Three-Dimensional Bone-Image Synthesis with Generative Adversarial Networks
Abstract
:1. Introduction
1.1. Generative Modeling
1.2. Case Example: 3D Bone-Image Synthesis
1.3. Main Contributions
2. Background
2.1. Generative Adversarial Networks
2.2. High-Resolution Synthesis
2.3. GAN Inversion
2.4. GANs in Medical Imaging
3. Methods
3.1. Data Acquisition and Preprocessing
3.2. Architecture
3.2.1. 3D Progressive Growing GAN
3.2.2. 3D Style-Based GAN
- https://www.youtube.com/watch?v=Dicd6cEaZp8 (3D-ProGAN) (accessed on 25 October 2024)
- https://www.youtube.com/watch?v=TbKN0CPWvHE (3D-StyleGAN) (accessed on 25 October 2024)
3.3. Validation
- The originally proposed FID relies on the Inception v3 classification network that was pre-trained on 2D images from ImageNet [41], so this measure is not directly applicable to 3D data. Therefore, from each scan, two axial slices at random positions are selected and used for FID validation. This measure is denoted by .
- Each scan of the 98 patients was evaluated directly after measurement by a medical expert for motion artifacts and given a visual grading score (VGS) score between 1 (best) and 5 (worst), as described by Sode et al. [43] and reiterated by Whittier et al. [19]. Using this rating, a 3D ResNet classifier has been trained. FID using features by the VGS classifier are denoted with . Images with a score of 4 or 5 (17% in total) were excluded from GAN training to avoid the network replicating motion artifacts.
3.4. Training
3.5. GAN Inversion
4. Results and Discussion
4.1. Image Quality
- https://www.youtube.com/watch?v=K8UbsFTSaqE (3D-ProGAN) (accessed on 25 October 2024)
- https://www.youtube.com/watch?v=4VPDUZ3Pbk8 (3D-StyleGAN) (accessed on 25 October 2024)
4.2. Image Transition
4.3. Style Mixing
4.4. Attribute Editing
4.5. Expert Validation
5. Conclusions and Future Impact
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | computed tomography |
DL | deep learning |
DXA | dual-energy X-ray absorptiometry |
FID | Frechet Inception Distance |
GAN | generative adversarial network |
HA-GAN | hierarchical amortized generative adversarial network |
HR-pQCT | High-resolution peripheral quantitative computed tomography |
MRI | magnetic resonance imaging |
ProGAN | progressive growing generative adversarial network |
StyleGAN | style-based generative adversarial network |
VGS | visual grading score |
WGAN | Wasserstein generative adversarial network |
Tb.BMD | trabecular bone mineral density |
Ct.BMD | cortical bone mineral density |
Appendix A. Generator Configurations
Type | o.c.s. | in | Activ. | |
---|---|---|---|---|
d1 | Dense | 8064 | z | |
r1 | Reshape | 128 | d1 | |
u1 | Upsample | 128 | r1 | |
c11 | Conv3 × 3 × 3 | 128 | u1 | swish |
c12 | Conv3 × 3 × 3 | 128 | c11 | swish |
u2 | Upsample | 128 | c12 | |
c21 | Conv3 × 3 × 3 | 128 | u2 | swish |
c22 | Conv3 × 3 × 3 | 128 | c21 | swish |
u3 | Upsample | 128 | c22 | |
c31 | Conv3 × 3 × 3 | 64 | u3 | swish |
c32 | Conv3 × 3 × 3 | 64 | c31 | swish |
u4 | Upsample | 128 | c32 | |
c41 | Conv3 × 3 × 3 | 32 | u4 | swish |
c42 | Conv3 × 3 × 3 | 32 | c41 | swish |
u5 | Upsample | 128 | c42 | |
c51 | Conv3 × 3 × 3 | 16 | u5 | swish |
c52 | Conv3 × 3 × 3 | 16 | c51 | swish |
out | Conv3 × 3 × 3 | 1 | c52 | sigmoid |
Type | o.c.s. | in | Activ. | |
---|---|---|---|---|
m1 | Dense | 512 | z | LReLU |
m2 | Dense | 512 | m1 | LReLU |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
w | Dense | 128 | m5 | LReLU |
s1 | Dense | 128 | w | |
s2 | Dense | 128 | w | |
⋮ | ⋮ | ⋮ | ⋮ | |
s15 | Dense | 16 | w | |
c11 | Demod3 × 3 × 3 | 128 | cc, s1 | |
c12 | Noise | 128 | c11 | LReLU |
up1 | Upsample | 128 | c12 | |
c13 | Demod3 × 3 × 3 | 128 | up1, s2 | |
c14 | Noise | 128 | c13 | LReLU |
c15 | Demod3 × 3 × 3 | 128 | c14, s3 | |
c16 | Noise | 128 | c15 | LReLU |
c21 | Demod3 × 3 × 3 | 128 | c16, s4 | |
c22 | Noise | 128 | c21 | LReLU |
up2 | Upsample | 128 | c22 | |
c23 | Demod3 × 3 × 3 | 128 | up2, s5 | |
c24 | Noise | 128 | c23 | LReLU |
c25 | Demod3 × 3 × 3 | 128 | c24, s6 | |
c26 | Noise | 128 | c25 | LReLU |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
c51 | Demod3 × 3 × 3 | 16 | c46, s13 | |
c52 | Noise | 16 | c51 | LReLU |
up5 | Upsample | 16 | c52 | |
c53 | Demod3 × 3 × 3 | 128 | up5, s14 | |
c54 | Noise | 16 | c53 | LReLU |
c55 | Demod3 × 3 × 3 | 128 | c54, s15 | |
c56 | Noise | 16 | c55 | LReLU |
out | Conv3 × 3 × 3 | 1 | c56 | sigmoid |
Appendix B. Training Details
Appendix C. Further Visualizations
References
- Sahiner, B.; Pezeshk, A.; Hadjiiski, L.M.; Wang, X.; Drukker, K.; Cha, K.H.; Summers, R.M.; Giger, M.L. Deep learning in medical imaging and radiation therapy. Med. Phys. 2019, 46, e1–e36. [Google Scholar] [CrossRef]
- Gruber, N.; Galijasevic, M.; Regodic, M.; Grams, A.E.; Siedentopf, C.; Steiger, R.; Hammerl, M.; Haltmeier, M.; Gizewski, E.R.; Janjic, T. A deep learning pipeline for the automated segmentation of posterior limb of internal capsule in preterm neonates. Artif. Intell. Med. 2022, 132, 102384. [Google Scholar] [CrossRef]
- Lenchik, L.; Heacock, L.; Weaver, A.A.; Boutin, R.D.; Cook, T.S.; Itri, J.; Filippi, C.G.; Gullapalli, R.P.; Lee, J.; Zagurovskaya, M.; et al. Automated segmentation of tissues using CT and MRI: A systematic review. Acad. Radiol. 2019, 26, 1695–1706. [Google Scholar] [CrossRef]
- Mahapatra, D.; Bozorgtabar, B.; Garnavi, R. Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med Imaging Graph. 2019, 71, 30–39. [Google Scholar] [CrossRef]
- Fetty, L.; Bylund, M.; Kuess, P.; Heilemann, G.; Nyholm, T.; Georg, D.; Löfstedt, T. Latent space manipulation for high-resolution medical image synthesis via the StyleGAN. Z. Für Med. Phys. 2020, 30, 305–314. [Google Scholar] [CrossRef]
- Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15, 20170387. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Advances in Neural Information Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27. [Google Scholar]
- Wang, L.; Chen, W.; Yang, W.; Bi, F.; Yu, F.R. A state-of-the-art review on image synthesis with generative adversarial networks. IEEE Access 2020, 8, 63514–63537. [Google Scholar] [CrossRef]
- Burlina, P.M.; Joshi, N.; Pacheco, K.D.; Liu, T.A.; Bressler, N.M. Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration. JAMA Ophthalmol. 2019, 137, 258–264. [Google Scholar] [CrossRef]
- Angermann, C.; Haltmeier, M.; Siyal, A.R. Unsupervised Joint Image Transfer and Uncertainty Quantification Using Patch Invariant Networks. In Computer Vision—ECCV 2022 Workshops; Karlinsky, L., Michaeli, T., Nishino, K., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 61–77. [Google Scholar]
- Wolterink, J.M.; Dinkla, A.M.; Savenije, M.H.; Seevinck, P.R.; van den Berg, C.A.; Išgum, I. Deep MR to CT synthesis using unpaired data. In Proceedings of the Simulation and Synthesis in Medical Imaging: Second International Workshop, SASHIMI 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, 10 September 2017; Proceedings 2. pp. 14–23. [Google Scholar]
- Peláez-Vegas, A.; Mesejo, P.; Luengo, J. A Survey on Semi-Supervised Semantic Segmentation. arXiv 2023, arXiv:2302.09899. [Google Scholar]
- Pinaya, W.H.; Tudosiu, P.D.; Dafflon, J.; Da Costa, P.F.; Fernandez, V.; Nachev, P.; Ourselin, S.; Cardoso, M.J. Brain imaging generation with latent diffusion models. In Proceedings of the Deep Generative Models: Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, 22 September 2022; pp. 117–126. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017, arXiv:1710.10196. [Google Scholar]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8110–8119. [Google Scholar]
- Xia, W.; Zhang, Y.; Yang, Y.; Xue, J.H.; Zhou, B.; Yang, M.H. Gan inversion: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 3121–3138. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Seff, A.; Zhang, Y.; Song, S.; Funkhouser, T.; Xiao, J. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv 2015, arXiv:1506.03365. [Google Scholar]
- Boutroy, S.; Bouxsein, M.L.; Munoz, F.; Delmas, P.D. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 2005, 90, 6508–6515. [Google Scholar] [CrossRef] [PubMed]
- Whittier, D.E.; Boyd, S.K.; Burghardt, A.J.; Paccou, J.; Ghasem-Zadeh, A.; Chapurlat, R.; Engelke, K.; Bouxsein, M.L. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos. Int. 2020, 31, 1607–1627. [Google Scholar] [CrossRef] [PubMed]
- Whittier, D.E.; Samelson, E.J.; Hannan, M.T.; Burt, L.A.; Hanley, D.A.; Biver, E.; Szulc, P.; Sornay-Rendu, E.; Merle, B.; Chapurlat, R.; et al. A Fracture Risk Assessment Tool for High Resolution Peripheral Quantitative Computed Tomography. J. Bone Miner. Res. 2023, 38, 1234–1244. [Google Scholar] [CrossRef]
- Buie, H.R.; Campbell, G.M.; Klinck, R.J.; MacNeil, J.A.; Boyd, S.K. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 2007, 41, 505–515. [Google Scholar] [CrossRef]
- Neeteson, N.J.; Besler, B.A.; Whittier, D.E.; Boyd, S.K. Automatic segmentation of trabecular and cortical compartments in HR-pQCT images using an embedding-predicting U-Net and morphological post-processing. Sci. Rep. 2023, 13, 252. [Google Scholar] [CrossRef]
- Samelson, E.J.; Broe, K.E.; Xu, H.; Yang, L.; Boyd, S.; Biver, E.; Szulc, P.; Adachi, J.; Amin, S.; Atkinson, E.; et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): A prospective study. Lancet Diabetes Endocrinol. 2019, 7, 34–43. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Song, Y.; Sohl-Dickstein, J.; Kingma, D.P.; Kumar, A.; Ermon, S.; Poole, B. Score-based generative modeling through stochastic differential equations. arXiv 2020, arXiv:2011.13456. [Google Scholar]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least squares generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2794–2802. [Google Scholar]
- Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral Normalization for Generative Adversarial Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, QC, Canada, 30 April–3 May 2018. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. In Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning, PMLR, Sydney, NSW, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long beach, CA, USA, 15–20 June 2019; pp. 4401–4410. [Google Scholar]
- Karras, T.; Aittala, M.; Hellsten, J.; Laine, S.; Lehtinen, J.; Aila, T. Training generative adversarial networks with limited data. Adv. Neural Inf. Process. Syst. 2020, 33, 12104–12114. [Google Scholar]
- Karras, T.; Aittala, M.; Laine, S.; Härkönen, E.; Hellsten, J.; Lehtinen, J.; Aila, T. Alias-free generative adversarial networks. Adv. Neural Inf. Process. Syst. 2021, 34, 852–863. [Google Scholar]
- Tov, O.; Alaluf, Y.; Nitzan, Y.; Patashnik, O.; Cohen-Or, D. Designing an encoder for stylegan image manipulation. ACM Trans. Graph. (TOG) 2021, 40, 133. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, B. Closed-form factorization of latent semantics in gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1532–1540. [Google Scholar]
- Zhu, J.; Shen, Y.; Zhao, D.; Zhou, B. In-domain gan inversion for real image editing. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XVII 16. pp. 592–608. [Google Scholar]
- Ren, Z.; Stella, X.Y.; Whitney, D. Controllable medical image generation via generative adversarial networks. In IS&T International Symposium on Electronic Imaging; NIH Public Access: Bethesda, MA, USA, 11–28 June 2021; Volume 33. [Google Scholar]
- Hong, S.; Marinescu, R.; Dalca, A.V.; Bonkhoff, A.K.; Bretzner, M.; Rost, N.S.; Golland, P. 3d-stylegan: A style-based generative adversarial network for generative modeling of three-dimensional medical images. In Proceedings of the Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, 1 October 2021; Proceedings 1. pp. 24–34. [Google Scholar]
- Sun, L.; Chen, J.; Xu, Y.; Gong, M.; Yu, K.; Batmanghelich, K. Hierarchical amortized GAN for 3D high resolution medical image synthesis. IEEE J. Biomed. Health Inform. 2022, 26, 3966–3975. [Google Scholar] [CrossRef] [PubMed]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Chen, S.; Ma, K.; Zheng, Y. Med3d: Transfer learning for 3d medical image analysis. arXiv 2019, arXiv:1904.00625. [Google Scholar]
- Sode, M.; Burghardt, A.J.; Pialat, J.B.; Link, T.M.; Majumdar, S. Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia. Bone 2011, 48, 1291–1297. [Google Scholar] [CrossRef]
- Kynkäänniemi, T.; Karras, T.; Laine, S.; Lehtinen, J.; Aila, T. Improved precision and recall metric for assessing generative models. In Proceedings of the Annual Conference on Neural Information Processing Systems 2019, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Shen, Y.; Gu, J.; Tang, X.; Zhou, B. Interpreting the latent space of gans for semantic face editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9243–9252. [Google Scholar]
tr | prec | rec | |||||||
---|---|---|---|---|---|---|---|---|---|
3D-ProGAN | |||||||||
5 | 16 | 20 | 4 × 10−3 | 5 | 23.54 | 0.044 | 0.182 | 0.91 | 0.91 |
1.8 | 16 | 20 | 4 × 10−3 | 5 | 23.39 | 0.045 | 0.233 | 0.95 | 0.86 |
5 | 12 | 20 | 4 × 10−3 | 5 | 25.98 | 0.080 | 0.333 | 0.94 | 0.90 |
1.8 | 12 | 20 | 4 × 10−3 | 5 | 27.05 | 0.044 | 0.454 | 0.96 | 0.83 |
5 | 20 | 20 | 3 × 10−3 | 7 | 21.59 | 0.040 | 0.219 | 0.95 | 0.86 |
1.8 | 20 | 20 | 3 × 10−3 | 7 | 23.31 | 0.259 | 0.274 | 0.97 | 0.82 |
3D-StyleGAN | |||||||||
1 | 16 | 20 | 4 × 10−3 | 6 | 26.29 | 1.478 | 0.157 | 0.94 | 0.89 |
0.8 | 16 | 20 | 4 × 10−3 | 6 | 28.99 | 1.343 | 0.258 | 0.98 | 0.78 |
1 | 16 | 16 | 2 × 10−3 | 6 | 25.91 | 0.198 | 0.329 | 0.93 | 0.86 |
0.8 | 16 | 16 | 2 × 10−3 | 6 | 28.11 | 0.883 | 0.571 | 0.97 | 0.75 |
1 | 16 | 20 | 4 × 10−3 | 5 | 26.32 | 0.290 | 0.151 | 0.93 | 0.85 |
0.8 | 16 | 20 | 4 × 10−3 | 5 | 29.07 | 0.509 | 0.206 | 0.96 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angermann, C.; Bereiter-Payr, J.; Stock, K.; Degenhart, G.; Haltmeier, M. Three-Dimensional Bone-Image Synthesis with Generative Adversarial Networks. J. Imaging 2024, 10, 318. https://doi.org/10.3390/jimaging10120318
Angermann C, Bereiter-Payr J, Stock K, Degenhart G, Haltmeier M. Three-Dimensional Bone-Image Synthesis with Generative Adversarial Networks. Journal of Imaging. 2024; 10(12):318. https://doi.org/10.3390/jimaging10120318
Chicago/Turabian StyleAngermann, Christoph, Johannes Bereiter-Payr, Kerstin Stock, Gerald Degenhart, and Markus Haltmeier. 2024. "Three-Dimensional Bone-Image Synthesis with Generative Adversarial Networks" Journal of Imaging 10, no. 12: 318. https://doi.org/10.3390/jimaging10120318
APA StyleAngermann, C., Bereiter-Payr, J., Stock, K., Degenhart, G., & Haltmeier, M. (2024). Three-Dimensional Bone-Image Synthesis with Generative Adversarial Networks. Journal of Imaging, 10(12), 318. https://doi.org/10.3390/jimaging10120318