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Abstract: Most existing methods for magnetic resonance imaging (MRI) reconstruction with deep
learning use fully supervised training, which assumes that a fully sampled dataset with a high signal-
to-noise ratio (SNR) is available for training. In many circumstances, however, such a dataset is highly
impractical or even technically infeasible to acquire. Recently, a number of self-supervised methods
for MRI reconstruction have been proposed, which use sub-sampled data only. However, the majority
of such methods, such as Self-Supervised Learning via Data Undersampling (SSDU), are susceptible to
reconstruction errors arising from noise in the measured data. In response, we propose Robust SSDU,
which provably recovers clean images from noisy, sub-sampled training data by simultaneously
estimating missing k-space samples and denoising the available samples. Robust SSDU trains the
reconstruction network to map from a further noisy and sub-sampled version of the data to the
original, singly noisy, and sub-sampled data and applies an additive Noisier2Noise correction term
upon inference. We also present a related method, Noiser2Full, that recovers clean images when
noisy, fully sampled data are available for training. Both proposed methods are applicable to any
network architecture, are straightforward to implement, and have a similar computational cost to
standard training. We evaluate our methods on the multi-coil fastMRI brain dataset with novel
denoising-specific architecture and find that it performs competitively with a benchmark trained on
clean, fully sampled data.

Keywords: deep learning; image reconstruction; magnetic resonance imaging

1. Introduction

Magnetic resonance imaging (MRI) has excellent soft tissue contrast and is the gold
standard modality for a number of clinical applications. A hindrance of MRI, however, is
its lengthy acquisition time, which is especially challenging when high spatio-temporal
resolution is required, such as for dynamic imaging [1]. To address this, there has been
substantial research attention on methods that reduce the acquisition time without signifi-
cantly sacrificing the diagnostic quality [2–4]. In MRI, measurements are acquired in the
Fourier representation of the image, referred to in the MRI literature as “k-space”. Since the
acquisition time is roughly proportional to the number of k-space samples, acquisitions can
be accelerated by sub-sampling. A reconstruction algorithm is then employed to estimate
the image from the sub-sampled data.

In recent years, reconstructing sub-sampled MRI data with neural networks has
emerged as a state-of-the-art method [5–7]. The majority of existing methods assume that
a fully sampled dataset is available for fully supervised training. However, for many
applications, no such dataset is available and may be difficult or even infeasible to acquire
in practice [8–10]. In response, there have been a number of self-supervised methods
proposed, which train on sub-sampled data only [11–14]. Many such methods have
shown promise in a broad range of clinical applications where fully sampled data are
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challenging to acquire, including dynamic imaging [15], late gadolinium enhancement
cardiac imaging [16], simultaneous multi-slice functional imaging [17], and multi-contrast
imaging [18].

Most existing training methods assume that the measurement noise is small and does
not explicitly denoise sampled data. Section 3 shows theoretically that without explicit
denoising, the reconstruction quality degrades when the measurement noise increases.
This is a particular concern for low SNR measurements, where the SNR is the ratio of the
signal and noise amplitudes, and the SNR is considered “low” when the measurement
noise contributes substantially to the difference between the noisy, sub-sampled data and
the ground truth. For instance, the data acquired from low-cost, low-field scanners are
considered having a low SNR [19–21].

The goal of this paper is to develop a theoretically rigorous, computationally efficient
approach for simultaneous self-supervised reconstruction and denoising that performs com-
parably to fully supervised training. The primary challenge of this goal is that many existing
self-supervised denoising methods are not applicable to data that are also sub-sampled [22],
depend on paired instances of noisy data [23], or are substantially computationally more
expensive than fully supervised learning in training time [24].

This paper proposes a modification of Self-Supervised Learning via Data Undersam-
pling (SSDU) [13] that also removes measurement noise, building on the present authors’
recent work [25] on the connection between SSDU and the multiplicative version of the
self-supervised denoising method Noisier2Noise [26]. Our method, which we term “Robust
SSDU”, combines SSDU with the additive Noisier2Noise. In brief, Robust SSDU trains a
network to map from a further sub-sampled and further noisy version of the training data
to the original sub-sampled, noisy data. Then, upon inference, a correction is applied to the
network output that ensures that the clean (i.e., noise-free) image is recovered as expected.

We find that Robust SSDU performs competitively with a fully supervised benchmark
where the network is trained on clean, fully sampled data, despite training on noisy, sub-
sampled data only. We also propose a related method that recovers clean images for the
simpler task of noisy data being available for training when fully sampled, which we term
“Noisier2Full”. Both Noisier2Full and Robust SSDU are fully mathematically justified and
have minimal additional computational expenses compared to standard training.

The existing method most similar to Robust SSDU is Noise2Recon-Self-Supervised
(Noise2Recon-SS) [27]. The proposed method, Robust SSDU, has a number of key difference
to Noise2Recon-SS, including a loss weighting and an additive Noisier2Noise correction
term upon inference that statistically guarantees the recovery of the ground truth; see
Section 4.3 for a detailed comparison. To our knowledge, Robust SSDU is the first method
that provably recovers clean images when only noisy, randomly sub-sampled data are
available for training. In practice, we find that Robust SSDU offers substantial image quality
improvements over Noise2Recon-SS and a two-fold reduction in computational cost during
training; see Section 5.

Notation

This paper uses notation consistent with [25]. We use the subscripts t and s to index
the training set T and test set S , respectively. For instance, data in the training and test set
are denoted by yt and ys, respectively. Random variables are represented as their instances
without indices and are capitalized if they are vectors. For instance, yt, ys ∽ Y for vectors
and MΩt , MΩs ∽ MΩ for matrices, where ∽ denotes that the left-hand side is an instance
of the random variable on the right-hand side.

We use Y0 to refer to the ground truth, Y to refer to the data, Ỹ to refer to the fur-
ther corrupted data, and Ŷ to refer to an estimate of the ground truth. We note that
Sections 2.1, 2.2, and 3 onward discuss different recovery tasks, so the definitions of, for
instance, the data, Y, and their instances are section-specific.
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2. Theory: Background

Image recovery with deep learning is a regression problem, so it is centered around
the conditional distribution Y0|Y, where Y0 and Y are the random variables associated
with the ground truth and data, respectively [28]. If the ground truth data y0,t ∽ Y0 are
available for training, fully supervised learning can be employed to characterize Y0|Y
directly [29]. This paper focuses on self-supervised learning, which concerns the task of
training a network to estimate the ground truth when the training data are yt ∽ Y so are
themselves corrupted [23,24,30,31].

The remainder of this section reviews key works from the self-supervised learning
literature that form the bases of the methods proposed in this paper. Section 2.1 presents
the case where the data corruption is Gaussian noise, and Section 2.2 presents the case
where the data corruption is sub-sampling.

2.1. Self-Supervised Denoising with Noisier2Noise

Denoising with deep learning aims to recover a clean q-dimensional vector from
noisy data:

ys = y0,s + ns, (1)

where ns is noise and s ∈ S indexes the test set. In MRI, noise in k-space is modeled as a
complex zero-mean Gaussian, ns ∽ CN (0, Σ2

n), where Σ2
n is a covariance matrix that can be

estimated, for instance, with an empty pre-scan [32]. We treat the noise as white, Σ2
n = σ2

n1,
noting that noise with non-trivial covariance can be whitened by left-multiplying ys with
the square root inverse of Σ2

n, denoted by Σ−1
n . Other noise distributions are discussed in

Section 6.
This paper focuses on the additive Noisier2Noise [26] because we find that it offers a

natural way to extend image reconstruction to low-SNR data; see Section 3. Noisier2Noise’s
training procedure consists of corrupting noisy training data with further noise and training
a network to recover a singly noisy image from a noisier image. Concretely, for each yt,
further noise is introduced:

ỹt = yt + ñt = y0,t + nt + ñt, (2)

where ñt ∽ CN (0, α2σ2
n1) for a constant α. Then, a network fθ with parameters θ is trained

to minimize the sum

θ̂ = arg min
θ

∑
t∈T

∥ fθ(ỹt)− yt∥2
2 (3)

where the symbol ∑ is used exclusively for summation herein. The following result states
that a simple transform of the trained network yields the ground truth in expectation
despite never seeing the ground truth during training. Here, and throughout this paper,
expectations are taken over all random variables.

Result 1. Consider the random variables Y = Y0 + N and Ỹ = Y + Ñ, where N and Ñ are
zero-mean Gaussians distributed with variances of σ2

n and α2σ2
n , respectively. Minimizing

θ∗ = arg min
θ

E[∥ fθ(Ỹ)− Y∥2
2|Ỹ] (4)

yields a network that satisfies

E[Y0|Ỹ] =
(1 + α2) fθ∗(Ỹ)− Ỹ

α2 . (5)

Proof. See Section 3.3 of [26].
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Here, Equation (4) can be thought of as Equation (3) in the limit of an infinite number
of samples and θ̂ as a finite sample approximation of θ∗. Result 1 states that a clean image
can be estimated in a conditional expectation by employing a correction term based on α. It
suggests the following procedure for estimating y0,s upon inference: corrupt the test data
ys with further noise, ỹs = ys + ñs; apply the trained network to the further noisy data,
fθ̂(ỹs); and correct the output using the right-hand side of Equation (5).

2.2. Self-Supervised Reconstruction with SSDU

This section focuses on the case where the data consist of noise-free, sub-sampled data:

ys = MΩs y0,s. (6)

Here, MΩs is a sampling mask, a diagonal matrix with a jth diagonal of 1 when j ∈ Ωs and
otherwise 0 for the sampling set Ωs ⊆ {1, 2, . . . , q}.

Self-supervised reconstruction consists of training a network to recover images when
only sub-sampled data is available for training: yt = MΩt y0,t [33]. This work focuses on the
popular method SSDU [13], which was theoretically justified in [25] via the multiplicative
noise version of Noiser2Noise [26]. In this framework, analogous to the further noise used
in Equation (2), the training data yt are further sub-sampled by applying a second mask with
the sampling set Λt ⊆ {1, 2, . . . , q} to yt:

ỹt = MΛt yt = MΛt∩Ωt y0,t, (7)

where MΛt∩Ωt = MΛt MΩt . Training consists of minimizing a loss function on indices in
Ωt \ Λt, such as

θ̂ = arg min
θ

∑
t∈T

∥MΩt\Λt
( fθ(ỹt)− yt)∥2

2, (8)

where MΩt\Λt
= (1− MΛt)MΩt . Although for theoretical ease we state SSDU with an ℓ2

loss here, it is known that other losses are possible [13].
Let pj = P[j ∈ Ω] and p̃j = P[j ∈ Λ]. Assuming that

pj > 0 ∀ j, (9)

p̃j < 1 ∀ {j : pj < 1}, (10)

the following result from [25] proves that SSDU recovers the clean image as expected.

Result 2. Consider the random variables Y = MΩY0 and Ỹ = MΛY. When Equations (9) and (10)
hold, minimizing

θ∗ = arg min
θ

E[∥MΩ\Λ( fθ(Ỹ)− Y)∥2
2|Ỹ] (11)

yields a network with parameters that satisfies

M(Λ∩Ω)cE[Y0|Ỹ] = M(Λ∩Ω)c fθ∗(Ỹ). (12)

Proof. See Appendix B of [25] (where [25] uses 1 − MΛ MΩ, this uses paper the more
compact notation M(Λ∩Ω)c , where superscript c denotes the complement of a set).

Result 2 states that the network correctly estimates Y0 in a conditional expectation
for indices not in Λ ∩ Ω. To estimate everywhere in k-space, one can overwrite sampled
indices or use data-consistent architecture; see [25] for details.
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3. Theory: Proposed Methods

The remainder of this paper considers the task of training a network to recover images
from data that are both noisy and sub-sampled:

ys = MΩs(y0,s + ns). (13)

It has been stated that when a network reconstructs noisy MRI data with a standard training
method, there is a denoising effect [20]. In the following, we are motivated by the need
for methods that explicitly remove noise by showing that the apparent noise removal is
in fact a “pseudo-denoising” effect due to the correct estimation of the ground truth in an
expectation only for indices in Ωc.

Consider the standard approach of training a network to map from noisy, sub-sampled
yt to noisy, fully sampled y0,t +nt. In terms of random variables, training consists of minimizing

θ∗ = arg min
θ

E[∥ fθ(Y)− (Y0 + N)∥2
2|Y], (14)

which gives a network that satisfies

fθ∗(Y) = E[Y0 + N|Y]. (15)

Equation (15) does not hold for completely arbitrary network architecture. The condi-
tions on fθ (which are also required for Results 1 and 2) are detailed in Section II-A of [25].
In brief, the Jacobian matrix J with the entries Jij = ∂ fθ(Y)j/∂θi must have maximally
linearly independent rows, which is expected for well-constructed architectures when the
number of parameters exceeds q. Throughout the remainder of this paper, we assume that
fθ satisfies this condition. We also assume that the optimizer is not stuck in a poor local
minimum so that the network is a good approximation of Equation (15) in practice.

It is instructive to examine how E[Y0 + N|Y] depends on the sampling mask Ω. Firstly,
for j /∈ Ω,

E[Y0,j + Nj|Y, j /∈ Ω] = E[Y0,j|Y] +E[Nj]

= E[Y0,j|Y], (16)

where we use the independence of Nj from Y when j /∈ Ω and E[Nj] = 0 by assumption.
For the alternative, j ∈ Ω,

E[Y0,j + Nj|Y, j ∈ Ω] = E[Yj|Y] = Yj (17)

where Y0,j + Nj = Yj for j ∈ Ω is used. The trained network therefore satisfies

fθ∗(Y) = E[Y0 + N|Y] = MΩcE[Y0|Y] + MΩY. (18)

Therefore, the network targets the noise-free Y0 in regions in Ωc but recovers the noisy Y
otherwise. As there is less total measurement noise present than Y0 + N, this gives the
impression of noise removal; however, we emphasize that the network does not remove the
noise in Y. Since the term “denoising” typically refers to the removal of noise from the input
data, we use the term “pseudo-denoising” to refer to the behavior stated in Equation (18).
Other than the conditions on fθ described above, this result is agnostic to the network
architecture so includes “unrolled” approaches that may have a regularization parameter
which is designed to trade off the model and consistency with the data.

We refer to this method described in this section as “Supervised w/o denoising”
throughout this paper. In the following, we propose methods that explicitly recover Y0 in a
conditional expectation from noisy, sub-sampled inputs in two cases: (A) the training data
is noisy and fully sampled; (B) the training data is noisy and sub-sampled. For tasks A and
B, we propose “Noisier2Full” and “Robust SSDU”, respectively.
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3.1. Noisier2Full for Fully Sampled, Noisy Training Data

This section proposes Noisier2Full, which extends the additive Noisier2Noise to
reconstruction tasks for noisy, fully sampled training data. Based on Equation (2), we
propose corrupting the measurements yt with further noise on the sampled indices:

ỹt = yt + MΩt ñt. (19)

Then, we minimize the loss between ỹt and the noisy, fully sampled training data y0,t + nt.
In terms of random variables,

θ∗ = arg min
θ

E[∥ fθ(Ỹ)− (Y0 + N)∥2
2|Ỹ]. (20)

Minimizing the ℓ2 norm gives a network that satisfies

fθ∗(Ỹ) = E[Y0 + N|Ỹ], (21)

which is recognizable as Equation (15) with Y replaced by Ỹ. Similarly to Equation (16), Nj

is independent of Ỹ when j /∈ Ω, so the ground truth is estimated in such regions:

E[Y0,j|Ỹ, j /∈ Ω] = E[Y0,j|Ỹ]. (22)

However, crucially, the expectation is conditional on Ỹ, not Y, so the additive Noisier2Noise
correction stated in Result 1 is applicable when j ∈ Ω:

E[Y0,j|Ỹ, j ∈ Ω] =
(1 + α2) fθ∗(Ỹ)j − Ỹj

α2 (23)

Although Result 1 is not specifically constructed for sub-sampled data, it is applicable here
because it is an entry-wise statistical relationship so can be applied to each index that has
the proper noise statistics. Therefore, Y0 can be estimated with

E[Y0|Ỹ] = MΩ

(
(1 + α2) fθ∗(Ỹ)− Ỹ

α2

)
+ MΩc fθ∗(Ỹ). (24)

In summary, Noisier2Full recovers Y0 in a conditional expectation by introducing further
noise to the sampled indices during training and correcting those indices upon inference
via additive Noisier2Noise. In the subsequent section, we show how this approach can be
extended to the more challenging case where the training data are also sub-sampled.

3.2. Robust SSDU for Sub-Sampled, Noisy Training Data

This section proposes Robust SSDU, which recovers clean images in a conditional
expectation when the training data are both noisy and sub-sampled. Robust SSDU combines
the approaches from Sections 2.1 and 2.2 to simultaneously reconstruct and denoise data;
see Figure 1 for a schematic. We propose combining Equations (2) and (7) to form a vector
that is further sub-sampled and additionally noisy:

ỹt = MΛt∩Ωt(yt + ñt). (25)

Recall that SSDU employs MΩ\Λ in the loss, which yields a network that estimates indices
in (Λ ∩ Ω)c; see Result 2. For Robust SSDU, we replace MΩ\Λ with MΩ so that the loss is

θ̂ = arg min
θ

∑
t∈T

∥MΩt( fθ(ỹt)− yt)∥2
2. (26)

In the following, we show that this change leads to estimation everywhere in k-space, not
just indices in (Λ ∩ Ω)c.
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Sub-sampled, noisy data 

Second mask

Further noise

Further sub-sampled and noisy Network output

Figure 1. The proposed self-supervised reconstruction and denoising method, Robust SSDU, which
extends the training procedure illustrated in Figure 1 of [25] to low-SNR data. The sub-sampled,
noisy training data yt are further sub-sampled by a mask MΛt and corrupted by further noise ñt,
yielding ỹt. The loss is computed between yt and fθ(ỹt) on Ωt.

Claim 1. Consider the random variables Y = MΩ(Y0 + N) and Ỹ = MΛ∩Ω(Y + Ñ), where N
and Ñ are zero-mean Gaussians distributed with variances of σ2

n and α2σ2
n , respectively. When

Equations (9) and (10) hold, minimizing

θ∗ = arg min
θ

E[∥MΩ( fθ(Ỹ)− Y)∥2
2|Ỹ] (27)

yields a network with parameters that satisfies

fθ∗(Ỹ) = E[Y0 + N|Ỹ]. (28)

Proof. See Appendix A.

The differences between Equation (27) and the standard SSDU loss Equation (11) are
the change from MΩ\Λ to MΩ and the inclusion of noise in the data, Y. Intuitively, since
MΩ = MΩ\Λ + MΛ∩Ω, the mask change extends Equation (11) to include entries in MΛ∩Ω.
Therefore, upon inference, the network learns to map to entries in M(Λ∩Ω)c , as stated in
Result 2, and MΛ∩Ω, which comes from the additional indices in the loss. In other words, it
learns to map to everywhere in k-space. The inclusion of noise in the target simply implies
that the network will learn to map to the noisy Y0 + N, as in Equation (15).
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Upon inference, we can use a similar approach to Section 3.1, applying the additive
Noisier2Noise correction on indices sampled in Ỹ. Since the indices sampled in Ỹ are Λ∩Ω,
the clean image Y0 is estimable with

E[Y0|Ỹ] = MΛ∩Ω

(
(1 + α2) fθ∗(Ỹ)− Ỹ

α2

)
+ M(Λ∩Ω)c fθ∗(Ỹ). (29)

Roughly speaking, Robust SSDU can be thought of as a generalization of Noisier2Full
to sub-sampled training data. Specifically, Robust SSDU is mathematically equivalent to
Noisier2Full when Ω = {1, 2, . . . , q} and there is a change in notation of Λ → Ω. More
broadly, Robust SSDU can be interpreted as the simultaneous application of additive and
multiplicative Noisier2Noise [25,26].

3.3. Loss Weighting of Noisier2Full and Robust SSDU

For Noisier2Full and Robust SSDU, the task during training and inference is not
identical; during training, the network maps from Ỹ to Y0 + N or MΩ(Y0 + N), while
upon inference, it maps from Ỹ to Y0 via the α-based correction term. Taking a similar
approach to [34,35], this section describes how this can be compensated for by modifying
the loss function in such a way that its gradient equals the gradient of the target loss in a
conditional expectation.

Claim 2. Consider the random variables Y = MΩ(Y0 + N) and Ỹ = Y + MΩÑ, where N and Ñ
are zero-mean Gaussians distributed with variances of σ2

n and α2σ2
n , respectively. We define

ŶNr2F = MΩ

(
(1 + α2) fθ(Ỹ)− Ỹ

α2

)
+ MΩc fθ(Ỹ) (30)

where fθ is an arbitrary function. Then,

∇θE
[∥∥ŶNr2F − Y0

∥∥2
2|Ỹ
]
= ∇θE

[∥∥∥WΩ( fθ(Ỹ)− Y0 − N)
∥∥∥2

2
|Ỹ
]

. (31)

where

WΩ =
1 + α2

α2 MΩ + MΩc . (32)

Proof. See Appendix B.

We therefore suggest replacing the Noisier2Full loss stated in Equation (20) with the
right-hand side of Equation (31), which increases the weight of the indices in Ω. Intuitively,
it uses the ratio of noise removed during training, which has the variance Var(Ñ) = α2σ2

n ,
and the noise removed upon inference, which has the variance Var(N + Ñ) = (1 + α2)σ2

n ,
to compensate for the difference between the task during training and inference. The
following result concerns the analogous expression for Robust SSDU.

Claim 3. Consider the random variables Y = MΩ(Y0 + N) and Ỹ = MΛ∩Ω(Y + Ñ), where N
and Ñ are zero-mean Gaussians distributed with variances of σ2

n and α2σ2
n , respectively. We define

ŶRSSDU = MΛ∩Ω

(
(1 + α2) fθ(Ỹ)− Ỹ

α2

)
+ M(Λ∩Ω)c fθ∗(Ỹ) (33)

where fθ is an arbitrary function. Then,

E
[∥∥ŶRSSDU − Y0

∥∥2
2|Ỹ
]
= ∇θE

[∥∥∥WΩ,Λ MΩ( fθ(Ỹ)− Y)
∥∥∥2

2
|Ỹ
]

(34)
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where

WΩ,Λ =
1 + α2

α2 MΛ∩Ω + P
1
2 MΩ\Λ (35)

and P = E[MΩ\Λ]
−1E[M(Λ∩Ω)c ].

Proof. See Appendix C.

The MΛ∩Ω coefficient has a similar role to the MΩ coefficient in Equation (31). The
MΩ\Λ coefficient compensates for the variable density of Ω and Λ and was first proposed
in [25], where it was shown to improve the reconstruction quality and robustness of the
distribution of Λ for standard SSDU without denoising (where [25] uses (1− K)−1, this
paper uses the more compact P).

The weightings can be thought of as entry-wise modifications of the learning rate [25].
Neither weighting matrices change θ∗, so the proofs of Noisier2Full and Robust SSDU from
Sections 3.1 and 3.2 hold. Rather, the role of the weights is to improve the finite-sample
case in practice, where θ∗ is estimated with θ̂; see Section 5 for an empirical evaluation.
Throughout the remainder of this paper, “Noisier2Full” and “Robust SSDU” refer to the
versions with the loss weightings proposed in this section and versions without such
weightings are explicitly referred to as “Unweighted Noisier2Full” and “Unweighted
Robust SSDU”.

4. Materials and Methods
4.1. Description of Data

We primarily used the multi-coil brain data from the publicly available fastMRI
dataset [36] (available from https://fastmri.med.nyu.edu, accessed on 1 October 2021). We
only used data that had 16 coils so that the training, validation, and test sets contained
2004, 320, and 224 slices, respectively. The slices were normalized so that the cropped RSS
estimate had a maximum of 1. Here, the cropped RSS was defined as Z((∑Nc

c |FHyc|2)
1
2 ),

where the subscript c refers to all entries on the cth coil, FH is the conjugate transpose of
the discrete Fourier transform, Nc is the number of coils, and Z is an operator that crops to
a central 320 × 320 region. RSS images were used for normalization and visualization only;
otherwise, the raw, complex, multi-coil, k-space data were used. We retrospectively sub-
sampled column-wise with the central 10 lines fully sampled and and the others randomly
drawn with polynomial density, with the probability density scaled to achieve a desired
acceleration factor, RΩ = q/ ∑j pj. For RΩ = 4 and σn = 0.04, we also trained the methods
on 2D Bernoulli sampling, where the sampling was random and independent, and also
with polynomial variable density. For each case, the distribution of MΛ was the same type
as the first [25]. The data were treated as noise-free, and we generated white, complex
Gaussian measurement noise with the standard deviation σn to simulate noisy conditions.

We also tested the methods’ performance on the 0.3T dataset M4Raw [37]. For this
dataset, which prospectively had a low SNR, no further noise was added. Rather, the noise
covariance matrix was estimated using the fully sampled image via a 30 × 30 square of
background from each corner and the data were whitened by left-multiplying with the
inverse covariance matrix so that all data had a noise standard deviation of 1. The same
column-wise sub-sampling was used as described above for the fastMRI data. Although
it was more realistic for the simulated noise setting of fastMRI, for M4Raw we had no
“ground truth”, so it was only possible to evaluate the methods’ performance qualitatively.

An implementation of our method in PyTorch is available on GitHub (https://github.
com/charlesmillard/robust_ssdu, accessed on 7 December 2023).

4.2. Comment on Proposed Methods in Practice

The theoretical guarantees for Noisier2Full and Robust SSDU use the further noisy,
possibly further sub-sampled ỹs as the input to the network upon inference. In practice, as

https://fastmri.med.nyu.edu
https://github.com/charlesmillard/robust_ssdu
https://github.com/charlesmillard/robust_ssdu
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suggested in the original Noisier2Noise [26] and SSDU [13] papers, we used ys as the input
to the network upon inference, so that the estimate

ŷs = MΩs

(
(1 + α2) fθ̂(ys)− ys

α2

)
+ MΩc

s fθ̂(ys) (36)

was used in place of Equations (24) and (29). Although this deviates from strict theory, and
is not guaranteed to be correct in a conditional expectation, we found that it achieves better
reconstruction performance in practice; see [25,26] for a detailed empirical evaluation. All
subsequent results for the proposed methods use this estimate upon inference.

4.3. Comparative Training Methods

The training methods evaluated in this paper are summarized in Table 1.
For the noise-free, fully sampled training data, fully supervised training could be

employed, where the loss was computed between the output of the network fθ(yt) and
the noise-free, fully sampled target y0,t; see Table 1. Although it was possible in princi-
ple to have higher-SNR data during training than upon inference by acquiring multiple
averages [37], such datasets would require an extended acquisition time and are rare in
practice. Nonetheless, training a network on this type of data via simulation is instruc-
tive as a best-case target. This method is referred to as the “fully supervised benchmark”
throughout this paper.

For the noisy, fully sampled training data, we employed three training methods: Un-
weighted Noisier2Full, Noisier2Full and the standard approach Supervised w/o denoising,
as described in Section 3. We did not compare them to Noise2Inverse [38] as it was designed
for learned, denoising but fixed reconstruction operators.

For the more challenging scenario where noisy, sub-sampled training data were avail-
able, we compared Robust SSDU to the original version of SSDU, which reconstructs
sub-sampled data but does not denoise. We refer to this as “Standard SSDU”. To our
knowledge, the only existing training method that explicitly aims to simultaneously re-
move noise and reconstruct incoherently sampled data in a fully self-supervised manner is
Noise2Recon-SS [27], which, like Robust SSDU, includes adding further noise to the sub-
sampled data. However, Noise2Recon-SS has a number of key differences to the method
proposed in this paper. With an ℓ2 k-space loss, training with Noise2Recon-SS consists
of minimizing

θ̂ = arg min
θ

∑
t∈T

∥MΩt\Λt
( fθ(MΛt yt)− yt)∥2

2 + λ∥ fθ(yt + MΩt ñt)− fθ(MΛt yt)∥2
2, (37)

where λ is a hand-selected weighting. We used λ = 1 throughout, which we found per-
formed reasonably well across the range of sampling patterns, noise levels, and datasets
explored. We note that it may be possible in principle to improve Noise2Recon-SS’s perfor-
mance by tuning λ to specific datasets, reconstruction patterns, and noise levels. However,
since no ground truth is available, such tuning cannot be performed quantitatively, so
fixing λ for all experiments is a reasonable reflection of the method’s performance in
practice. The ℓ2 loss in k-space was used so that it could be fairly compared to the other
methods in this paper, but we note that [27] used image-domain losses. The first term was
based on SSDU, and the second ensured that fθ(yt + MΩt ñt) and fθ(MΛt yt) yielded similar
outputs so that the method was in a sense robust to ñt. Upon inference, Noise2Recon-SS
uses ŷs = fθ̂(ys); there is no correction term. We emphasize that, unlike the proposed
Robust SSDU, there is no theoretical evidence that Noise2Recon-SS recovers a clean image
as expected.

In [20], an untrained denoising algorithm was appended to a reconstruction network.
To test this, we denoised the RSS output of Supervised w/o denoising and Standard SSDU
with the popular BM3D algorithm [39], which is designed for Gaussian noise. Although
the measurement noise was Gaussian, the reconstruction error of the RSS image was not
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Gaussian in general [40]. Therefore, unlike the proposed methods, BM3D did not accurately
model the noise characteristics [41]. Nonetheless, we found that these methods performed
reasonably well in practice.

Table 1. The training methods evaluated in this paper, where yt = MΩt (y0,t + nt) and the asterisk
denotes the proposed methods. Here, and throughout this paper, the subscripts t and s index the
training and test sets, respectively. The function BM3D(·) is defined here to include an RSS transform
so that the denoiser acts on the RSS image. The double lines are used to separate types of data
available for training. The unweighted variants of Noisier2Full and Robust SSDU, which are not
stated here for brevity, are equivalent to the weighted versions with WΩt = 1 and WΩt ,Λt = 1.

Name Training Data Loss Estimate upon Inference

Fully supervised benchmark y0,t ∑t∈T ∥ fθ(yt)− y0,t∥2
2 fθ(ys)

Supervised w/o denoising y0,t + nt ∑t∈T ∥ fθ(yt)− (y0,t + nt)∥2
2 fθ̂(ys)

Supervised with BM3D denoising y0,t + nt ∑t∈T ∥ fθ(yt)− (y0,t + nt)∥2
2 BM3D( fθ̂(ys))

Noisier2Full ∗ y0,t + nt ∑t∈T ∥WΩt ( fθ(yt + MΩt ñt)− (y0,t + nt))∥2
2 MΩs

(
(1+α2) f

θ̂
(ys )−ys

α2

)
+ MΩc

s
fθ̂(ys)

Standard SSDU yt ∑t∈T ∥MΩt\Λt ( fθ(MΛt yt)− yt)∥2
2 fθ̂(ys)

SSDU with BM3D yt ∑t∈T ∥MΩt\Λt ( fθ(MΛt yt)− yt)∥2
2 BM3D( fθ̂(ys))

Noise2Recon-SS yt ∑t∈T ∥MΩt\Λt ( fθ(MΛt yt)− yt)∥2
2+λ∥ fθ(yt + MΩt ñt)− fθ(MΛt yt)∥2

2 fθ̂(ys)

Robust SSDU ∗ yt ∑t∈T ∥WΩt ,Λt MΩt ( fθ(MΛt∩Ωt (yt + ñt))− yt)∥2
2 MΩs

(
(1+α2) f

θ̂
(ys )−ys

α2

)
+ MΩc

s
fθ̂(ys)

4.4. Network Architecture

For all methods considered in this paper, the function fθ is defined to be k-space to
k-space, but it is otherwise agnostic to the network architecture. Architectures can include
inverse Fourier transforms, so convolutional layers may be applied in the image domain.
We emphasize that the experiments in this paper are designed to compare the performance
of the training method, not to provide a comprehensive evaluation of possible architectures,
which is a somewhat orthogonal goal.

We employed a network architecture based on the Variational Network (VarNet) [7,42],
which is available as part of the fastMRI package [36]. VarNet consists of a coil sensitivity
map estimation module followed by a series of “cascades”. The k-space estimate at the kth
cascade takes the form

ŷk+1 = ŷk − ηk Min(ŷk − yin) + Gθk (ŷk) (38)

where yin and Min are the input k-space and sampling mask, respectively, and the t or s
index is dropped for legibility. We use the generic subscript in here because the input is not
the same for every method; for instance, the fully supervised training and Noisier2Full have
Min = MΩt and Min = MΛt∩Ωt , respectively. Here, ηk is a trainable parameter and Gθk (ŷk)
is a neural network with cascade-dependent parameters, θk, referred to as a “refinement
module”, which was an image-domain U-net [43] with real weights in [7,42].

VarNet was originally constructed for reconstruction only, without explicit denoising.
For joint reconstruction and denoising, we propose partitioning Gθk (ŷk) into two functions:

Gθk (ŷk) = MinGθD
k
(ŷk) + (1− Min)GθR

k
(ŷk). (39)

This refinement module is illustrated in Figure 2. We refer to the architecture with the
proposed refinement module as “Denoising VarNet” throughout this paper. We used a
U-net [43] for both GθD

k
(ŷk) and GθR

k
(ŷk), although we note that, in general, these functions

need not be the same. We used 5 cascades, giving a network with 2.5 × 107 parameters.
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P o osed V r et r fi e en mod l :

Figure 2. The refinement module for the proposed architecture Denoising VarNet, which trains two
networks in parallel, removing noise and aliasing separately.

4.5. Training Details

We used the Adam optimizer [44] and trained for 100 epochs with a learning rate of
10−3. The Ωt and nt were fixed but the Λt and ñt were re-generated once per epoch [45],
which we found considerably reduced susceptibility to overfitting. As in [25], we used the
same distribution of Λt as Ωt but with parameters selected to give a sub-sampling factor
of RΛ = q/ ∑j p̃j = 2 unless otherwise stated. The choice of α is discussed in Section 5.2.
Unless otherwise stated, the training methods were evaluated on data generated with
σn ∈ {0.02, 0.04, 0.06, 0.08} and RΩ ∈ {4, 8}. We note that the noise’s standard deviation,
not the SNR, was fixed and that for each training method, σn and RΩ, we trained a separate
network from scratch.

4.6. Performance Metrics

Since each of the methods were trained using a squared error loss in k-space, we
primarily focused on the k-space normalized mean squared error (NMSE) over the test
set, defined as 1

|S| ∑s∈S ∥ŷs − y0,s∥2
2/∥y0,s∥2

2 where ŷs is an estimate of k-space. Since the
score was in k-space, it was not possible to compute the NMSE of methods that employed
BM3D, which acted on the magnitude image so did not retain the complex phase. The
peak signal-to-noise ratio (PSNR) was also computed but was found to display very similar
trends to the NMSE so is not shown for brevity.

We also computed the mean structural similarity (SSIM) [46] on the RSS images. We
emphasize that the networks were not trained to minimize the SSIM directly, so such scores
are somewhat incidental to the primary NMSE results and not necessarily fundamental to
the method.
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5. Results
5.1. Evaluation of Denoising VarNet

To evaluate the performance of the proposed Denoising VarNet architecture, we
trained the best-case baseline for Standard VarNet with ten cascades and that for Denoising
VarNet with five cascades so that they had roughly the same number of parameters.
Figure 3 shows that Denoising VarNet outperformed Standard VarNet on the test set for all
considered RΩ and σn, especially for more challenging acceleration factors and noise levels.

0.02 0.04 0.06 0.08
Measurement noise σn

0.000

0.005

0.010

0.015

0.020
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 se

t N
M
SE

 d
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en

ce RΩ = 4
RΩ = 8

Figure 3. The difference between the test set loss of Standard VarNet and the proposed Denoising
VarNet for the benchmark training method. All differences are positive, showing that Denoising
VarNet outperformed Standard VarNet, especially for a large σn.

5.2. Robustness to α

To evaluate the robustness to α, we trained Noisier2Full, Robust SSDU, and their
weighted variants for α ∈ {0.05, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}. We focused solely on
the case where RΩ = 8 and σn = 0.06. The performance with the test set is shown in
Figure 4, which shows that the weighted versions were considerably more robust. The
weighted and unweighted minima were at α = 1 and 1.25 for Noisier2Full and α = 0.75
and 0.5 for Robust SSDU, respectively. We employed these values of α for all experiments
in Sections 5.3 and 5.4; we assumed that the tuned α at RΩ = 8 and σn = 0.06 was a
reasonable approximation of the optimum for every evaluated RΩ and σn.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Noise ratio α

0.30

0.35

0.40

0.45

Te
st
 se

t N
M
SE

Fully-supervised benchmark
Unweighted Noisier2Full
Noisier2Full
Unweighted Robust SSDU
Robust SSDU

Figure 4. The robustness to α of Noisier2Full, Robust SSDU, and their weighted versions at RΩ = 8
and σn = 0.06. The performance of the fully supervised benchmark, which did not depend on α,
is also shown. The weighted versions were substantially more robust, especially for small α: at
α = 0.05, the values of the Unweighted Noisier2Full and Robust SSDU, which are excluded from the
visualization, were 0.70 and 0.62, respectively.



Bioengineering 2024, 11, 1305 14 of 27

5.3. Task A: Fully Sampled, Noisy Training Data

Rows 3–5 of Table 2 show how the test set’s NMSE of networks trained on fully sam-
pled, noisy data compares to the fully supervised benchmark. Supervised w/o denoising’s
performance significantly degraded as σn increased; for RΩ = 8 and σn = 0.08, Supervised
w/o denoising’s test set loss was approximately double that of the fully supervised bench-
mark. In contrast, Noisier2Full consistently performed similarly to the benchmark; its
NMSE was within 0.008 for all σn and RΩ. The performance of Unweighted Noisier2Full
was slightly poorer than the weighted version, especially for high noise levels for the more
challenging acceleration factor of RΩ = 8. Two reconstruction examples are shown in
Figure 5. Here, and throughout this paper, the example reconstructions show the image-
domain RSS cropped to a central 320 × 320 region. The k-space’s NMSE and SSIM are also
shown. Appendix D shows the mean SSIM for the test set for all methods.

Reference
Supervised

w/o denoising

Fully-supervised

benchmark
Noisy

Supervised with 

BM3D denoising
Noisier2Full* 

Noisy & 

sub-sampled

NMSE: 0.904

SSIM: 0.71

 

NMSE: 0.241

SSIM: 0.97

NMSE: 0.331

SSIM: 0.92

NMSE: -

SSIM: 0.94

NMSE: 0.243

SSIM: 0.97

NMSE: 0.377

SSIM: 0.92

 

Figure 5. Reconstructions when fully sampled, noisy data are available for training. “Noisy” and
“Noisy and sub-sampled” refer to the RSS reconstruction of y0,s + ns and MΩs (y0,s + ns), respectively.
While there is clear noise in Supervised w/o denoising’s reconstruction, the proposed method, which
is indicated with an asterisk, performs very similarly to the fully supervised benchmark. The red
arrows show artifacts for Supervised with BM3D, and the green arrows show the improved recovery
and contrast of fine features for Noisier2Full.
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Table 2. The methods’ test set’s NMSE with the fastMRI multi-coil brain dataset with standard errors.
The double lines separate the type of training data available and bold font is used to denote the best
performance within each category. Methods that used BM3D could not be included because the
NMSE was computed in k-space and BM3D acted on the magnitude image, so the complex phase
was not retained. Table A1 shows a similar table for the SSIM. Asterisks denote proposed methods.

Acceleration Factor RΩ = 4 Acceleration Factor RΩ = 8

σn = 0.02 σn = 0.04 σn = 0.06 σn = 0.08 σn = 0.02 σn = 0.04 σn = 0.06 σn = 0.08

Noisy and
sub-sampled 0.210 ± 0.01 0.434 ± 0.01 0.809 ± 0.02 1.333 ± 0.02 0.207 ± 0.02 0.337 ± 0.02 0.554 ± 0.02 0.857 ± 0.02

Fully
supervised
benchmark

0.167 ± 0.02 0.313 ± 0.02 0.537 ± 0.02 0.850 ± 0.02 0.160 ± 0.02 0.217 ± 0.02 0.301 ± 0.02 0.414 ± 0.02

Supervised
w/o denoising 0.187 ± 0.02 0.412 ± 0.02 0.788 ± 0.02 1.314 ± 0.02 0.178 ± 0.02 0.310 ± 0.02 0.527 ± 0.02 0.833 ± 0.02

Unweighted
Noisier2Full * 0.170 ± 0.02 0.319 ± 0.02 0.548 ± 0.02 0.870 ± 0.02 0.164 ± 0.02 0.223 ± 0.02 0.315 ± 0.02 0.441 ± 0.02

Noisier2Full * 0.169 ± 0.02 0.312 ± 0.02 0.538 ± 0.02 0.853 ± 0.02 0.162 ± 0.02 0.220 ± 0.02 0.305 ± 0.02 0.422 ± 0.02

Standard
SSDU 0.188 ± 0.01 0.413 ± 0.01 0.787 ± 0.01 1.310 ± 0.01 0.180 ± 0.01 0.312 ± 0.01 0.531 ± 0.01 0.838 ± 0.01

Noise2Recon-
SS 0.180 ± 0.02 0.377 ± 0.02 0.623 ± 0.02 0.975 ± 0.02 0.173 ± 0.02 0.260 ± 0.02 0.452 ± 0.02 0.691 ± 0.02

Unweighted
Robust SSDU * 0.170 ± 0.02 0.314 ± 0.02 0.548 ± 0.02 0.863 ± 0.02 0.162 ± 0.02 0.222 ± 0.02 0.309 ± 0.02 0.424 ± 0.02

Robust SSDU * 0.169 ± 0.02 0.315 ± 0.02 0.543 ± 0.02 0.862 ± 0.02 0.162 ± 0.02 0.224 ± 0.02 0.309 ± 0.02 0.423 ± 0.02

5.4. Task B: Sub-Sampled, Noisy Training Data

Rows 6–9 of Table 2 show the test set’s loss for the methods designed for sub-sampled,
noisy training data. Robust SSDU performed within 0.012 of the fully supervised bench-
mark, despite only having access to noisy, sub-sampled training data. Noise2Recon-SS
performed well in some cases, particularly at RΩ = 4, but was consistently outperformed
by both variants of Robust SSDU. To determine whether the observed NMSE improve-
ments in Robust SSDU were statistically significant, a one-sided Wilcoxon signed-rank test
was performed with a p-value of 0.01. It was found that the NMSE differences in both
versions of Robust SSDU compared to Standard SSDU and Noise2Recon-SS were indeed
statistically significant for both acceleration factors and all noise levels. Differences between
Unweighted Robust SSDU and Robust SSDU were not significant except for the case where
RΩ = 4 and σn = 0.06.

Figure 6 shows example reconstructions, qualitatively demonstrating similar perfor-
mance to the fully supervised benchmark. Figure 7 compares Standard SSDU and Robust
SSDU using clinical expert bounding boxes from fastMRI+ [47], which shows that the
proposed method had substantially enhanced pathology visualization. For the 2D Bernoulli
sampling, we found that a lower RΛ and α achieved better performance in practice; we
used RΛ = 1.5 and α = 0.5. Figure 8 compares Standard SSDU and Robust SSDU for the
2D Bernoulli sampled data at RΩ = 4 and σn = 0.04, showing that the denoising effect was
not specific to column-wise sampling.
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Reference Standard SSDU
Fully-supervised 

benchmark
Robust SSDU*Noise2Recon-SS

Noisy &

sub-sampled

SSDU with

BM3D denoising

Figure 6. Example reconstructions for networks trained on noisy, sub-sampled data. The proposed
method, Robust SSDU, highlighted with an asterisk, performed very similarly to the fully super-
vised benchmark, even at RΩ = 8. Red arrows highlight hallucinated features in the SSDU with
BM3D image, whereas green arrows highlight good recovery of edge features in the Robust SSDU
reconstructions.

Reference Standard SSDU Robust SSDU*

NMSE: 0.500

SSIM: 0.74

NMSE: 0.336

SSIM: 0.84

Figure 7. Clinical regions of interest annotated via fastMRI+ [47]. The top image shows a resection
cavity and the bottom shows a lacunar infarct. The proposed method, Robust SSDU, highlighted
with an asterisk, has improved sharpness compared to Standard SSDU, which has reconstruction
errors arising from measurement noise. The arrow highlights improved recovery of infarct geometry.
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Standard SSDU Robust SSDU*Reference

Figure 8. Example reconstruction for 2D Bernoulli sampling. For Standard SSDU, the test set’s NMSE
and SSIM were 0.383 and 0.72, respectively, and for Robust SSDU, highlighted with an asterisk, the
test set’s NMSE and SSIM were 0.316 and 0.75, respectively.

6. Discussion

Figure 3 shows that the proposed Denoising VarNet consistently outperformed the
Standard VarNet architecture. We understand this to be a consequence of the difference
between the distributions of errors due to sub-sampling or measurement noise; Standard
VarNet removed both contributions to the error in a single U-net per cascade, while
Denoising VarNet simplified the task by decomposing the contributions to the error so that
each of the two U-nets per cascade were specialized for the two distinct error distributions.

The improvement in robustness for the weighted versions, shown in Figure 4, was
especially prominent for a small α. For instance, at α = 0.05, the unweighted variant of
Noisier2Full was 0.50 from the benchmark, while the weighted variant was only 0.04 away.
For a large α, the α-based weighting was closer to 1, so the weighted Noisier2Full tended
to the unweighted method and the difference in performance was small. For instance,
when α = 1.75, the α-based weighting was 1.33, so it had a relatively marginal effect.
Although the performances of the methods were reasonably similar for a tuned α, we
recommend using the weighted version in practice due to its improved robustness to α. We
emphasize that α tuning was only possible here because the noise and sub-sampling were
simulated retrospectively; if the data were prospectively noisy and sub-sampled, it would
not possible to evaluate the fidelity of the estimate and the ground truth. Robustness to
hyperparameters such as α is therefore of great importance for the method’s usefulness
in practice.

The examples in Figures 5–7 show that proposed methods are qualitatively very
similar to the fully supervised benchmark and substantially improve over methods without
denoising, whose reconstructions are visibly corrupted with measurement noise. The
examples exhibited some loss of detail and blurring at tissue boundaries, especially at
RΩ = 8. However, the extent of detail loss was similar in the benchmark, indicating that
the loss of detail was not a limitation of the proposed methods. Rather, the qualitative
performance was limited by other factors such as the architecture, dataset, and choice of
loss function. This can also be explained in part by noting that the high-frequency regions
of k-space, which provide fine details, typically have a smaller signal so are particularly
challenging to recover in the presence of significant measurement noise.
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Table 2 shows that the NMSE of the noisy, sub-sampled input to the network was
lower for the higher acceleration factor. This counter-intuitive incidental finding can be
understood by noting that the spectral density was typically highly concentrated towards
the center, so much of the k-space had a small magnitude. Therefore, even for moderate
noise levels, zero may have been closer to the ground truth than the noisy data, so masking
out such regions may have improved the NMSE. This was also reflected in the NMSE
scores of the reconstructed images. However, we note that this effect was not generally
reflected in the qualitative performance of the methods, which we found more frequently
exhibited oversmoothing and artifacts for higher acceleration. We believe this to be because
the masked data were biased, so it was more difficult to achieve a high-quality qualitative
performance in practice.

The pseudo-denoising effect described in Section 3 is visible in Figure 5, showing
less noise in Supervised w/o denoising than Noisy. Table 2 shows that Standard SSDU
performs very similarly to Supervised w/o denoising quantitatively and exhibits a similar
pseudo-denoising effect in Figure 6.

Although Noise2Recon-SS improved over Standard SSDU, there was a substantial
difference between its performance and that of the proposed Robust SSDU both qualita-
tively and quantitatively. In [27], Noise2Recon-SS was not compared to a fully supervised
benchmark; it was only shown to have improved performance compared to Standard SSDU,
consistent with the results here. The experimental evaluation in [27] focused on robustness
to out of distribution (OOD) shifts, where the training and inference measurement noise
variances were not necessarily the same. Another difference was that Noise2Recon-SS’s
simulated noise in [27] had a standard deviation randomly selected from a fixed range,
while the experiments here fixed the simulated noise’s standard deviation so that it could
be properly compared to the proposed methods.

Robust SSDU required only a few additional cheap computational steps compared
to standard training: the addition or multiplication of the further noise and sub-sampling
mask, respectively, and the α-based correction upon inference. Accordingly, the compute
time and memory requirements of the proposed methods were found to be very similar to
those of Supervised w/o denoising or Standard SSDU. In contrast, Noise2Recon-SS used
both MΛt yt and yt + MΩt ñt as the network inputs during training so required twice as
many forward passes to train the network compared to Robust SSDU. Accordingly, we
found that Noise2Recon-SS required approximately twice as much memory as and took
around two times longer per epoch than the proposed methods.

In general, Supervised with BM3D and SSDU with BM3D both performed well quali-
tatively. We also found that in many cases these methods had an mean SSIM that exceeded
even the fully supervised benchmark; see Appendix D for a detailed discussion. However,
for some images, such as those shown with the red arrows in Figures 5 and 6, these methods
generated potentially clinically misleading artifacts. We believe this to be a consequence of
the mismatch between its Gaussian noise model and the actual error of the RSS estimate,
which could lead to unreliable noise removal, especially at a high RΩ. We also found
that SSDU with BM3D often led to more oversmoothing and less crisp tissue boundaries
than Robust SSDU, which is particularly prominent in the M4Raw examples of Figure 9.
Another disadvantage was the computational expense of the BM3D algorithm; we found
that the reconstruction time of SSDU with BM3D was around 100 times longer per slice
than that of Robust SSDU upon inference.

Another existing method designed for noisy, sub-sampled training data is the robust
equivariant imaging (REI) method [48,49]. We did not compare REI as it was designed for
reconstruction tasks with a fixed sampling pattern: the Ωt is the same for all t. This sampling
set assumption is central to its use of equivariance and contrasts with the methods proposed
here, which assumed that the sampling mask was an instance of a random variable that
satisfied pj > 0 everywhere. However, REI’s suggestion to use Stein’s unbiased risk
estimate (SURE) [50] to remove measurement noise would be feasible in combination with
SSDU and warrants further investigation in future work.
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The theoretical work presented in this paper only applies to the case of ℓ2 minimization,
which can lead to blurry reconstructions. However, it has been established that Standard
SSDU can be applied with other losses such as an entry-wise mixed ℓ1-ℓ2 loss in k-space [13].
We found that Robust SSDU with an ℓ2 loss with Λ ∩ Ω and mixed ℓ1-ℓ2 loss with Ω \ Λ
also performed competitively with a suitable benchmark in practice (results are not shown
for brevity). Future work includes establishing whether Robust SSDU can be modified to
be applicable to other loss functions, including potential losses in the RSS image.

Supervised

w/o denoising

Noisy & 

sub-sampled

SSDU with 

BM3D
Robust SSDU*Standard SSDUNoisy

Figure 9. The qualitative performance of the proposed method with the prospectively noisy, low-
field dataset M4Raw. While SSDU with BM3D and Robust SSDU (highlighted with an asterisk)
both demonstrate a denoising effect, Robust SSDU exhibits improved contrast and visibly sharper
boundaries, highlighted by the green arrows.

The methods presented here also assumed that the distribution of MΩ was fixed;
a modification of the method for dealing with a range of sub-sampling patterns and
acceleration factors is a potential avenue for future work. It would also be desirable to
develop an approach that automatically tunes α and the distribution of MΛ, whose optimal
values are specific to the noise model, MΩ distribution, and dataset.

The additive Noisier2Noise was designed for Gaussian noise; the α-based correction
term applied upon inference is derived on the assumption that the noise is Gaussian [26].
Therefore, the naive application of Robust SSDU would not be expected to perform well for
other measurement noise distributions. Future work includes extending the framework to
other distributions and sources of error such as other system noise or physiological motion,
which has a more complex distribution that may itself be learned [51,52].

Although Denoising VarNet was found to offer improved performance compared to
Standard VarNet, the evaluation of possible architectures for simultaneous denoising and
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reconstruction was not extensive in this paper and warrants future work. For instance,
simpler models or the combination of multiple models in parallel [53] may improve com-
putational expense or reconstruction quality in practice. Improvements to the network
architecture would be necessary for the more ambitious sub-sampling factors and noise
levels investigated in this paper. For instance, at RΩ = 8 and σn = 0.08, Robust SSDU
and the fully supervised benchmark both displayed a significant loss of details at tissue
boundaries and were of insufficient quality for clinical applications; see Figure 10.

NMSE: 0.397

SSIM: 0.71

 

NMSE: 0.382

SSIM: 0.70

 

Figure 10. Poor recovery of fine details for ambitious sub-sampling and noise levels at RΩ = 8 and
σn = 0.08 for both the Fully-supervised benchmark, and Robust SSDU (highlighted with an asterisk).
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Appendix A. Proof of SSDU Variant on MΩ

This appendix proves Claim 1 using a similar approach to Appendix B of [25]. Mini-
mization according to Equation (27) yields a network that satisfies

E[MΩ( fθ∗(Ỹ)− Y)|Ỹ] = 0 (A1)

We split the conditional expectation into two cases: Ỹj ̸= 0 and Ỹj = 0. Throughout this
paper, mj and m̃j refer to the jth diagonal of MΩ and MΛ, respectively.

Case 1 (E[mj( fθ∗(Ỹ)j − Yj)|Ỹj ̸= 0]): When Ỹj ̸= 0, the measurement model implies
that mj = 1 and Yj = Y0,j + Nj. Therefore,

E[mj( fθ∗(Ỹ)j − Yj)|Ỹj ̸= 0] = E[ fθ∗(Ỹ)j − Y0,j − Nj|Ỹj ̸= 0] (A2)

Case 2 (E[mj( fθ∗(Ỹ)j − Yj)|Ỹj = 0]): We can use the result derived from Equation (27)
in (29) in [25], with Y0,j replaced by Y0,j + Nj:

E[mj( fθ∗(Ỹ)j − Yj)|Ỹj = 0] = E[ fθ∗(Ỹ)j − Y0,j − Nj|Ỹj = 0] · (1 − k j) (A3)

where

k j = P[Yj = 0|Ỹj = 0] =
1 − pj

1 − p̃j pj
. (A4)

Combining Cases 1 and 2: Consider the candidate

E[mj( fθ∗(Ỹ)j − Yj)|Ỹj] = {1 − k j(1 − m̃jmj)}E[ fθ∗(Ỹ)j − Y0,j − Nj|Ỹj].

To verify that this expression is correct, we can check that it is consistent with Cases 1 and
2. For Case 1: if Ỹj ̸= 0, then m̃jmj = 1 and the term in curly brackets is 1, so Equation (A5)
is consistent with Equation (A2). For Case 2: if Ỹj = 0, then m̃jmj = 0 and the term in
curly brackets is 1 − k j, so Equation (A5) is consistent with Equation (A3), as required. By
Equation (A1),

{1 − k j(1 − m̃jmj)}E[ fθ∗(Ỹ)j − Y0,j − Nj|Ỹj] = 0

The term in the curly brackets is non-zero for all j if 1 − k j is non-zero for j /∈ Ω ∩ Λ, which
is true when Equations (9) and (10) hold, where we note that the special case p̃j = pj = 1 is
also allowed since m̃jmj = 1, always. Given this assumption, dividing by the term in the
curly brackets gives the following:

E[ fθ∗(Ỹ)j − Y0,j − Nj|Ỹj] = 0. (A5)

Vectorizing gives the required result. □

Appendix B. Proof of Weighted Noisier2Full

To compute the unknown

∇θE
[∥∥ŶNr2F − Y0

∥∥2
2|Ỹ
]

in terms of the known Y0 + N, we compute the contributions to the loss in Ω and Ωc

separately, shown in Lemmas A1 and A2, respectively.

Lemma A1. Consider the random variables Y = MΩ(Y0 + N) and Ỹ = Y + MΩÑ, where N
and Ñ are zero-mean Gaussians distributed with variances of σ2

n and α2σ2
n , respectively. For an

arbitrary function, fθ ,

∇θE
[∥∥MΩ

(
ŶNr2F − Y0

)∥∥2
2|Ỹ
]
= ∇θE

[∥∥∥∥1 + α2

α2 MΩ( fθ(Ỹ)− Y)
∥∥∥∥2

2
|Ỹ
]

. (A6)
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Proof. Using MΩỸ = MΩ(Y + Ñ) and MΩY0 = MΩ(Y − N), the left-hand side of
Equation (A6) is

∇θE

∥∥∥∥∥MΩ

(
(1 + α2) fθ(Ỹ)− Ỹ

α2 − Y0

)∥∥∥∥∥
2

2

|Ỹ


= ∇θE

∥∥∥∥∥MΩ

(
(1 + α2) fθ(Ỹ)− Y − Ñ

α2 − Y + N

)∥∥∥∥∥
2

2

|Ỹ


= ∇θE

∥∥∥∥∥MΩ

(
1 + α2

α2 ( fθ(Ỹ)− Y) + N − Ñ
α2

)∥∥∥∥∥
2

2

|Ỹ


= ∇θE

[∥∥∥∥1 + α2

α2 MΩ( fθ(Ỹ)− Y)
∥∥∥∥2

2
|Ỹ
]
+

1 + α2

α2 ∇θE

[
2 fθ(Ỹ)H MΩ

(
N − Ñ

α2

)
|Ỹ
]

(A7)

where all the terms in the expansion of the ℓ2 norm in the last step that are not dependent
on θ are zeroed by ∇θ . Now, we show that the second term on the right-hand side of
Equation (A7) is zero. Lemma 3.1 from [26] shows that

E[MΩÑ|Ỹ] = α2E[MΩN|Ỹ], (A8)

where MΩ is included as the result only applies to sampled terms. We note that the right-
hand side of Equation (A8) scales according to the variance of the noise rather than the
perhaps more intuitive standard deviation. Following [26], Equation (A8) can be proven by
computing the probability P[Nj = n|Ỹj, j ∈ Ω]:

P[Nj = n|Ỹj, j ∈ Ω] = P[Nj = n]P[Ñj = Ỹj − Y0,j − nj]

∝ exp
(
− n2

2σ2

)
exp

(
−
(Ỹj − Y0,j − n)2

2α2σ2

)
.

After some algebraic manipulation not shown here for brevity, this distribution can be
shown to have the mean (Ỹj −Y0,j)/(1+ α2). A similar computation for Ñj yields a mean of
α2(Ỹj − Y0,j)/(1 + α2), giving the jth entry of the relationship stated in Equation (A8), con-
ditional on j ∈ Ω. Since for the alternative j /∈ Ω both sides are trivially zero, Equation (A8)
is correct for all indices.

Applying Equation (A8) to the right-hand side of Equation (A7) gives

E

[
fθ(Ỹ)H MΩ

(
N − Ñ

α2

)
|Ỹ
]
= fθ(Ỹ)HE

[
MΩ

(
N − Ñ

α2

)
|Ỹ
]
= 0 (A9)

where the conditional dependence on Ỹ allows the removal of fθ(Ỹ) from the expectation.
Therefore, the right-hand side of Equation (A7) equals the right-hand side of Equation (A6),
as required.

Lemma A2. Consider the random variables Y and Ỹ as defined in Lemma A1. For an arbitrary
function fθ ,

∇θE

[∥∥∥MΩc(ŶNr2F − Y0)|Ỹ
∥∥∥2

2

]
= ∇θE

[∥∥∥MΩc( fθ(Ỹ)− Y0 − N)
∥∥∥2

2
|Ỹ
]

. (A10)
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Proof. Using MΩc MΩ = 0 and MΩc MΩc = MΩc and the definition of ŶNr2F in Equation (30),
we have MΩcŶNr2F = MΩc fθ(Ỹ). Therefore, the left-hand side of Equation (A10) is

∇θE

[∥∥∥MΩc( fθ(Ỹ)− Y0)
∥∥∥2

2
|Ỹ
]

= ∇θE

[∥∥∥MΩc( fθ(Ỹ)− Y0 − N + N)
∥∥∥2

2
|Ỹ
]

= ∇θE

[∥∥∥MΩc( fθ(Ỹ)− Y0 − N)
∥∥∥2

2
+ 2 fθ(Ỹ)H MΩc N|Ỹ

]
(A11)

where, again, all the terms not dependent on θ are zeroed by ∇θ . The second term is

E
[

fθ(Ỹ)H MΩc N|Ỹ
]
= fθ(Ỹ)HE

[
MΩc N|Ỹ

]
= 0 (A12)

where, as in Equation (16), we use the independence of N from Ỹ when j /∈ Ω. Therefore,
Equation (A11) equals the right-hand side of Equation (A10), as required.

To find the ℓ2 error of ŶNr2F, we use MΩ + MΩc = 1 and sum the results from
Lemmas A1 and A2:

∇θE
[∥∥ŶNr2F − Y0

∥∥2
2|Ỹ
]
= ∇θE

[∥∥(MΩ + MΩc)(ŶNr2F − Y0)
∥∥2

2|Ỹ
]

= ∇θE

[∥∥∥∥(1 + α2

α2 MΩ + MΩc

)
( fθ(Ỹ)− Y0 − N)

∥∥∥∥2

2
|Ỹ
]

as required.

Appendix C. Proof of Robust SSDU Weighting

Analogous to Appendix B, to compute the unknown

∇θE
[∥∥ŶRSSDU − Y0

∥∥2
2|Ỹ
]

in terms of the known sub-sampled, noisy Y, we compute the contributions to the loss from
Λ ∩ Ω and (Λ ∩ Ω)c separately. For the contribution from Λ ∩ Ω, an identical approach to
the proof in Lemma A1 can be used with Ω replaced by Λ ∩ Ω so that

∇θE
[∥∥MΛ∩Ω

(
ŶRSSDU − Y0

)∥∥2
2|Ỹ
]
= ∇θE

[∥∥∥∥1 + α2

α2 MΛ∩Ω( fθ(Ỹ)− Y)
∥∥∥∥2

2
|Ỹ
]

. (A13)

The following lemma shows how the remaining loss, which is computed on Ω \ Λ, can be
used to estimate the target ground truth loss, which is over (Λ ∩ Ω)c.

Lemma A3. Consider the random variables Y = MΩ(Y0 + N) and Ỹ = MΛ∩Ω(Y + Ñ), where
N and Ñ are zero-mean Gaussians distributed with variances of σ2

n and α2σ2
n , respectively. For an

arbitrary function fθ ,

∇θE

[∥∥∥M(Λ∩Ω)c(ŶRSSDU − Y0)
∥∥∥2

2
|Ỹ
]
= ∇θE

[∥∥∥P1/2MΩ\Λ( fθ(Ỹ)− Y)
∥∥∥2

2
|Ỹ
]

, (A14)

where P is defined in Equation (3).

Proof. Since M(Λ∩Ω)cŶRSSDU = M(Λ∩Ω)c fθ(Ỹ), the left-hand side of Equation (A14) is

∇θE

[∥∥∥M(Λ∩Ω)c( fθ(Ỹ)− Y0)
∥∥∥2

2
|Ỹ
]
= ∇θE

[∥∥∥M(Λ∩Ω)c( fθ(Ỹ)− Y0 − N)
∥∥∥2

2
|Ỹ
]

, (A15)
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where Lemma A2 with Ωc replaced by (Λ∩Ω)c is used. Using | · |2 to denote the entry-wise
magnitude squared, we can write

∇θE

[∥∥∥M(Λ∩Ω)c( fθ(Ỹ)− Y0 − N)
∥∥∥2

2
|Ỹ
]
= ∇θE

[
1T

q M(Λ∩Ω)c | fθ(Ỹ)− Y0 − N|2|Ỹ
]
, (A16)

where 1q is a q-dimensional vector of ones. Equation (32) from [25] shows that the condi-
tional expectation of fθ(Ỹ)−Y on M(Λ∩Ω)c and MΩ\Λ is related by a factor, P . By repeating
that derivation with all instances of fθ(Ỹ)− Y trivially replaced with | fθ(Ỹ)− Y0 − N|2, a
similar relationship can be derived for the latter, yielding the same P factor; see [25]. In
brief, if the jth entry Ỹj is not zero, then the jth diagonal of MΩ\Λ is zero, so

E
[
|MΩ\Λ( fθ(Ỹ)− Y0 − N)|2j |Ỹj ̸= 0

]
= 0. (A17)

When the jth entry of Ỹj is zero,

E
[
|MΩ\Λ( fθ(Ỹ)− Y0 − N)|2j |Ỹj = 0

]
= E

[
P−1

jj | fθ(Ỹ)− Y|2j |Ỹj = 0
]
. (A18)

See (31) of [25] for a detailed derivation. By combining both cases from Equations (A17)
and (A18), we obtain

E
[
|MΩ\Λ( fθ(Ỹ)− Y0 − N)|2j |Ỹj

]
= E

[
P−1

jj |M(Λ∩Ω)c( fθ(Ỹ)− Y0 − N)|2j |Ỹj

]
. (A19)

By applying this result to Equation (A16) by multiplying with 1T
q and bringing the masks

outside the entry-wise magnitude, we obtain

∇θE
[
1T

q M(Λ∩Ω)c | fθ(Ỹ)− Y0 − N|2|Ỹ
]
= ∇θE

[
1T

q PMΩ\Λ| fθ(Ỹ)− Y0 − N|2|Ỹ
]

= ∇θE

[∥∥∥P1/2MΩ\Λ( fθ(Ỹ)− Y)
∥∥∥2

2
|Ỹ
]

,

as required.

To find the ℓ2 error of ŶRSSDU, we use MΛ∩Ω + M(Λ∩Ω)c = 1 and the sum Equations (A13)
and (A14):

∇θE
[∥∥ŶRSSDU − Y0

∥∥2
2|Ỹ
]
= ∇θE

[∥∥∥(MΛ∩Ω + M(Λ∩Ω)c)(ŶNr2F − Y0)
∥∥∥2

2
|Ỹ
]

= ∇θE

[∥∥∥∥(1 + α2

α2 MΛ∩Ω + P1/2MΩ\Λ

)
( fθ(Ỹ)− Y)

∥∥∥∥2

2
|Ỹ
]

as required.

Appendix D. Table of SSIM on Test Set

The mean SSIM of the magnitude images are shown in Table A1. The SSIM of the
proposed methods is comparable to the fully supervised benchmark. However, in many
cases, the methods that used BM3D outperformed even the fully supervised benchmark,
implying that BM3D achieved a better SSIM than the machine learning-based approach to
denoising used in this paper. We emphasize that the entirely data-driven approaches were
not trained to minimize for the SSIM, and the SSIM would be expected to substantially
improve if it was included in the loss function [36].

The methods that used BM3D had a considerably higher standard error, which indi-
cates a substantially higher variation in the quality of the output. We believe that this was a
consequence of the mismatch between BM3D’s Gaussian noise model and the actual error
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of the RSS estimate, which led to a higher risk of oversmoothing and artifacts such as those
shown in Figures 5 and 6.

Table A1. The methods’ test sets’ SSIM in the magnitude images with standard errors. The double
lines separate the type of training data available and bold font is used to denote the best performance
within each category. Asterisks denote proposed methods.

Acceleration Factor RΩ = 4 Acceleration Factor RΩ = 8

σn = 0.02 σn = 0.04 σn = 0.06 σn = 0.08 σn = 0.02 σn = 0.04 σn = 0.06 σn = 0.08

Noisy and
sub-sampled 0.76 ± 0.006 0.64 ± 0.006 0.50 ± 0.006 0.40 ± 0.005 0.72 ± 0.008 0.67 ± 0.007 0.57 ± 0.006 0.48 ± 0.006

Fully
supervised
benchmark

0.83 ± 0.007 0.75 ± 0.006 0.63 ± 0.006 0.52 ± 0.005 0.75 ± 0.008 0.77 ± 0.007 0.73 ± 0.007 0.67 ± 0.006

Supervised
w/o denoising 0.83 ± 0.006 0.70 ± 0.006 0.55 ± 0.005 0.43 ± 0.005 0.80 ± 0.008 0.74 ± 0.006 0.63 ± 0.006 0.52 ± 0.005

Supervised
with BM3D 0.86 ± 0.025 0.75 ± 0.042 0.64 ± 0.043 0.55 ± 0.041 0.85 ± 0.014 0.78 ± 0.033 0.69 ± 0.039 0.61 ± 0.039

Unweighted
Noisier2Full * 0.83 ± 0.007 0.75 ± 0.006 0.63 ± 0.006 0.52 ± 0.005 0.76 ± 0.008 0.77 ± 0.007 0.73 ± 0.007 0.66 ± 0.006

Noisier2Full * 0.82 ± 0.007 0.74 ± 0.006 0.62 ± 0.006 0.50 ± 0.005 0.74 ± 0.008 0.76 ± 0.007 0.72 ± 0.007 0.65 ± 0.006

Standard
SSDU 0.83 ± 0.004 0.69 ± 0.004 0.55 ± 0.003 0.43 ± 0.003 0.79 ± 0.005 0.74 ± 0.004 0.63 ± 0.004 0.52 ± 0.003

SSDU with
BM3D 0.86 ± 0.025 0.75 ± 0.042 0.64 ± 0.043 0.56 ± 0.041 0.84 ± 0.014 0.78 ± 0.033 0.69 ± 0.039 0.61 ± 0.039

Noise2Recon-
SS 0.83 ± 0.006 0.71 ± 0.006 0.56 ± 0.005 0.47 ± 0.005 0.79 ± 0.008 0.73 ± 0.006 0.66 ± 0.006 0.56 ± 0.005

Unweighted
Robust SSDU * 0.83 ± 0.007 0.75 ± 0.006 0.62 ± 0.006 0.51 ± 0.005 0.75 ± 0.008 0.77 ± 0.007 0.72 ± 0.006 0.65 ± 0.006

Robust SSDU * 0.83 ± 0.007 0.74 ± 0.006 0.62 ± 0.006 0.50 ± 0.005 0.75 ± 0.008 0.76 ± 0.007 0.72 ± 0.007 0.65 ± 0.006
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