Three-Dimensional Aeroelastic Investigation of a Novel Convex Bladed H-Darrieus Wind Turbine Based on a Two-Way Coupled Computational Fluid Dynamics and Finite Element Analysis Approach
Abstract
:1. Introduction
2. Formulation of the Fluid–Structure Interaction
2.1. Mathematical Formulation
2.2. Fluid Structure Interaction Model Setup
2.3. Geometry
2.4. Boundary Conditions
2.5. Blade Materials
2.6. Meshing Strategy and Solution Mesh Grid Independency
2.6.1. Meshing Strategy
2.6.2. Grid Independence Solution Study
2.6.3. Time Step Sensitivity
3. FSI Model Validation
4. Results and Discussions
4.1. Maximum Average Displacement and Stress
4.2. Performances
4.3. Wake Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jha, A. Wind Turbine Technology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Beardmore, P.; Johnson, C. The potential for composites in structural automotive applications. Compos. Sci. Technol. 1986, 26, 251–281. [Google Scholar] [CrossRef]
- Bianchini, A.; Marten, D.; Tonini, A.; Balduzzi, F.; Ferrara, G.; Paschereit, C.O. Implementation of the “virtual camber” transformation into the open source software qblade: Validation and assessment. Energy Procedia 2018, 148, 210–217. [Google Scholar] [CrossRef]
- Immarigeon, J.-P.; Holt, R.; Koul, A.; Zhao, L.; Wallace, W.; Beddoes, J. Lightweight materials for aircraft applications. Mater. Charact. 1995, 35, 41–67. [Google Scholar] [CrossRef]
- Schubel, P.J.; Crossley, R.J. Wind turbine blade design. Energies 2012, 5, 3425–3449. [Google Scholar] [CrossRef]
- Duflou, J.R.; Deng, Y.; Van Acker, K.; Dewulf, W. Do fiber-reinforced polymer composites provide environmentally benign alternatives a life-cycle-assessment-based study. MRS Bull. 2012, 37, 374–382. [Google Scholar] [CrossRef]
- Kalkanis; Psomopoulos, C.; Kaminaris, S.; Pachos, P. Wind turbine blade composite materials—End of life treatment methods. Energy Procedia 2019, 157, 1136–1143. [Google Scholar] [CrossRef]
- Psomopoulos, C.S.; Kalkanis, K.; Kaminaris, S.; Pachos, P. A review of the poten- tial for the recovery of wind turbine blade waste materials. Recycling 2019, 4, 7. [Google Scholar] [CrossRef]
- Ramirez-Tejeda, K.; Turcotte, D.A.; Pike, S. Unsustainable wind turbine blade disposal practices in the united states: A case for policy intervention and technological innovation. New Solut. A J. Environ. Occup. Health Policy 2017, 26, 581–598. [Google Scholar] [CrossRef]
- Krishna, V.R.; Sanaka, S.P.; Pardhasaradhi, N.; Rao, B.R. Hydro-elastic computational analysis of a marine propeller using two-way fluid structure interaction. J. Ocean Eng. Sci. 2022, 7, 280–291. [Google Scholar] [CrossRef]
- Sodja, J.; De Breuker, R.; Nozak, D.; Drazumeric, R. Assessment of low-fidelity fluid-structure interaction model for flexible propeller blades. Aero. Sci. Technol. 2018, 78, 71–88. [Google Scholar] [CrossRef]
- Castelli, M.R.; Monte, A.D.; Queresimin, M.; Benini, E. Numerical evaluation of aerodynamic and inertial contributions to darrieus wind turbine blade deformation. Renew. Energy 2013, 51, 101–112. [Google Scholar] [CrossRef]
- Ke, S.; Yu, W.; Cao, Y.; Wang, T. Aerodynamic force and comprehensive mechanical performance of a large wind turbine during a typhoon based on wrf/cfd nesting. Appl. Sci. 2018, 8, 1982. [Google Scholar] [CrossRef]
- Marinic-Kragc, I.; Vucina, D.; Milas, Z. Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization. Energy 2019, 167, 841–852. [Google Scholar] [CrossRef]
- Liu, W.; Xiao, Q. Investigation on darrieus type straight blade vertical axis wind turbine with flexible blade. Ocean. Eng. 2015, 110, 339–356. [Google Scholar] [CrossRef]
- Eldemerdash, A.S.; Leweke, T. Fluid–structure interaction of a flexible rotor in water. J. Fluids Struct. 2021, 103, 259. [Google Scholar] [CrossRef]
- Fakhfekh, M.; Ben Amira, W.; Abid, M.; Maalej, A. Numerical simulations of the wake and deformations of a flexible rotor blade in a turbulent flow. Phys. Fluids 2023, 35, 055138. [Google Scholar] [CrossRef]
- Souaissa, K.; Ghiss, M.; Bentaher, H.; Chrigui, M. Comparative analysis of the performance of small H-darrieus for different pitch control strategies. Proc. Inst. Mech. Eng. Part A J. Power Energy 2023, 237, 341–353. [Google Scholar] [CrossRef]
- Souaissa, K.; Ghiss, M.; Chrigui, M.; Bentaher, H.; Maalej, A. A comprehensive analysis of aerodynamic flow around H-darrieus rotor with camber-bladed profile. Wind. Eng. 2019, 43, 459–475. [Google Scholar] [CrossRef]
- Felippa, C.; Park, K. Staggered transient analysis procedures for coupled mechanical systems: Formulation. Comput. Methods Appl. Mech. Eng. 1980, 24, 61–111. [Google Scholar] [CrossRef]
- Felippa, C.A.; Park, K.; Farhat, C. Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 2001, 190, 3247–3270. [Google Scholar] [CrossRef]
- Fakhfekh, M.; Ben Amira, W.; Abid, M.; Maalej, A. Exploring the influence of flexibility on rotor performance in turbulent flow environments. Eur. J. Mech. B/Fluids 2025, 109, 199–212. [Google Scholar] [CrossRef]
- Khalid, S.S.; Zhang, L.; Zhang, X.W.; Sun, K. Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach. J. Zhejiang Univ. SCIENCE A 2013, 14, 574–582. [Google Scholar] [CrossRef]
- Liu, B.; Yan, Q.; Wei, W. Numerical investigations of the flow induced oscillation of a torque converter. Eng. Appl. Comput. Fluid Mech. 2018, 12, 270–281. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of blades N | 3 |
Diameter D [m] | 1 |
Height H [m] | 1.065 |
Swept area [m2] | 1.065 |
Solidity σ | 0.32 |
Chord C (z) [m] straight blade | 0.1665 |
Chord C(z) [m] convex blade | 0.1z2 + 0.067 |
Airfoil | NACA4312 |
Density (kg/m3) | Young Module (GPa) | Poisson Coefficient | |
---|---|---|---|
Carbon fiber composite (M1) | 1565 | 54.65 | 0.306 |
Aluminum allow (M2) | 2680 | 73 | 0.33 |
Glass-fiber-reinforced epoxy composite (M3) | 1600 | 30 | 0.3 |
Cell Number | Cp | Cp-Ref | Error % | |
---|---|---|---|---|
Mesh 1 | 2,145,210 | 0.288 | 0.3 | 4 |
Mesh 2 | 2,690,881 | 0.290 | 0.3 | 3.4 |
Mesh 3 | 3,254,541 | 0.293 | 0.3 | 2.3 |
Mesh 4 | 3,797,835 | 0.295 | 0.3 | 1.6 |
Element Size (mm) | Maximum Displacement of the Structure (mm) | Relative Error (%) | |
---|---|---|---|
Mesh 1 | 3 | 29.22 | - |
Mesh 2 | 4 | 29.82 | 2 |
Mesh 3 | 5 | 30 | 6 |
Mesh 4 | 6 | 30.9 | 3 |
Δt | Cp | Cp-Ref | Error (%) |
---|---|---|---|
0.01 | 0.27 | 0.3 | 10 |
0.05 | 0.285 | 0.3 | 5 |
0.075 | 0.3 | 0.3 | 0 |
0.005 | 0.309 | 0.3 | 3 |
0.0025 | 0.309 | 0.3 | 3 |
Parameter | Dimension |
---|---|
Turbine diameter | 4 m |
Number of blades | 4 |
Blade span | 5.5 m |
Blade profile | NACA 0018 |
Velocity | 3.5 m/s |
Material | Steel |
Fluid | Water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbeji, T.; Ben Amira, W.; Souaissa, K.; Ghiss, M.; Bentaher, H.; Ben Fredj, N. Three-Dimensional Aeroelastic Investigation of a Novel Convex Bladed H-Darrieus Wind Turbine Based on a Two-Way Coupled Computational Fluid Dynamics and Finite Element Analysis Approach. Fluids 2025, 10, 17. https://doi.org/10.3390/fluids10010017
Elbeji T, Ben Amira W, Souaissa K, Ghiss M, Bentaher H, Ben Fredj N. Three-Dimensional Aeroelastic Investigation of a Novel Convex Bladed H-Darrieus Wind Turbine Based on a Two-Way Coupled Computational Fluid Dynamics and Finite Element Analysis Approach. Fluids. 2025; 10(1):17. https://doi.org/10.3390/fluids10010017
Chicago/Turabian StyleElbeji, Tarek, Wael Ben Amira, Khaled Souaissa, Moncef Ghiss, Hatem Bentaher, and Nabil Ben Fredj. 2025. "Three-Dimensional Aeroelastic Investigation of a Novel Convex Bladed H-Darrieus Wind Turbine Based on a Two-Way Coupled Computational Fluid Dynamics and Finite Element Analysis Approach" Fluids 10, no. 1: 17. https://doi.org/10.3390/fluids10010017
APA StyleElbeji, T., Ben Amira, W., Souaissa, K., Ghiss, M., Bentaher, H., & Ben Fredj, N. (2025). Three-Dimensional Aeroelastic Investigation of a Novel Convex Bladed H-Darrieus Wind Turbine Based on a Two-Way Coupled Computational Fluid Dynamics and Finite Element Analysis Approach. Fluids, 10(1), 17. https://doi.org/10.3390/fluids10010017