The Cross-Sectional Area Assessment of Pelvic Muscles Using the MRI Manual Segmentation among Patients with Low Back Pain and Healthy Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Magnetic Resonance Imaging: Image Acquisition
2.3. Data Analysis: Image Segmentation
- -
- Of one-third between the iliac crest and the greater trochanter for the smaller and medium-sized gluteal muscles;
- -
- Between the lower and upper part of the acetabulum for the gluteus maximus muscles.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schäfer, A.; Hall, T.; Briffa, K. Classification of Low Back-Related Leg Pain-A Proposed Patho-Mechanism-Based Approach. Man. Ther. 2009, 14, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Harrisson, S.A.; Ogollah, R.; Dunn, K.M.; Foster, N.E.; Konstantinou, K. Prevalence, Characteristics, and Clinical Course of Neuropathic Pain in Primary Care Patients Consulting with Low Back-Related Leg Pain. Clin. J. Pain 2020, 36, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.; Maini, K.; Vasudevan, A. Sciatica. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Baron, R.; Binder, A.; Attal, N.; Casale, R.; Dickenson, A.H.; Treede, R.-D. Neuropathic Low Back Pain in Clinical Practice. Eur. J. Pain 2016, 20, 861–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freynhagen, R.; Rey, R.; Argoff, C. When to Consider “Mixed Pain”? The Right Questions Can Make a Difference! Curr. Med. Res. Opin. 2020, 36, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Fishbain, D.A.; Cole, B.; Lewis, J.E.; Gao, J. What Is the Evidence That Neuropathic Pain Is Present in Chronic Low Back Pain and Soft Tissue Syndromes? An Evidence-Based Structured Review. Pain Med. 2014, 15, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Mauck, M.C.; Aylward, A.F.; Barton, C.E.; Birckhead, B.; Carey, T.; Dalton, D.M.; Fields, A.J.; Fritz, J.; Hassett, A.L.; Hoffmeyer, A.; et al. Evidence-Based Interventions to Treat Chronic Low Back Pain: Treatment Selection for a Personalized Medicine Approach. Pain Rep. 2022, 7, E1019. [Google Scholar] [CrossRef]
- Santana, A.N.; de Santana, C.N.; Montoya, P. Chronic Pain Diagnosis Using Machine Learning, Questionnaires, and QST: A Sensitivity Experiment. Diagnostics 2020, 10, 958. [Google Scholar] [CrossRef]
- Weaver, K.R.; Griffioen, M.A.; Klinedinst, N.J.; Galik, E.; Duarte, A.C.; Colloca, L.; Resnick, B.; Dorsey, S.G.; Renn, C.L. Quantitative Sensory Testing Across Chronic Pain Conditions and Use in Special Populations. Front. Pain Res. 2022, 2, 779068. [Google Scholar] [CrossRef]
- Perraton, Z.; Lawrenson, P.; Mosler, A.B.; Elliott, J.M.; Weber, K.A.; Flack, N.A.; Cornwall, J.; Crawford, R.J.; Stewart, C.; Semciw, A.I. Towards Defining Muscular Regions of Interest from Axial Magnetic Resonance Imaging with Anatomical Cross-Reference: A Scoping Review of Lateral Hip Musculature. BMC Musculoskelet. Disord. 2022, 23, 533. [Google Scholar] [CrossRef]
- Skorupska, E.; Keczmer, P.; Łochowski, R.M.; Tomal, P.; Rychlik, M.; Samborski, W. Reliability of MR-Based Volumetric 3-D Analysis of Pelvic Muscles among Subjects with Low Back with Leg Pain and Healthy Volunteers. PLoS ONE 2016, 11, e0159587. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xie, C.; Chen, Z.; Li, Q. Automatic Tracking of Muscle Cross-Sectional Area Using Convolutional Neural Networks with Ultrasound. J. Ultrasound Med. 2019, 38, 2901–2908. [Google Scholar] [CrossRef]
- Cao, R.Y.; Li, J.; Dai, Q.; Li, Q.; Yang, J. Muscle Atrophy: Present and Future. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2018; Volume 1088, pp. 605–624. [Google Scholar]
- Erdağı, K.; Işık, B. The Study of the Cross-Sectional Areas of the Gluteal Muscles on Magnetic Resonance Images of the Weightlifting Athletes. Prog. Nutr. 2021, 23, e2021300. [Google Scholar] [CrossRef]
- Pakkir Mohamed, S.H.; Seyed, M.A. Low Back Pain: A Comprehensive Review on the Diagnosis, Treatment Options, and the Role of Other Contributing Factors. Open Access Maced. J. Med. Sci. 2021, 9, 347–359. [Google Scholar] [CrossRef]
- Pourahmadi, M.; Asadi, M.; Dommerholt, J.; Yeganeh, A. Changes in the Macroscopic Morphology of Hip Muscles in Low Back Pain. J. Anat. 2020, 236, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Campbell, W.W.; Vasconcelos, O.; Laine, F.J. Focal Atrophy of the Multifidus Muscle in Lumbosacral Radiculopathy. Muscle Nerve 1998, 21, 1350–1353. [Google Scholar] [CrossRef]
- Kader, D.F.; Wardlaw, D.; Smith, F.W. Correlation Between the MRI Changes in the Lumbar Multifidus Muscles and Leg Pain. Clin. Radiol. 2000, 55, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Hodges, P.; Holm, A.K.; Hansson, T.; Holm, S. Rapid Atrophy of the Lumbar Multifidus Follows Experimental Disc or Nerve Root Injury. Spine 2006, 31, 2926–2933. [Google Scholar] [CrossRef]
- Beneck, G.J.; Kulig, K. Multifidus Atrophy Is Localized and Bilateral in Active Persons with Chronic Unilateral Low Back Pain. Arch. Phys. Med. Rehabil. 2012, 93, 300–306. [Google Scholar] [CrossRef]
- Min, J.H.; Choi, H.S.; Ihl Rhee, W.; Lee, J.I. Association between Radiculopathy and Lumbar Multifidus Atrophy in Magnetic Resonance Imaging. J. Back Musculoskelet. Rehabil. 2013, 26, 175–181. [Google Scholar] [CrossRef]
- Hyun, J.K.; Lee, J.Y.; Lee, S.J.; Jeon, J.Y. Asymmetric Atrophy of Multifidus Muscle in Patients with Unilateral Lumbosacral Radiculopathy. Spine 2007, 32, E598–E602. [Google Scholar] [CrossRef]
- Skorupska, E.; Dybek, T.; Rychlik, M.; Jokiel, M.; Zawadziński, J.; Dobrakowski, P. Amplified Vasodilatation within the Referred Pain Zone of Trigger Points Is Characteristic of Gluteal Syndrome-a Type of Nociplastic Pain Mimicking Sciatica. J. Clin. Med. 2021, 10, 5146. [Google Scholar] [CrossRef]
- Jian, A.; Jang, K.; Manuguerra, M.; Liu, S.; Magnussen, J.; Di Ieva, A. Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Neurosurgery 2021, 89, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Amabile, A.H.; Bolte, J.H.; Richter, S.D. Atrophy of Gluteus Maximus among Women with a History of Chronic Low Back Pain. PLoS ONE 2017, 12, e0177008. [Google Scholar] [CrossRef] [Green Version]
- Kamaz, M.; Kıreşi, D.; Oğuz, H.; Emlik, D.; Levendoğlu, F. CT Measurement of Trunk Muscle Areas in Patients with Chronic Low Back Pain. Diagn. Interv. Radiol. 2007, 13, 144–148. [Google Scholar] [PubMed]
- Lee, S.-K.; Lee, S.-Y.; Jung, J.-M. Muscle Activity of the Gluteus Medius at Different Gait Speeds. J. Phys. Ther. Sci. 2014, 26, 1915–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiler, L.; Fong, M.; Kim, S.; Ly, A.; Qin, Y.; Yeung, E.; Mathur, S. Gluteus Medius and Minimus Muscle Structure, Strength, and Function in Healthy Adults: Brief Report. Physiother. Can. 2017, 69, 212–216. [Google Scholar] [CrossRef]
- Seyedhoseinpoor, T.; Taghipour, M.; Dadgoo, M.; Sanjari, M.A.; Takamjani, I.E.; Kazemnejad, A.; Khoshamooz, Y.; Hides, J. Alteration of Lumbar Muscle Morphology and Composition in Relation to Low Back Pain: A Systematic Review and Meta-Analysis. Spine J. 2022, 22, 660–676. [Google Scholar] [CrossRef]
- Goubert, D.; Van Oosterwijck, J.; Meeus, M.; Danneels, L. Systematic Review Structural Changes of Lumbar Muscles in Non-Specific Low Back Pain. Pain Physician 2016, 19, 985–1000. [Google Scholar]
- Godoy, I.R.B.; Silva, R.P.; Rodrigues, T.C.; Skaf, A.Y.; de Castro Pochini, A.; Yamada, A.F. Automatic MRI Segmentation of Pectoralis Major Muscle Using Deep Learning. Sci. Rep. 2022, 12, 5300. [Google Scholar] [CrossRef]
- Hyun, S.-J.; Bae, C.-W.; Lee, S.-H.; Rhim, S. Fatty Degeneration of Paraspinal Muscle in Patients with the Degenerative Lumbar Kyphosis: A New Evaluation Method of Quantitative Digital Analysis Using MRI and CT Scan. J. Spinal Disord. Tech. 2013, 29, 441–447. [Google Scholar] [CrossRef]
- Ding, J.; Kong, C.; Li, X.; Sun, X.; Lu, S.; Zhao, G. Different Degeneration Patterns of Paraspinal Muscles in Degenerative Lumbar Diseases: A MRI Analysis of 154 Patients. Eur. Spine J. 2022, 31, 764–773. [Google Scholar] [CrossRef]
- Skorupska, E. Muscle Atrophy Measurement as Assessment Method for Low Back Pain Patients. In Muscle Atrophy; Xiao, J., Ed.; Springer: Singapore, 2018; pp. 437–461. ISBN 978-981-13-1435-3. [Google Scholar]
Participants | MRI [%] | Neurological Examination [%] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Disc Prolapse | Root Compresion | Sensory Deficits | Laseque’s Sign | Tendon Reflex | ||||||||||
Patellar | Ankle | |||||||||||||
L3–4 | L4–5 | L5–S1 | L4 | L5 | S1 | L3 | L4 | L5 | S1 | >45 | <45 | Ascence | Absence | |
Chronic LBP | 26.67 | 63.33 | 53.33 | 60.00 | 25.00 | 23.33 | 16.67 | 18.33 | 28.33 | 23.33 | 58.33 | 41.67 | 5.00 | 25.00 |
Healthy volunteers | 13.78 | 44.83 | 41.38 | 17.24 | 20.69 | 6.90. | 0 | 0 | 0 | 0 | - | - | 3.45 | 6.90 |
p-value * | 0.173 | 0.101 | 0.279 | 0.030 | 0.624 | 0.064 | - | - | - | - | - | - | 0.653 | 0.053 |
Muscle | Painful Side | Rater | n = (CSAleft < CSAright) | n = (CSAright < CSAleft) | p-Value | 95% Confidence Interval |
---|---|---|---|---|---|---|
GMax | right | 1 | 3 | 27 | <0.001 * | (0, 0.24) |
2 | 4 | 26 | <0.001 * | (0, 0.28) | ||
left | 1 | 39 | 2 | <0.001 * | (0.85, 1) | |
2 | 38 | 3 | <0.001 * | (0.82, 1) | ||
GMed | right | 1 | 11 | 19 | 0.1002 | (0, 0.53) |
2 | 11 | 19 | 0.1002 | (0, 0.53) | ||
left | 1 | 33 | 8 | 0.0001 * | (0.68, 1) | |
2 | 33 | 8 | 0.0001 * | (0.68, 1) | ||
GMin | right | 1 | 5 | 25 | 0.0002 * | (0, 0.32) |
2 | 6 | 24 | 0.0007 * | (0, 0.36) | ||
left | 1 | 28 | 13 | 0.0138 * | (0.54, 1) | |
2 | 30 | 11 | 0.0022 * | (0.60, 1) | ||
Pir | right | 1 | 9 | 21 | 0.0214 * | (0, 0.47) |
2 | 9 | 21 | 0.0214 * | (0, 0.47) | ||
left | 1 | 32 | 9 | 0.0002 * | (0.65, 1) | |
2 | 32 | 9 | 0.0002 * | (0.65, 1) |
Muscle | Rater | MV M(IQR) | p-Value | |
---|---|---|---|---|
Symptomatic Side | Asymtomatic Side | |||
GMax | 1 | 4682,39 (4274,82–5121,50) | 4845,78 (4424,54–5344,40) | 0.056 |
2 | 4669,15 (4289,28–5133,12) | 4837,75 (4421,27–5339,89) | 0.049 * | |
GMed | 1 | 2939,9 (2868,07–3274,08) | 3097,265 (2843,08–3474,76) | 0.030 * |
2 | 2969,92 (2679,19–3262,24) | 3106,24 (2870,69–3471,58) | 0.026 * | |
GMin | 1 | 841,21 (788,42–885,75) | 888,45 (845,21–980,39) | 0.002 * |
2 | 861,16 (803,65–984,58) | 904,47 (879,72–1043,52) | 0.021 * | |
Pir | 1 | 811,36 (767,26–1003,72) | 922,45 (799,12–1200,43) | 0.039 * |
2 | 805,73 (767,29–994,53) | 902,56 (823,88–1227,51) | 0.007 * |
Muscle | Rater | n = (CSAleft < CSAright) | n = (CSAright < CSAleft) | p-Value | 95% Confidence Interval |
---|---|---|---|---|---|
GMax | 1 | 17 | 12 | 0.229 | (0.42, 1) |
2 | 16 | 13 | 0.355 | (0.38, 1) | |
GMed | 1 | 21 | 8 | 0.012 * | (0.56, 1) |
2 | 21 | 8 | 0.012 * | (0.56, 1) | |
GMin | 1 | 18 | 11 | 0.132 | (0.45, 1) |
2 | 18 | 11 | 0.132 | (0.45, 1) | |
Pir | 1 | 14 | 15 | 0.229 | (0, 0.58) |
2 | 17 | 12 | 0.229 | (0.42, 1) |
Muscle | Side | Chronic LBP Patients | Healthy Volunteers | ||
---|---|---|---|---|---|
Concordance Correlation | ICC | Concordance Correlation | ICC | ||
GMax | right | 0.998 | 0.999 | 0.998 | 0.999 |
left | 0.996 | 0.996 | 0.996 | 0.997 | |
GMed | right | 0.998 | 0.998 | 0.998 | 0.998 |
left | 0.998 | 0.998 | 0.998 | 0.998 | |
GMin | right | 0.955 | 0.955 | 0.955 | 0.955 |
left | 0.952 | 0.952 | 0.952 | 0.952 | |
Pir | right | 0.988 | 0.988 | 0.988 | 0.988 |
left | 0.989 | 0.989 | 0.989 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frącz, W.; Matuska, J.; Szyszka, J.; Dobrakowski, P.; Szopka, W.; Skorupska, E. The Cross-Sectional Area Assessment of Pelvic Muscles Using the MRI Manual Segmentation among Patients with Low Back Pain and Healthy Subjects. J. Imaging 2023, 9, 155. https://doi.org/10.3390/jimaging9080155
Frącz W, Matuska J, Szyszka J, Dobrakowski P, Szopka W, Skorupska E. The Cross-Sectional Area Assessment of Pelvic Muscles Using the MRI Manual Segmentation among Patients with Low Back Pain and Healthy Subjects. Journal of Imaging. 2023; 9(8):155. https://doi.org/10.3390/jimaging9080155
Chicago/Turabian StyleFrącz, Wiktoria, Jakub Matuska, Jarosław Szyszka, Paweł Dobrakowski, Wiktoria Szopka, and Elżbieta Skorupska. 2023. "The Cross-Sectional Area Assessment of Pelvic Muscles Using the MRI Manual Segmentation among Patients with Low Back Pain and Healthy Subjects" Journal of Imaging 9, no. 8: 155. https://doi.org/10.3390/jimaging9080155
APA StyleFrącz, W., Matuska, J., Szyszka, J., Dobrakowski, P., Szopka, W., & Skorupska, E. (2023). The Cross-Sectional Area Assessment of Pelvic Muscles Using the MRI Manual Segmentation among Patients with Low Back Pain and Healthy Subjects. Journal of Imaging, 9(8), 155. https://doi.org/10.3390/jimaging9080155