From Random Perturbation to Precise Targeting: A Comprehensive Review of Methods for Studying Gene Function in Monascus Species
Abstract
:1. Introduction
2. Genetic Transformation Promotes the Construction of a Controllable Mutation Library
2.1. Chemical and Physical Genetic Transformation Techniques
2.2. ATMT: A Type of Biological Genetic Transformation Technique
3. Site-Specific Gene Editing Facilitates the Genetic Resource Mining of Monascus spp.
4. Precise Gene Editing by Sequence-Specific Nucleases
4.1. CRISPR/Cas System Has Been Developed as an Effective Gene Editing Tool
4.2. Application of the CRISPR/Cas9 System to Gene Editing for Monascus spp.
4.3. Precise Base Editing
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Knox, B.P.; Keller, N.P. Key players in the regulation of fungal secondary metabolism. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Zeilinger, S., Martín, J., García-Estrada, C., Eds.; Springer: New York, NY, USA, 2015; pp. 13–28. [Google Scholar]
- Barbosa, R.N.; Leong, S.L.; Vinnere-Pettersson, O.; Chen, A.J.; Souza-Motta, C.M.; Frisvad, J.C.; Samson, R.A.; Oliveira, N.T.; Houbraken, J. Phylogenetic analysis of Monascus and new species from honey, pollen and nests of stingless bees. Stud. Mycol. 2017, 86, 29–51. [Google Scholar] [CrossRef] [PubMed]
- Park, H.G.; Stamenova, E.K.; Jong, S.C. Phylogenetic relationships of Monascus species inferred from the ITS and the partial β-tubulin gene. Bot. Bull. Acad. Sin. 2004, 45, 325–330. [Google Scholar]
- Huang, Y.; Chen, J.; Chen, Q.; Yang, C. Effects of main nutrient sources on improving Monascus pigments and saccharifying power of Monascus purpureus in submerged fermentation. Fermentation 2023, 9, 696. [Google Scholar] [CrossRef]
- Tong, A.; Lu, J.; Huang, Z.; Huang, Q.; Zhang, Y.; Farag, M.A.; Liu, B.; Zhao, C. Comparative transcriptomics discloses the regulatory impact of carbon/nitrogen fermentation on the biosynthesis of. Food Chem. X 2022, 13, 100250. [Google Scholar] [CrossRef]
- Wen, Q.; Cao, X.; Chen, Z.; Xiong, Z.; Liu, J.; Cheng, Z.; Zheng, Z.; Long, C.; Zheng, B.; Huang, Z. An overview of Monascus fermentation processes for monacolin K production. Open Chem. 2020, 18, 10–21. [Google Scholar] [CrossRef]
- Patakova, P. Monascus secondary metabolites: Production and biological activity. J. Ind. Microbiol. Biotechnol. 2013, 40, 169–181. [Google Scholar] [CrossRef]
- Sabater, M.; Maas, R.F.M.; Fink, J. Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutat. Res. 1999, 444, 7–16. [Google Scholar] [CrossRef]
- Lee, B.K.; Park, N.H.; Piao, H.Y.; Chung, W.J. Production of red pigments by Monascus purpureus in submerged culture. Biotechnol. Bioprocess Eng. 2001, 6, 341–346. [Google Scholar] [CrossRef]
- Agboyibor, C.; Kong, W.B.; Chen, D.; Zhang, A.M.; Niu, S.Q. Monascus pigments production, composition, bioactivity and its application: A review. Biocatal. Agric. Biotechnol. 2018, 16, 433–447. [Google Scholar] [CrossRef]
- Bhoi, A.; Yadu, B.; Chandra, J.; Keshavkant, S. Mutagenesis: A coherent technique to develop biotic stress resistant plants. Plant Stress 2021, 3, 100053. [Google Scholar] [CrossRef]
- Johnsborg, O.; Eldholm, V.; Varstein, L.S. Natural genetic transformation: Prevalence, mechanisms and function. Res. Microbiol. 2007, 158, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Kornpointner, C.; Scheibelreiter, J.; Halbwirth, H. Snailase: A promising tool for the enzymatic hydrolysis of flavonoid glycosides from plant extracts. Front Plant Sci 2022, 13, 889184. [Google Scholar] [CrossRef] [PubMed]
- Campoy, S.; Pérez, F.; Martín, J.F.; Gutiérrez, S.; Liras, P. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr. Genet. 2003, 43, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Norlha, T.; Lee, I. Protoplast preparation and regeneration from young hyphae of the citrinin producing fungus Monascus tuber. Food Sci. Biotechnol. 2005, 14, 543–546. [Google Scholar]
- Lihong, Z.; Guoqin, L.; Zhengxiang, W.; Jian, Z. Preparation and regeneration of protoplasts from Monascus purpureus and genetic transformation system. Hereditas 2005, 27, 423–428. [Google Scholar]
- Riach, M.B.R.; Kinghorn, J.R. Genetic transformation and vector developments in filamentous fungi. In Fungal Genetics: Principles and Practice; Bos, C., Ed.; CRC Press: Boca Raton, FL, USA, 1996; pp. 456–481. [Google Scholar]
- Gong, Y.; Li, S.; Liu, Q.; Chen, F.; Shao, Y. CRISPR/Cas9 system is a suitable gene targeting editing tool to filamentous fungus Monascus pilosus. Appl. Microbiol. Biotechnol. 2024, 108, 154. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, P.; Zhao, Y.; Jin, W.; Li, Z.; Ge, Y. Optimizing of genetic transformation conditions from Monascus anka by restriction enzyme-mediated dna integration (REMI). Proc. Hubei Agric. Sci. 2012, 51, 4129–4133. [Google Scholar]
- Kahmann, R.; Basse, C. REMI (restriction enzyme mediated integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants. Eur. J. Plant Pathol. 1999, 105, 221–229. [Google Scholar] [CrossRef]
- Lakrod, K.; Chaisrisook, C.; Skinner, D.Z. Transformation of Monascus purpureus to hygromycin B resistance with cosmid pMOcosX reduces fertility. Electron. J. Biotechnol. 2003, 6, 143–147. [Google Scholar]
- Lakrod, K.; Chaisrisook, C.; Skinner, D.Z. Expression of pigmentation genes following electroporation of albino Monascus purpureus. J. Ind. Microbiol. Biotechnol. 2003, 30, 369–374. [Google Scholar] [CrossRef]
- Lin, J. A Method for Direct Delivery of Exogenous DNA into Resting Spores of Monascus. CN106191097A, 7 December 2016. [Google Scholar]
- Gong, P.; Shi, R.; Liu, Y.; Luo, Q.; Wang, C.; Chen, W. Recent advances in Monascus pigments produced by Monascus purpureus: Biosynthesis, fermentation, function, and application. LWT 2023, 185, 115162. [Google Scholar] [CrossRef]
- Qian, C.; Jie, L.; Xiaoguang, L. Establishment of Agrobacterium tumefaciens-mediated transformation system of Aspergillus ochraceus. Biotechnol. Bull. 2014, 27, 199–204. [Google Scholar]
- Yanchun, S.; Ruyi, W.; Yuedi, D.; Fusheng, C.; Bijun, X. Construction of T-DNA insertional library of Monascus mediated by Agrobacterium tumefaciens and characteristic analysis of the color mutants. Mycosystema 2006, 25, 247–255. [Google Scholar]
- Yanchun, S.; Yuedi, D.; Fusheng, C.; Bijun, X. Isolation of DNA Sequence Flanking T-DNA by thermal asymmetric interlaced PCR from Monascus pigment-producing mutants. Microbiology 2007, 2, 323–326. [Google Scholar]
- Balakrishnan, B.; Karki, S.; Chiu, S.H.; Kim, H.J.; Kwon, H.J. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 2013, 97, 6337–6345. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Wong, S.T.; Yang, H.L.W. Full-privacy secured search engine empowered by efficient genome-mapping algorithms. IEEE J. Biomed. Health Inform. 2023, 27, 5155–5164. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Shao, Y. From traditional application to genetic mechanism: Opinions on Monascus research in the new milestone. Front. Microbiol. 2021, 12, 659907. [Google Scholar] [CrossRef]
- He, Y.; Zhu, L.; Dong, X.; Li, A.; Xu, S.; Wang, L.; Shao, Y. Metabolic regulation of two pksCT gene transcripts in Monascus ruber impacts citrinin biosynthesis. J. Fungi 2023, 9, 1174. [Google Scholar] [CrossRef]
- He, Y.; Shao, Y.; Chen, F. Efficient gene targeting in ligase IV-deficient Monascus ruber M7 by perturbing the non-homologous end joining pathway. Fungal Biol. 2014, 118, 846–854. [Google Scholar] [CrossRef]
- Yi, H.; Qingpei, L.; Yanchun, S.; Fusheng, C. ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl. Microbiol. Biotechnol. 2013, 97, 5175–5176. [Google Scholar]
- Amare, M.G.; Keller, N.P. Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genet. Biol. 2014, 66, 8. [Google Scholar] [CrossRef]
- Khaldi, N.; Seifuddin, F.T.; Turner, G.; Haft, D.; Nierman, W.C.; Wolfe, K.H.; Fedorova, N.D. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 2010, 47, 736–741. [Google Scholar] [CrossRef]
- Xu, N.; Li, L.; Chen, F. Construction of gene modification system with highly efficient and markerless for Monascus ruber M7. Front. Microbiol. 2022, 13, 952323. [Google Scholar] [CrossRef]
- Shipman, S.L.; Nivala, J.; Macklis, J.D.; Church, G.M. Molecular recordings by directed CRISPR spacer acquisition. Science 2016, 353, aaf1175. [Google Scholar] [CrossRef]
- Na, X.; Yunxia, G.; Yanchun, S.; Shushan, G.; Shouwen, C.; Fusheng, C. Research progress of CRISPR-Cas system and anti-CRISPR protein in microorganisms. Acta Microbiol. Sin. 2021, 61, 2172–2191. [Google Scholar]
- Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, E2579–E2586. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.L.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.B.; Jiang, W.Y.; Marraffini, L.A. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef]
- Tang, G.; Man, H.; Wang, J.; Zou, J.; Zhao, J.; Han, J. An oxidoreductase gene ctnD involved in citrinin biosynthesis in Monascus purpureus verified by CRISPR/Cas9 gene editing and overexpression. Mycotoxin Res. 2023, 39, 247–259. [Google Scholar] [CrossRef]
- Nodvig, C.S.; Nielsen, J.B.; Kogle, M.E.; Mortensen, U.H.; Jae, Y. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE 2015, 10, e0133085. [Google Scholar] [CrossRef]
- Liu, W.; An, C.; Shu, X.; Meng, X.; Yao, Y.; Zhang, J.; Chen, F.; Xiang, H.; Yang, S.; Gao, X.; et al. A dual-plasmid CRISPR/Cas system for mycotoxin elimination in polykaryotic industrial fungi. ACS Synth. Biol. 2020, 9, 2087–2095. [Google Scholar] [CrossRef]
- Yoon, H.R.; Han, S.; Shin, S.C.; Yeom, S.C.; Kim, H.J. Improved natural food colorant production in the filamentous fungus Monascus ruber using CRISPR-based engineering. Food Res. Int. 2023, 167, 112651. [Google Scholar] [CrossRef] [PubMed]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.D.; Li, Z.L.; Wang, W.S.; Liu, J.K.; Liu, L.S.; Zhu, G.L.; Karthik, L.; Wang, M.; Wang, K.F.; Wang, Z. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun 2019, 10, 3672. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Li, S.; Zhao, D.; Yuan, X.; Zhou, Y.; Chen, F.; Shao, Y. From Random Perturbation to Precise Targeting: A Comprehensive Review of Methods for Studying Gene Function in Monascus Species. J. Fungi 2024, 10, 892. https://doi.org/10.3390/jof10120892
Gong Y, Li S, Zhao D, Yuan X, Zhou Y, Chen F, Shao Y. From Random Perturbation to Precise Targeting: A Comprehensive Review of Methods for Studying Gene Function in Monascus Species. Journal of Fungi. 2024; 10(12):892. https://doi.org/10.3390/jof10120892
Chicago/Turabian StyleGong, Yunxia, Shengfa Li, Deqing Zhao, Xi Yuan, Yin Zhou, Fusheng Chen, and Yanchun Shao. 2024. "From Random Perturbation to Precise Targeting: A Comprehensive Review of Methods for Studying Gene Function in Monascus Species" Journal of Fungi 10, no. 12: 892. https://doi.org/10.3390/jof10120892
APA StyleGong, Y., Li, S., Zhao, D., Yuan, X., Zhou, Y., Chen, F., & Shao, Y. (2024). From Random Perturbation to Precise Targeting: A Comprehensive Review of Methods for Studying Gene Function in Monascus Species. Journal of Fungi, 10(12), 892. https://doi.org/10.3390/jof10120892