suggested method demonstrates
robustness and accuracy in 93% of properly classified samples. Frassetto et al. [8] suggest
using Local Binary Patterns and CNN with random weights. Both of these techniques
are used in combination with Support Vector Machine (SVM). They have conducted sev-
eral experiments on the dataset of the LivDET competition of the years 2009, 2011, and
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2013 which comprised about 50,000 live and forgery fingerprint impressions taken from
different sensors. When compared to previously reported findings, they reduced test error
by 35%. Agarwal and A. Bansal [9] have proposed the fusion of pores perspiration and
texture features in a static software-based approach. They carried out experiments on the
LivDET 2013 and LivDET 2015 dataset, and their methods have also shown improvement
in comparison to the state-of-the-art methods.

Tan [10] used 58 live, 80 spoof, and 25 cadaver participants for three separate scanners.
They achieved an accuracy of around 90.9% to 100% using this particular dataset of spoof
and live fingerprints. Sequeira et al. [11] introduced an automation-based image segmenta-
tion phase to separate the fingerprint impression from the backdrop. They have compared
supervised learning approaches with image feature analysis methods. Dubey et al. [12]
proposed to combine low-level gradient features with Speeded-Up Robust Features (SURF).
They essentially extracted these features from a single fingerprint image to overcome the
issues with dynamic software methodologies. Their results outperform the existing best
average ERR by 9.625%.

Koshy et al. [13] designed a robust and multi-scenario dataset-based solution that
achieves an accuracy of around 90% on classification. They only require one image from a
finger to determine whether the input is live or phony. Ali et al. [14] analyzed SOTA (state-
of-the-art) fingerprint recognition systems. They broke down the phases of fingerprint
identification step by step and summarized fingerprint databases with relevant properties.
The fingerprint liveness detection-based approach, based on DCNN and voting strategy,
has been presented by Wang et al. [15], which outperforms handcrafted features methods
and simultaneously optimizes feature extraction and classifier training.

Chowdhury et al. [16] worked with deep learning-based methods and models to
benchmark them on the task. Eight additional scientific articles were compared, and they
conducted their investigation using three distinct types of methodologies.

Ahmad et al. [17] surveyed the scientific literature on the topic by looking at 146 crucial
studies. Nur-A-Alam et al. [18] trained a multiclass classifier on specific properties has
been proposed by the authors. They have performed various experiments that showed
that the proposed methodology showed better performance with about 99.87% accuracy.
Comparisons have also been conducted against recent machine learning classification
techniques, such as SVM (97.86%) and Random Forest (95.47%).

Win et al. [19] targeted the field of criminal investigation by reviewing recent literature
on fingerprint classification techniques and applications. They have also analyzed and
compared the different computer vision and deep learning algorithms of finger impression
images for classification. Priesnitz et al. [20] introduced a touchless fingerprint recognition-
based methodology. They published approaches that range from self-identification finger-
print recognition to practice. At each stage of the recognition process, they additionally
provide an overview of the state-of-the-art in the area of touchless 2D fingerprint recogni-
tion. Boero et al. [21] designed an Intrusion detection system (IDS) to analyze and detect
security problems. The method focuses on anomaly detection and statistical analysis. They
obtained the results which allow the best classifiers and show the performance that ex-
ploits the decisions of a bank of classifiers acting in parallel. Table 1 illustrates additional
comparisons for reference.

Table 1. Comparative analysis of fingerprint presentation attack detection using different deep
learning models.

Author Year Approach Result

Y Zhang et al. [22] 2020 FLDNet 91% Acc

Y Zhang et al. [23] 2019 JLW_B 95.25 Acc

C Yuan et al. [24] 2020 DCNN 95.35 Acc

Z Xia et al. [25] 2018 FLD + SVM 5.69 CE
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2. Materials and Methods
2.1. Methodology

The proposed methodology used ResNet50 architecture with an Attention mech-
anism to extract deep features from fingerprint images. Therefore, the proposed ar-
chitecture is divided into three main modules (i) ResNet module, (ii) Pooling strategy,
and (iii) Visual attention. Figure 1 shows the proposed methodology architecture con-
sisting of five convolution ResNet blocks and three attention blocks featuring different
pooling strategies.
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2.2. Convolution Learning with ResNet50

In this subsection, insights into Convolution Learning with ResNet50 are given. Vanilla
ResNet architecture has been used for convolution learning, with skip connection to counter
overfitting and gradient explosion. The residual module aims to add the features extracted
from the neural networks. On top of that, short connections are used to reduce the vanishing
gradient problem. Figure 2 represents the internal structure of convolution learning with
ResNet as a backbone. The introduction of batch normalization allows for increasing
convolution speed and stability. Equation (1) shows the normalization process adopted in
ReLU’s activation to normalize features.

f (x) =
{

x, i f x > 0
0, otherwise

(1)
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2.3. Visual Attention

The proposed methodology relies on attention models to enhance feature learning
capabilities and prevent the loss of features caused by single pooling. The proposed
method adopts spatial- and channel-based sequential attention modules. In particular, three
sequential attention modules represent the backbone network of ResNet. Figure 3 provides
a graphical depiction of the functional structure of the spatial-channel attention block.
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CA module allows to compute the relevant links between distinct channels. In addition,
the SA block accounts for executing multiple types of visual attention to obtain information
on content, texture, and background.

Feature Map F(C × H ×W) is passed through the global average pooling to generate
Fc(1× 1× C), for C channels. Then, it is forwarded to MLP (Multilayer Perceptron) with
four (4) hidden layers. The activation of the hidden layer was set to scale the output as
R(1×1× C

r ) to adjust the ResNet map according to the compression rate.
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The final map Mc(F) is computed as in Equation (2), where W and b are weights and
biases for channel attention Rc.

Mc(F) = Norm(W1(W0 AvgPool(Fc) + b0) + b1) (2)

SA generates intermediate spatial features Fs(H×W× 1) to empower spatial locations.
Input feature Fc adopts full 3 × 3 convolution to extract the information from the input
matrix. A higher spatial attention dimension adopts R(H×W×1) through 3 × 3 convolution.

Finally, extracted SA output Ms(F) is generated with Batch normalization as in
Equation (3).

Ms(F) = Norm
(

AvgPool
(

f 3×3
0 (Fc)

))
(3)

Here, Equation (3) is generalized with global average pooling.
In addition, the simulation of the model also explores different pooling strategies to

find the most appropriate based on input image property. Element-wise multiplication
is used to produce refined intermediate features from the attention blocks. They are
represented as spatial attention features F(s) and channel attention features Fc and used in
Equations (4) and (5) to calculate the final output of the attention block F′′ as an intermediate
feature, while F is considered an input feature for the attention block.

F′ = Mc(F) ⊗ F (4)

F′′ = Ms ⊗ F′ (5)

2.4. Pooling Operation

The proposed methodology also tests three pooling strategies to optimize performance
over fingerprint liveness detection. That is motivated by pooling method performances
being dependent on the nature of targeted images. Pooling plays a critical role in convolu-
tion learning in extracting information from learned features. It also brings in a dimension
reduction. CNN-based architecture has common pooling strategy as max pooling, average
pooling, and stochastic pooling, as illustrated in Figure 5. The pooling strategy can be
selected based on image background, channel type, texture, and many more features. For
instance, non-maximum values in the pooling kernel are discarded by max pooling, while
the maximal feature values are not retained by average pooling. Conversely, retention of
features in a certain direction is not the primary objective of stochastic pooling. Therefore,
sticking to one strategy of pooling may lead to limited classification performance.
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2.5. Algorithm

The computational features that have been previously described are processed by a
three-layer MLP [27] network to detect the liveness of fingerprints. For the sake of clarity, a
description of the training procedure for the Dual Attention model is provided in the form
of Algorithm 1 down below. The scripting structure of the proposed dual attention-based
methodology demonstrates the major functional component of the architecture.
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Algorithm 1: Training procedure for Dual Attention model

Output: Attention features F

1. Pol(x)← P{Max, Avg, Stoch}
2. Mc← Channel Attention Model
3. Ms← Spatial Attention Model
4. model← ResNet():
5. model.FcLayer← ReLU()
6. mode.Attention← f (Mc ⊗ Ms)
7. model.Pooling← f (Polx)
8. for epoch =0 to epoch:
9. for (x_train, y_train):
10. x←model.normalization (x_train, kernel)
11. y←model.Conv( ∑ f (Weightx ⊗ Inputx))
12. a←model.attention(pol(y) =
13. z←model.Pooling( ∑2

0 f (Pol_ax))
14. α. ←model.FcLayer (MLP(z))
15. f (x)← optimization.adam(α)
16. loss← loss.∑n

i yi log(αi)
17. end for
18. end for
19. Return: f (x), Feature of training dataset

3. Results
3.1. Dataset

The proposed methodology has been tested over two different datasets: LivDet DB [28]
and ATVS DB [29]. The former consists of three different types of images: (i) Biometrika,
(ii) CrossMatch, and (iii) Identix. Fack fingerprints are designed with silicone, gelatine,
and playdoh. ATVS DB consists of different datasets having three different techniques:
(i) flat optical Biometrika, (ii) flat capacitive Precise, and (iii) thermal sweeping Yubee
(demonstrated in Table 2).

Table 2. Describes the characteristics of the targeted dataset.

Dataset Class Real/Live Fake Avg. Resolution

LivDet [28] 2 5000 3000 580 dpi

ATVS [29] 2 4800 4000 520 dpi

3.2. Data Augmentation

The proposed methodology relies on data augmentation for targeted datasets to
increase the knowledge inference capabilities of the model. Generally, data augmentation
methods include rotation, scaling, flip, crop, and many more. Among them, angular
rotation (±20◦) and scaling were used to increase the training dataset. Figure 6 represents
some augmented samples from the training dataset.
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20 epochs; Adam optimizer; learning rate set to 10 to the power (-3); binary cross-entropy 
as loss function and accuracy metrics to evaluate performances; batch size set to 16; drop-
out equals to 0.3. The training and testing tasks have been run on an NVIDIA GeForce 
RTX 3080 (AIDA Lab KSA, Riyadh Saudi Arabia) and are coded with Python 3.10.  

The proposed dual attention-based methodology has achieved a 97.78% accuracy rate 
over the LivDet dataset. The proposed model was evaluated using Sensitivity [30], Preci-
sion [31], and F1-score [32], mathematically described in Equations (6)–(8). Sensitivity = ்ାிே   (6)
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Figure 6. Manual Augmented dataset used in the proposed methodology.
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3.3. Experiments and Result

This section provides the reader with the experimental settings and results. Several
trials have been carried out with ResNet architecture with different depths: ResNet50
and ResNet34. Dual attention blocks were embedded at a different level of convolution.
As shown In Table 3, the model stack includes convolution layers, SA, CA, pooling, and
activation functions. It features an initial kernel size set to 7 × 7, and the final fully
connected layer is characterized by ReLU activation.

Table 3. ResNet34 and ResNet50 network stacks and the corresponding Channel attention (CA) and
Spatial attention (SA) modules are described below.

Conv-Layer Output Size ResNet34 RetNet50

01 112 × 112 7 × 7, 64 7 × 7, 64

02
56 × 56

[
3× 3, 64
3× 3, 64

]
× 3

1× 1, 64
3× 3, 64
1× 1, 256

× 3

Attention (CA + SA)

03 28 × 28
[

3× 3, 128
3× 3, 128

]
× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

04
14 × 14

[
3× 3, 256
3× 3, 256

]
× 6

1× 1, 256
3× 3, 256
1× 1, 1024

× 6

Attention (CA + SA)

05
7 × 7

[
3× 3, 512
3× 3, 512

]
× 3

1× 1, 512
3× 3, 512
1× 1, 2048

× 3

Attention (CA + SA)

Fully Connected 1 × 1 Pooling, Activation

The training phase has been carried out with the following parameters and settings:
20 epochs; Adam optimizer; learning rate set to 10 to the power (-3); binary cross-entropy as
loss function and accuracy metrics to evaluate performances; batch size set to 16; dropout
equals to 0.3. The training and testing tasks have been run on an NVIDIA GeForce RTX
3080 (AIDA Lab KSA, Riyadh Saudi Arabia) and are coded with Python 3.10.

The proposed dual attention-based methodology has achieved a 97.78% accuracy
rate over the LivDet dataset. The proposed model was evaluated using Sensitivity [30],
Precision [31], and F1-score [32], mathematically described in Equations (6)–(8).

Sensitivity =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F1− score =
2∗TP

2 ∗ TP + FP + FN
(8)

Table 4 represents a statistical evaluation of the proposed methodology with ResNet34
and ResNet50 on two different datasets (LivDet and ATVS).
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Table 4. Comparative analysis of ReNet34 and ResNet50 with attention modules over both datasets
are given below.

Model Dataset Sensitivity Precision F1-Score Accuracy

ResNet34 + Attention
LivDet 0.94 0.95 0.95 95.81%

ATVS 0.95 0.95 0.95 95.52%

ResNet50 + Attention
LivDet 0.97 0.97 0.97 97.78%

ATVS 0.96 0.97 0.96 97.05%

The accuracy metrics and loss function (Figure 7) allow benchmarking training and
validation steps for the proposed method. In particular, Figure 7a,b illustrate the results
of the proposed methodology for the ResNet50 model without augmentation. At the
same time, subplots (c) and (d) draw the corresponding curves for the training with
augmented data.
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Table 5 shows ResNet50 and ResNet34 architectures are compared with and without
attention modules. Experiments have been run using three different pooling strategies
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(Table 6). Stochastic pooling offers remarkable accuracy over average and max pooling for
the proposed Res-Net50-based methodology on the LivDet dataset.

Table 5. Comparative analyses of ResNet variants with and without attention models for the LivDet
dataset are given below.

Model Attention Avg. Precision Avg. Recall Avg. F1-Score

ResNet34
Yes 0.95 0.96 0.95

No 0.83 0.84 0.84

ResNet50
Yes 0.97 0.97 0.97

No 0.87 0.86 0.86

Table 6. Comparative analysis is given for different pooling strategies for the Attention-based
ResNet50 model on the LivDet dataset.

Database Max Pooling Average pooling Stochastic Pooling

LivDet 97.23% 97.14% 97.78%

ATVS 96.00% 96.33 97.05%

However, the selection of the pooling strategy highly depends on the input type.
Table 7 shows a comparative analysis of ResNet50 with different learning rates and

Dropout values on both datasets. The experiments reveal a 0.0001 Learning Rate and a
dropout of 0.3, being the combination performing higher. Some other tests have been run
with various train test split ratios, as shown in Figure 8.

Table 7. Accuracy analysis with a combination of different Learning rates and dropout rates for
proposed architecture with ResNet50.

Learning Rate 0.01 0.001 0.0001

Dropout 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

LivDet 90.03 94.5 95.22 94.23 96.61 97.33 96.86 96.96 97.78

ATVS 88.64 92.74 94.12 93.88 96.35 96.98 96.41 96.52 97.05
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Figure 9 represents a comparative analysis of the proposed sequential attention model
against other state-of-the-art convolution models such as VGG19, Densenet121, and In-
ceptionV3, and different optimizers such as Gradient Descent, Stochastic Gradient Decent
(SDG), and Adam [33]. Table 8 shows a comparative analysis with different optimizers and
different deep learning models.
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Table 8. Comparative analysis with different optimizers and models trained over both the scenarios,
with and without association of attention model for ResNet34 and ResNet50.

Model Optimizer Accuracy Precision Recall

ResNet34
GD 77.46% 0.79 0.75

SGD 82.60% 0.83 0.83

Adam 83.56% 0.83 0.84

ResNet34 + attention
GD 85.30% 0.88 0.85

SGD 94.21% 0.94 0.94

Adam 95.81% 0.95 0.96

Resnet50
GD 71.05% 0.71 0.72

SGD 84.71% 0.85 0.85

Adam 87.21% 0.87 0.86

Resnet50 + Attention
GD 88.49% 0.88 0.87

SGD 95.90% 0.96 0.97

Adam 97.78% 0.97 0.97
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4. Discussion

The proposed study adopts an attention-based technique to detect liveness from
fingerprint images and recognize them as real or fake. The proposed methodology uses a
unique approach to see the realness of figure print from pictures as dual attention-based
Resnet50 architecture has achieved 97.78% remarkable accuracy on the LivDet fingerprint
dataset. Experiments have been carried out on ATVS for a more extensive analysis of the
proposed technique.

Furthermore, the proposed methodology evaluates the robustness of different pooling
strategies to extend accuracy or avail results. In particular, the experimental campaign in
this work reveals the stochastic pooling method outperforming Max and Average pooling
on the fingerprint recognition task. The architecture proposed heavily relies on attention
blocks: spatial and channel attention modules are employed to enhance feature extraction.
The proposed methodology is superior to other deep learning convolution models, such as
Xception, InceptionV3, VGG19, DenseNet121, and InceptionV3, with around 0.7% accuracy.
Further investigations have been conducted concerning the employment of classifiers
(Figure 10), such as Random Forest (RF) [34], Linear Regression (LR) [35], KNN [36],
SVM [37], Gaussian NB [37], Decision Tree [38], HMM [39], Autoencoder [40] and Support
Vector Machine (SVM) [41]. Convolution layer five output from ResNet50 is converted into
a 2048-dimensional array, which feeds all comparison classifiers. In that case, the ResNet50
stack is used until convolutional layer five only for feature extraction, represented by the
2048-dimensional array.

J. Imaging 2023, 9, x  12 of 15 
 

 

Furthermore, the proposed methodology evaluates the robustness of different pool-
ing strategies to extend accuracy or avail results. In particular, the experimental campaign 
in this work reveals the stochastic pooling method outperforming Max and Average pool-
ing on the fingerprint recognition task. The architecture proposed heavily relies on atten-
tion blocks: spatial and channel attention modules are employed to enhance feature ex-
traction. The proposed methodology is superior to other deep learning convolution mod-
els, such as Xception, InceptionV3, VGG19, DenseNet121, and InceptionV3, with around 
0.7% accuracy. Further investigations have been conducted concerning the employment 
of classifiers (Figure 10), such as Random Forest (RF) [34], Linear Regression (LR) [35], 
KNN [36], SVM [37], Gaussian NB [37], Decision Tree [38], HMM [39], Autoencoder [40] 
and Support Vector Machine (SVM) [41]. Convolution layer five output from ResNet50 is 
converted into a 2048-dimensional array, which feeds all comparison classifiers. In that 
case, the ResNet50 stack is used until convolutional layer five only for feature extraction, 
represented by the 2048-dimensional array.  

As noticed in Figure 10, Multilayer Perceptron (MLP) has proven higher accuracy 
than other machine learning classifiers.  

Figure 11 illustrates the confusion matrix of the proposed methodology on the Live-
Det dataset, with 53 images misclassified as fake out of 1500 images.  

The proposed dual attention-based ResNet50 accounts for 50 layers in the neural net-
work, bringing in not negligible computational costs. 

 
Figure 10. Comparative analysis of the proposed dual attention-based model with different classifi-
ers. 

Figure 10. Comparative analysis of the proposed dual attention-based model with different classifiers.

As noticed in Figure 10, Multilayer Perceptron (MLP) has proven higher accuracy than
other machine learning classifiers.

Figure 11 illustrates the confusion matrix of the proposed methodology on the LiveDet
dataset, with 53 images misclassified as fake out of 1500 images.

The proposed dual attention-based ResNet50 accounts for 50 layers in the neural
network, bringing in not negligible computational costs.
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5. Conclusions

The digital fingerprint is a powerful applicable tool for a plethora of scenarios, such
as person authentication in commercial business, civil and forensic usage, etc. Most
fingerprint-based scanners proved robust and accurate in fingerprint recognition. They
stand almost 100% accuracy during authentication.

In this study, a vision-based methodology has been introduced to focus on fingerprint
liveness detection. As previously mentioned, the contribution of this work is threefold:
(1) the introduction of a novel attention-based ResNet architecture for fingerprint liveness
detection, (2) a thorough testing study to check the effectiveness of different pooling
strategies, (3) a comparative analysis with standard computer vision models and classifiers.

An attention-based learning approach to recognize the liveness of fingerprint images
is proposed to tackle fingerprint liveness detection. To this end, the methodology relies
on ResNet as the architecture backbone for convolution learning. In particular, two atten-
tion module channels followed by spatial attention are featured in the architecture. The
architecture has been tested on three different pooling strategies with, interestingly, some
positive outcomes achieved with Stochastic pooling.

Furthermore, the extensive experimental campaign conducted over two different
datasets showed the positive impact of dual attention-based learning on the correctness
of the results. Comparisons to other machine learning and deep learning models, such as
Random Forest and CNN variants, such as VGG19 and DenseNet121, also confirm that.

Feature work for this study to enhance the model toward more accuracy and robust-
ness for real-time scenarios. The proposed methodology is meant to be extended to detect
presentation attacks using other biometrics, such as retina and face. The proposed study is
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also planned to be improved by integrating Explainable AI to interpret the prediction of
the proposed deep learning model.
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