Development of Self-Powered Energy-Harvesting Electronic Module and Signal-Processing Framework for Wearable Healthcare Applications
Abstract
:1. Introduction
- Finding an alternate solution which uses a flexible approach to power the portable biomedical device for continuous personalized health monitoring applications.
- The developed prototype facilitates the harvesting and saving of energy from an ambient light environment by using a series of silicon photodiodes and solar cells.
- The proposed device also gives the flexibility to charge the secondary battery for long-term monitoring purposes during an emergency.
- The integration of an ECG sensing module, a pre-processing module, wavelet techniques, and hybrid classifiers.
- Accurate measurement and signal classification which reduces the computational complexity of ECG signal processing, improving classifiers accuracy.
2. Materials and Methods
2.1. ECG Signal Processing
2.2. ECG Noise Removal Methods
2.3. ECG Features
2.4. Machine Learning for Classification
3. Design Criteria for Self-Powered Energy-Harvesting Module
3.1. Design of Analog Front-End Unit for ECG Device
ECG Signal Acquisition and Characteristics
3.2. Design of Bio Amplifier
3.3. Design of Battery Management Unit
4. ECG Signal Processing and Feature Extraction
4.1. Wavelet-Based Signal Analysis
4.1.1. Discrete Wavelet Transform
4.1.2. Wavelet Packet Transform
4.1.3. Selection of Mother Wavelets
4.1.4. Machine Learning for ECG Classification
5. Results and Discussion
5.1. ECG Signal Acquisition and Processing Through Analog Front-End System
5.2. Battery Management Unit with Energy Harvesting
5.3. ECG Signal Classification Using Machine Learning Techniques
Algorithm 1: Pseudo Code for proposed random forest with decision trees [56,57] |
Require: Training sets: T(s) S—Input data X—Features |
N—Decision trees Random forest (S,X) S_1 → S, selection of bootstrap sample N_I → (S1,X), Random tree learning while N = Randomly select subset of features (y) if N = Best feature splits from (y) then Random tree learning end if end while |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nag, A.; Mukhopadhyay, S.C.; Kosel, J. Wearable Flexible Sensors: A Review. IEEE Sens. J. 2017, 17, 3949–3960. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Jegan, R.; Anusuya, K.V. High-performance ECG signal acquisition for heart rate measurement. Int. J. Biomed. Eng. Technol. 2013, 12, 371–381. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Hung, Y.-W.; Su, P.-H.; Lee, I.-P.; Chen, J.-Y. Biosignal Monitoring Clothing System for the Acquisition of ECG and Respiratory Signals. IEEE Access 2022, 10, 66083–66097. [Google Scholar] [CrossRef]
- Pham, N.; Dinh, T.; Kim, T.; Raghebi, Z.; Bui, N.; Truong, H.; Nguyen, T.; Banaei-Kashani, F.; Halbower, A.; Dinh, T.; et al. Detection of Microsleep Events with a Behind-the-Ear Wearable System. IEEE Trans. Mob. Comput. 2023, 22, 841–857. [Google Scholar] [CrossRef]
- Jegan, R.; Nimi, W.S. Sensor based smart real time monitoring of patient’s conditions using wireless protocol. Int. J. E-Health Med. Commun. 2018, 9, 79–99. [Google Scholar] [CrossRef]
- Baghersalimi, S.; Teijeiro, T.; Aminifar, A.; Atienza, D. Decentralized Federated Learning for Epileptic Seizures Detection in Low-Power Wearable Systems. IEEE Trans. Mob. Comput. 2024, 23, 6392–6407. [Google Scholar] [CrossRef]
- Jegan, R.; Anusuya, K.V.; George, E.M. Real-time ECG peak detection for heart rate measurement using wavelet packet transform. Int. J. Biomed. Eng. Technol. 2015, 19, 244–254. [Google Scholar] [CrossRef]
- Jegan, R.; Anusuya, K.V. Biosensor-based feature extraction and physiological parameters measurement for biomedical applications. Int. J. Biomed. Eng. Technol. 2018, 28, 67–80. [Google Scholar] [CrossRef]
- Ashwin, V.H.; Jegan, R.; Rajalakshmy, P. Stress Detection using Wearable Physiological Sensors and Machine Learning Algorithm. In Proceedings of the 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 1–3 December 2022; pp. 972–977. [Google Scholar] [CrossRef]
- Nimi, W.S.; Jose, P.S.H.; Jegan, R. Review on Reliable and Quality Wearable Healthcare Device (WHD). Int. J. Reliab. Qual. E-Healthcare 2021, 10, 1–25. [Google Scholar] [CrossRef]
- Chen, H.; Wang, G.; Zhang, G.; Zhang, P.; Yang, H. CLECG: A novel contrastive learning framework for electrocardiogram arrhythmia classification. IEEE Signal Process. Lett. 2021, 28, 1993–1997. [Google Scholar] [CrossRef]
- Ingabire, H.N.; Wu, K.; Amos, J.T.; He, S.; Peng, X.; Wang, W.; Li, M.; Chen, J.; Feng, Y.; Rao, N.; et al. Analysis of ECG signals by dynamic mode decomposition. IEEE J. Biomed. Health Inform. 2022, 26, 2124–2135. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, X.; Zhao, L.; Liu, F.; Chen, X.; Yao, Y. Signal quality assessment and lightweight QRS detection for wearable ECG smartvest system. IEEE Internet Things J. 2019, 6, 1363–1374. [Google Scholar] [CrossRef]
- Abdulmalek, S.; Nasir, A.; Jabbar, W.A.; Almuhaya, M.A.M.; Bairagi, A.K.; Khan, M.A.M.; Kee, S.H. IoT-Based healthcare-monitoring system towards improving quality of life: A review. Healthcare 2022, 10, 1993. [Google Scholar] [CrossRef]
- Abdelazez, M.; Rajan, S.; Chan, A.D.C. Signal quality assessment of compressively sensed electrocardiogram. IEEE Trans. Biomed. Eng. 2022, 69, 3397–3406. [Google Scholar] [CrossRef]
- Anita, P.; Ravina, D.E. Cardiac arrhythmia detection through ECG signals. In Proceedings of the 4th International Conference for Convergence in Technology, Mangalore, India, 27–28 October 2018; p. 736. [Google Scholar]
- Gungor, C.B.; Mercier, P.P.; Toreyin, H. A stochastic resonance electrocardiogram enhancement algorithm for robust QRS detection. IEEE J. Biomed. Health Inform. 2022, 26, 3743–3754. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, Y.; Lin, H.; Li, J.; Zhang, F.; Yang, Y. ECG denoising method based on an improved VMD algorithm. IEEE Sens. J. 2022, 22, 22725–22733. [Google Scholar] [CrossRef]
- Pranata, A.A.; Adhane, G.W.; Kim, D.S. Detrended fluctuation analysis on ECG device for home environment. In Proceedings of the 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 126–130. [Google Scholar]
- Seidel, H.B.; da Rosa, M.M.A.; Paim, G.; da Costa, E.A.C.; Almeida, S.J.M.; Bampi, S. Approximate pruned and truncated haar discrete wavelet transform VLSI hardware for energy-efficient ECG signal processing. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1814–1826. [Google Scholar] [CrossRef]
- Banerjee, S.; Singh, G.K. Monte carlo filter-based motion artifact removal from electrocardiogram signal for real-time telecardiology system. IEEE Trans. Instrum. Meas. 2021, 70, 4006110. [Google Scholar] [CrossRef]
- Hesar, H.D.; Mohebbi, M. An adaptive kalman filter bank for ECG denoising. IEEE J. Biomed. Health Inform. 2021, 25, 13–21. [Google Scholar] [CrossRef]
- Huang, G.; Yang, Z.; Lu, W.; Peng, H.; Wang, J. Sub-Nyquist sampling of ECG signals with differentiated VPW optimization model. IEEE Sens. J. 2022, 22, 9697–9712. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, Y.; Ge, H. An Improved adaptive filtering algorithm for ECG signals. In Proceedings of the 7th International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 22–25 April 2022; pp. 354–357. [Google Scholar]
- Bui, N.T.; Phan, D.T.; Nguyen, T.P.; Hoang, G.; Choi, J.; Bui, Q.C.; Vo, T.H.; Oh, J. Real-time filtering and ECG signal processing based on dual-core digital signal controller system. IEEE Sens. J. 2020, 20, 6492–6503. [Google Scholar] [CrossRef]
- Qatmh, M.; Bonny, T.; Barneih, F.; Alshaltone, O.; Nasir, N.; Al-Shabi, M.; Al-Shamma, A.I. Sleep apnea detection based on ECG signals using discrete wavelet transform and artificial neural network. In Proceedings of the Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Sreeja, R.; Milind, S.S. Applications of wavelet transform in speech processing: A review. Int. J. Eng. Res. Technol. 2015, 3, 2. [Google Scholar]
- Domínguez, C.L.; Shmaliy, Y.S.; Manzano, O.I.; Olguin, M.V. Denoising and features extraction of ECG signals in state space using unbiased FIR smoothing. IEEE Access 2019, 7, 152166–152178. [Google Scholar] [CrossRef]
- Wang, X.; Zou, Q. QRS detection in ECG signal based on residual network. In Proceedings of the IEEE 11th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 12–15 June 2019; pp. 73–77. [Google Scholar] [CrossRef]
- Alarsan, F.I.; Younes, M. Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. J. Big Data 2019, 81, 1–15. [Google Scholar] [CrossRef]
- Khazaee, A.; Ebrahimzadeh, A. Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomed. Signal Process. Control. 2010, 5, 252–263. [Google Scholar] [CrossRef]
- Daamouche, A.; Hamami, L.; Naifn; Melgani, F. A wavelet optimization approach for ECG signal classification. Biomed. Signal Process. Control. 2012, 7, 342–349. [Google Scholar] [CrossRef]
- Roshan, J.M.; Rajendra, U.A.; Mina, L.C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 2013, 8, 437–448. [Google Scholar] [CrossRef]
- Nazarahari, M.; Namin, S.G.; Markazi, A.H.D.; Anaraki, A.K. A multi-wavelet optimization approach using similarity measures for electrocardiogram signal classification. Biomed. Signal Process. Control 2015, 20, 142–151. [Google Scholar] [CrossRef]
- Chen, S.; Hua, W.; Li, Z.; Li, J.; Gao, X. Heartbeat classification using projected and dynamic features of ECG signal. Biomed. Signal Process. Control 2017, 31, 165–173. [Google Scholar] [CrossRef]
- Rajesh, K.N.; Dhuli, R. Classification of imbalanced ECG beats using re-sampling techniques and adaboost ensemble classifier. Biomed. Signal Process. Control 2018, 41, 242–254. [Google Scholar] [CrossRef]
- Guerra, V.M.; Novo, J.; Rouco, J.; Penedo, M.G.; Ortega, M. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomed. Signal Process. Control 2018, 47, 41–48. [Google Scholar] [CrossRef]
- Namrata, S.; Pradeep, S. Cardiac arrhythmia classification using machine learning techniques. In Engineering Vibration, Communication and Information Processing; Lecture Notes in Electrical Engineering; Springer: Singapore, 2019; pp. 469–480. [Google Scholar]
- Alfaras, M.; Soriano, M.C.; Ortín, S. A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Front. Phys. 2019, 7, 103. [Google Scholar] [CrossRef]
- Liaqat, S.; Dashtipour, K.; Zahid, A.; Assaleh, K.; Arshad, K.; Ramzan, N. Detection of atrial fibrillation using a machine learning approach. Information 2020, 11, 549. [Google Scholar] [CrossRef]
- Almutairi, H.; Hassan, G.M.; Datta, A. Classification of obstructive sleep apnoea from single-lead ECG signals using convolutional neural and long short term memory networks. Biomed. Signal Process. Control 2021, 69, 102906. [Google Scholar] [CrossRef]
- Han, J.; Sun, G.; Song, X.; Zhao, J.; Zhang, J.; Mao, Y. Detecting ECG abnormalities using an ensemble framework enhanced by bayesian belief network. Biomed. Signal Process. Control 2022, 72, 103320. [Google Scholar] [CrossRef]
- Varalakshmi, P.; Atshaya, P.S. An improved hybrid AI model for prediction of arrhythmia using ECG signals. Biomed. Signal Process. Control 2023, 80, 104248. [Google Scholar] [CrossRef]
- Yu, B.-Y.; Wang, Z.H.; Ju, L.; Zhang, C.; Liu, Z.G.; Tao, L.; Lu, W.B. Flexible and Wearable Hybrid RF and Solar Energy Harvesting System. IEEE Trans. Antennas Propag. 2022, 70, 2223–2233. [Google Scholar] [CrossRef]
- Gorņevs, I.; Jurķans, V.; Blums, J. Development of Wearable Multiple Source Energy-Harvesting System for Smart Clothing. IEEE Access 2023, 11, 100284–100294. [Google Scholar] [CrossRef]
- Lo Presti, D.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.; Longo, U.G.; Formica, D.; Oddo, C.M.; Schena, E. Wearable System Based on Flexible FBG for Respiratory and Cardiac Monitoring. IEEE Sens. J. 2019, 19, 7391–7398. [Google Scholar] [CrossRef]
- Chary, U.G.; Kishore, K.H. Low Voltage and Low Power Front Panel Design for 12 Lead ECG. IEEE Access 2022, 10, 69455–69461. [Google Scholar] [CrossRef]
- Jegan, R.; Nimi, W.S. On the development of low power wearable devices for assessment of physiological vital parameters: A systematic review. J. Public Health 2024, 32, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.; Devecioglu, O.C.; Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networks. IEEE Trans. Biomed. Eng. 2022, 69, 1788–1801. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Zhao, Y.; Yan, C. Multi-Label ECG Signal Classification Based on Ensemble Classifier. IEEE Access 2020, 8, 117986–117996. [Google Scholar] [CrossRef]
- Yang, X.; Chai, Y. ECG Signal Processing and Automatic Classification Algorithms. Int. J. Crowd Sci. 2024, 8, 122–129. [Google Scholar] [CrossRef]
- Yang, H.; Wei, Z. A Novel Approach for Heart Ventricular and Atrial Abnormalities Detection via an Ensemble Classification Algorithm Based on ECG Morphological Features. IEEE Access 2021, 9, 54757–54774. [Google Scholar] [CrossRef]
- Melgani, F.; Bazi, Y. Classification of Electrocardiogram Signals with Support Vector Machines and Particle Swarm Optimization. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Ciocirlan, M.; Udrea, A. Techniques of biological signals classification and comparisons using Machine Learning Techniques. In Proceedings of the 24th International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 24–26 May 2023; pp. 467–472. [Google Scholar] [CrossRef]
- Zhang, B.; Ren, J.; Cheng, Y.; Wang, B.; Wei, Z. Health Data Driven on Continuous Blood Pressure Prediction Based on Gradient Boosting Decision Tree Algorithm. IEEE Access 2019, 7, 32423–32433. [Google Scholar] [CrossRef]
- Baumgartner, M.; Kropf, M.; Haider, L.; Veeranki, S.; Hayn, D.; Schreier, G. ECG Classification Combining Conventional Signal Analysis, Random Forests and Neural Networks—A Stacked Learning Scheme. In Proceedings of the Computing in Cardiology (CinC), Brno, Czech Republic, 12–15 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.; Ivanov, P.C.; Mark, R.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
ECG Noises | Sources | Frequency |
---|---|---|
Motion artifact | Electrode skin interface | 1–10 Hz |
Baseline wandering | Respiration | <1 Hz |
Powerline interference | Load coupling | 50/60 Hz |
Electrical Activity | Features |
---|---|
Atrial activity | P wave F wave QT interval P wave amplitude F wave interval |
Ventricular activity | QRS complex onset and offset peaks RR interval R peak Peak arrival time |
Domain Type | RR Interval Features |
---|---|
Time | Average of RR intervals, root mean square, histogram, median, average deviation, maximum deviation, number of successive RR pairs, change in RR intervals, interpolation of RR intervals histogram, HR mean, QRS amplitude mean |
Frequency | ULF, VLF, low frequency power, high frequency power, frequency ratio, power spectral density |
Statistical | Mean, median, standard deviation, kurtosis, range, skewness |
Ref. | Classification Techniques | Accuracy |
---|---|---|
[32] | Genetic algorithm–support vector machines | 96.00% |
[33] | PSO-SVM | 91.75% |
[34] | PCA, LDA, ICA and neural network | 99.28% |
[35] | Back propagation, genetic algorithm | 98.77% |
[36] | Support vector machine (SVM) | 98.46% |
[37] | AdaBoost ensemble classifier | 99.28% |
[38] | One-against-one (OAO-SVM) | 94.50% |
[39] | Linear SVM, random forest | 85.58% |
[40] | Echo state networks | 92.70% |
[41] | LSTM, convolutional neural network | 87.50% |
[42] | Sigmoid and SVM classifier, CNN and LSTM | 94.27% |
[43] | Bayesian belief network | 94.27% |
[44] | Bidirectional LSTM, random forest classifier | 98.84% |
ECG Segment | Sources | Duration (ms) |
---|---|---|
P wave | Atrial depolarization | 60–80 |
QRS complex | Ventricular depolarization | 80–120 |
PR interval | Atrial depolarization plus AV nodal delay | 120–200 |
ST segment | Isoelectric period of depolarized ventricles | 100–120 |
T wave | Ventricular repolarization | 120–160 |
QT interval | Length of depolarization plus repolarization | >0.44 |
RR interval | Distance between R Peaks | 0.6–1.2 s |
Features | Tachycardia | Bradycardia | Normal |
---|---|---|---|
HR mean | 120 | 84.09 | 78.06 |
QRS amplitude mean | 1.184 | 0.636 | 0.86 |
QRS time mean | 0.143 | 0.058 | 0.06 |
PR interval mean | 0.126 | 0.141 | 0.15 |
HR SD | 0.98 | 0.85 | 0.86 |
QRS amplitude SD | 0.011 | 0.018 | 0.02 |
QRS time SD | 0.008 | 0.002 | 0.002 |
PR interval SD | 0.023 | 0.012 | 0.009 |
S. No. | Light Intensity (W/m2) | Silicon Photodiode/Solar Cell Amplifier Output (V) | Battery Management Unit | ||||
---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | |||
5.62 MΩ | 7.32 MΩ | 5.62 MΩ | 5.49 MΩ | 1.9 MΩ | |||
1 | 1134 | 3.3 | Output voltage generated = 4.2 V | ||||
2 | 956 | 3.1 | |||||
3 | 834 | 2.7 | |||||
4 | 752 | 2.4 | |||||
5 | 521 | 1.1 | |||||
6 | 348 | 0.9 |
Methods | MIT-BIH Arrhythmia Database | MIT-BIH Supraventricular Arrhythmia Database | INCART Lead 2 Arrhythmia Database | Sudden Cardiac Death Holter Database | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc (%) | Sen (%) | Spec (%) | Acc (%) | Sen (%) | Spec (%) | Acc (%) | Sen (%) | Spec (%) | Acc (%) | Sen (%) | Spec (%) | |
Gradient | 97.76 | 94.92 | 98.04 | 96.21 | 88.20 | 97.16 | 99.35 | 98.76 | 99.44 | 97.87 | 87.18 | 98.63 |
AdaBoost | 96.86 | 88.95 | 97.66 | 95.51 | 87.17 | 96.44 | 99.24 | 98.26 | 99.38 | 97.52 | 86.48 | 98.27 |
Logistic | 94.85 | 86.78 | 95.45 | 93.08 | 80.42 | 94.22 | 98.64 | 97.48 | 98.80 | 96.31 | 88.51 | 96.67 |
KNN | 98.78 | 97.45 | 98.92 | 97.53 | 92.41 | 98.17 | 99.62 | 99.19 | 99.68 | 98.01 | 87.34 | 98.79 |
SVM | 96.30 | 94.59 | 96.43 | 95.53 | 88.66 | 96.27 | 99.23 | 98.01 | 99.40 | 97.39 | 88.09 | 97.97 |
Bagging | 98.77 | 96.21 | 99.05 | 97.85 | 92.14 | 98.56 | 99.63 | 98.81 | 99.75 | 98.12 | 87.49 | 98.91 |
RFDDT | 99.01 | 97.66 | 99.15 | 98.03 | 93.44 | 98.63 | 99.72 | 99.17 | 99.79 | 98.28 | 88.80 | 98.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, J.; Wilson Sukumari, N.; Jose, P.S.H.; Rajendran, M.; Saikia, M.J. Development of Self-Powered Energy-Harvesting Electronic Module and Signal-Processing Framework for Wearable Healthcare Applications. Bioengineering 2024, 11, 1252. https://doi.org/10.3390/bioengineering11121252
Rajendran J, Wilson Sukumari N, Jose PSH, Rajendran M, Saikia MJ. Development of Self-Powered Energy-Harvesting Electronic Module and Signal-Processing Framework for Wearable Healthcare Applications. Bioengineering. 2024; 11(12):1252. https://doi.org/10.3390/bioengineering11121252
Chicago/Turabian StyleRajendran, Jegan, Nimi Wilson Sukumari, P. Subha Hency Jose, Manikandan Rajendran, and Manob Jyoti Saikia. 2024. "Development of Self-Powered Energy-Harvesting Electronic Module and Signal-Processing Framework for Wearable Healthcare Applications" Bioengineering 11, no. 12: 1252. https://doi.org/10.3390/bioengineering11121252
APA StyleRajendran, J., Wilson Sukumari, N., Jose, P. S. H., Rajendran, M., & Saikia, M. J. (2024). Development of Self-Powered Energy-Harvesting Electronic Module and Signal-Processing Framework for Wearable Healthcare Applications. Bioengineering, 11(12), 1252. https://doi.org/10.3390/bioengineering11121252