Climatic Factors Influencing Aleppo Pine Sap Flow in Orographic Valleys Under Two Contrasting Mediterranean Climates
Abstract
:1. Introduction
1.1. Previous Considerations and Objectives
1.2. Review of the Impact of Climate Change on the State of Forests
2. Materials and Methods
2.1. Study Area
Ombroclimate | Dry Sub-Humid | Semi-Arid | ||
---|---|---|---|---|
Position in the Valley | Inland (DSH-I) | Coastal (DSH-C) | Inland (SA-I) | Coastal (SA-C) |
Altitude (m) | 1200 | 200 | 875 | 700 |
Distance to the sea along the valley’s trajectory (km) | 100 | 30 | 50 | 25 |
Thermoclimate | Meso-Mediterranean | Thermo-Mediterranean | Meso-Mediterranean | Thermo-Mediterranean |
AI | 18.9 ± 0.2 | 17.3 ± 0.2 | 14.7 ± 0.2 | 13.5 ± 0.2 |
Soil type | Fine loam | Fine loam–fine clay | Sandy loam | Sandy loam |
Gravels (>2 mm diameter; %) | 31 | 18 | 39 ± 3 | 57 ± 2 |
Fine soil (≤2 mm diameter; %) | 69 | 82 | 61 ± 3 | 43 ± 2 |
Tree density (trees ha−1) | 750 | 675 | 600 | 400 |
Basal area per ground area (m2 ha−1) | 36.72 | 17.95 | 18.06 | 14.64 |
DBH (m) | 0.21 ± 0.01 | 0.17 ± 0.01 | 0.23 ± 0.01 | 0.24 ± 0.01 |
Sapwood area (cm2) | 273.7 ± 41.0 | 181.2 ± 20.7 | 327.6 ± 30.1 | 372.1 ± 41.1 |
2.2. Aleppo Pine Sap Flow
2.3. Climatic Data
2.4. Data Management and Analysis
3. Results
3.1. Climatic Conditions and Pine Sap Flow Throughout the Year
3.2. SWC and VPD as Determinants of the Aleppo Pine Sap Flow
3.3. Climatic Threshold of Maximum Sap Flow
4. Discussion
4.1. Climatic Factors Determining Aleppo Pine Sap Flow
4.2. Climatic Threshold for Maximum Aleppo Pine Sap Flow
4.3. Limitations of the Study and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prieto, P.; Peñuelas, J.; Lloret, F.; Llorens, L.; Estiarte, M. Experimental drought and warming decrease diversity and slow down post-fire succession in a Mediterranean shrubland. Ecography 2009, 32, 623–636. [Google Scholar] [CrossRef]
- Raz-Yaseef, N.; Yakir, D.; Rotenberg, E.; Schiller, G.; Cohen, S. Ecohydrology of a semi-arid forest: Partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrol. Ecosyst. Land Water Process Interact. Ecohydrogeomorphology 2010, 3, 143–154. [Google Scholar] [CrossRef]
- Manrique-Alba, À.; Ruiz-Yanetti, S.; Moutahir, H.; Novak, K.; De Luis, M.; Bellot, J. Soil moisture and its role in growth-climate relationships across an aridity gradient in semiarid Pinus halepensis forests. Sci. Total Environ. 2017, 574, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Grossiord, C.; Sevanto, S.; Borrego, I.; Chan, A.M.; Collins, A.D.; Dickman, L.T.; Hudson, P.J.; McBranch, N.; Michaletz, S.T.; Pockman, W.T.; et al. Tree water dynamics in a drying and warming world. Plant Cell Environ. 2017, 40, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- Mcdowell, N.G.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive shifts in forest dynamics in a changing world. Science 2020, 368, eaaz9463. [Google Scholar] [CrossRef]
- McDowell, N.G.; Sapes, G.; Pivovaroff, A.; Adams, H.D.; Allen, C.D.; Anderegg, W.R.; Arend, M.; Breshears, D.D.; Brodribb, T.; Choat, B.; et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 2022, 3, 294–308. [Google Scholar] [CrossRef]
- Voltas, J.; Chambel, M.R.; Prada, M.A.; Ferrio, J.P. Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees 2008, 22, 759–769. [Google Scholar] [CrossRef]
- Mas, E.; Vilagrosa, A.; Morcillo, L.; Saurer, M.; Valladares, F.; Grossiord, C. Drought effects in Mediterranean forests are not alleviated by diversity-driven water source partitioning. J. Ecol. 2024, 112, 2107–2122. [Google Scholar] [CrossRef]
- Peguero-Pina, J.J.; Vilagrosa, A.; Alonso-Forn, D.; Ferrio, J.P.; Sancho-Knapik, D.; Gil-Pelegrín, E. Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity. Forests 2020, 11, 1028. [Google Scholar] [CrossRef]
- Braun, V.; Buchner, O.; Neuner, G. Thermotolerance of photosystem 2 of three alpine plant species under field conditions. Photosynthetica 2002, 40, 587–595. [Google Scholar] [CrossRef]
- Knight, C.A.; Ackerly, D.D. Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: Congeneric species from desert and coastal environments. New Phytol. 2003, 160, 337–347. [Google Scholar] [CrossRef]
- Krause, G.H.; Winter, K.; Krause, B.; Jahns, P.; García, M.; Aranda, J.; Virgo, A. High-temperature tolerance of a tropical tree, Ficus insipida: Methodological reassessment and climate change considerations. Funct. Plant Biol. 2010, 37, 890–900. [Google Scholar] [CrossRef]
- Grossiord, C.; Sevanto, S.; Limousin, J.M.; Meir, P.; Mencuccini, M.; Pangle, R.E.; Pockman, W.T.; Salmon, Y.; Zweifel, R.; McDowell, N.G. Manipulative experiments demonstrate how long-term soil moisture changes alter controls of plant water use. Environ. Exp. Bot. 2018, 152, 19–27. [Google Scholar] [CrossRef]
- Gauthey, A.; Kahmen, A.; Limousin, J.M.; Vilagrosa, A.; Didion-Gency, M.; Mas, E.; Milano, A.; Tunas, A.; Grossiord, C. High heat tolerance, evaporative cooling, and stomatal decoupling regulate canopy temperature and their safety margins in three European oak species. Glob. Chang. Biol. 2024, 30, e17439. [Google Scholar] [CrossRef] [PubMed]
- Asbjornsen, H.; Goldsmith, G.R.; Alvarado-Barrientos, M.S.; Rebel, K.; Osch, F.P.V.; Rietkerk, M.; Chen, J.; Gotsh, S.; Tobón, C.; Geissert, D.R.; et al. Echohydrological advances and application in plant-water relations research: A review. J. Plant Ecol. 2011, 4, 3–22. [Google Scholar] [CrossRef]
- Ungar, E.D.; Rotenberg, E.; Raz-Yaseef, N.; Cohen, S.; Yakir, D.; Schiller, G. Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. For. Ecol. Manag. 2013, 298, 39–51. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; y Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189, 115–117. [Google Scholar] [CrossRef]
- Stoy, P.C.; El-Madany, T.S.; Fisher, J.B.; Gentine, P.; Gerken, T.; Good, S.P.; Klosterhalfen, A.; Liu, S.; Miralles, D.G.; Perez-Priego, O.; et al. Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 2019, 16, 3747–3775. [Google Scholar] [CrossRef]
- Chapin, F.S.; Schulze, E.D.; Harold, A.M. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 1990, 21, 423–447. [Google Scholar] [CrossRef]
- Rotenberg, E.; Yakir, D. Distinct patterns of changes in surface energy budget associated with forestation in the semiarid region. Glob. Chang. Biol. 2011, 17, 1536–1548. [Google Scholar] [CrossRef]
- Millán, M.M.; Estrela, M.J.; Sanz, M.J.; Mantilla, E.; Martín, M.; Pastor, F.; Salvador, R.; Vallejo, R.; Alonso, L.; Gangoiti, G.; et al. Climatic feedbacks and desertification: The Mediterranean model. J. Clim. 2005, 18, 684–701. [Google Scholar] [CrossRef]
- Huber, B. Weitere quantitative Untersuchungen über das Wasserleitungssystem der Pflanzen. FahrbÜcher Wiss. Bot. 1928, 67, 877–959. [Google Scholar]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef]
- Smith, D.M.; Allen, S.J. Measurement of sap flow in plant stems. J. Exp. Bot. 1996, 47, 1833–1844. [Google Scholar] [CrossRef]
- Steppe, K.; De Pauw, D.J.; Doody, T.M.; Teskey, R.O. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010, 150, 1046–1056. [Google Scholar] [CrossRef]
- Vandegehuchte, M.W.; Steppe, K. Improving sap flux density measurements by correctly determining thermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012, 32, 930–942. [Google Scholar] [CrossRef]
- Bachofen, C.; Poyatos, R.; Flo, V.; Martínez-Vilalta, J.; Mencuccini, M.; Granda, V.; Grossiord, C. Stand structure of Central European forests matters more than climate for transpiration sensitivity to VPD. J. Appl. Ecol. 2023, 60, 886–897. [Google Scholar] [CrossRef]
- Aranda, I.; Gil, L.; Pardos, J.A. Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Matt.) Liebl] in South Europe. Plant Ecol. 2005, 179, 155–167. [Google Scholar] [CrossRef]
- Sperry, J.S.; Hacke, U.G.; Oren, R.; Comstock, J.P. Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ. 2002, 25, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Fan, J.; Wang, Q.; Warrington, D. Discrepancy of sap flow in Salix matsudana grown under different soil textures in the water-wind erosion crisscross region on the Loess Plateau. Plant Soil 2015, 390, 383–399. [Google Scholar] [CrossRef]
- Shimizu, T.; Kumagai, T.; Kobayashi, M.; Tamai, K.; Iida, S.; Kabeya, N.; Ikawa, R.; Tateishi, M.; Miyazawa, Y.; Shimizu, A. Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (2): Comparison of eddy covariance, water budget and sap-flow plus interception loss. J. Hydrol. 2015, 522, 250–264. [Google Scholar] [CrossRef]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses: Adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed]
- Flo, V.; Martínez-Vilalta, J.; Mencuccini, M.; Granda, V.; Anderegg, W.R.; Poyatos, R. Climate and functional traits jointly mediate tree water-use strategies. New Phytol. 2021, 231, 617–630. [Google Scholar] [CrossRef]
- Lange, O.L.; Lösch, R.; Schulze, E.-D.; Kappen, L. Responses of stomata to changes in humidity. Planta 1971, 100, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Monteith, J.L. A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 1995, 18, 357–364. [Google Scholar] [CrossRef]
- Miller, S.T.; Keim, B.D.; Talbot, R.W.; Mao, H. Sea breeze: Structure, forecasting, and impacts. Rev. Geophys. 2003, 41, 1011. [Google Scholar] [CrossRef]
- Silva Dias, M.A.; Jaschke Machado, A.N. The role of local circulations in summertime convective development and nocturnal fog in São Paulo, Brazil. Bound.-Layer Meteorol. 1997, 82, 135–157. [Google Scholar] [CrossRef]
- Fovell, R.G.; Dailey, P.S. Numerical Simulation of the Interaction between the Sea-Breeze Front and Horizontal Convective Rolls. Part II: Alongshore Ambient Flow. Mon. Weather. Rev. 2001, 129, 2057–2072. [Google Scholar] [CrossRef]
- Azorín-Molina, C.; Chen, D.; Tijm, S.; Baldi, M. A multi-year study of sea breezes in a Mediterranean coastal site: Alicante (Spain). Int. J. Climatol. 2011, 31, 468–486. [Google Scholar] [CrossRef]
- Kallos, G.; Mitsakou, C.; Alastuey, A.; van Aardenne, J.; Astitha, M.; Cusack, M.; Doering, U.; Gerasopoulos, E.; Hatzianastassiou, N.; Kanakidou, M.; et al. Mechanisms of climate variability, air quality and impacts of atmospheric constituents in the Mediterranean Region. In Regional Assessment of Climate Change in the Mediterranean, 50; Navarra, A., Tubina, L., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Olcina, J.; Azorín-Molina, C.A. Frentes de brisa en el levante español. Estud. Geográficos 2004, 65, 61–100. [Google Scholar] [CrossRef]
- Azorín-Molina, C. La formación de frentes de brisa activos en la comarca alicantina del Alto Vinalopó. El episodio atmosférico de 27 de abril de 2001. Investig. Geográficas 2002, 29, 109–130. [Google Scholar] [CrossRef]
- Borghetti, M.; Cinnirella, S.; Magnani, F.; Saracino, A. Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill. Trees 1998, 12, 187–195. [Google Scholar] [CrossRef]
- Klein, T.; Cohen, S.; Paudel, I.; Preisler, Y.; Rotenberg, E.; Yakir, D. Diurnal dynamics of water transport, storage and hydraulic conductivity in pine trees under seasonal drought. iForest-Biogeosci. For. 2016, 9, 710–719. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Hartmann, H.; Bastos, A.; Das, A.J.; Esquivel-Muelbert, A.; Hammond, W.M.; Martínez-Vilalta, J.; McDowell, N.G.; Powers, J.S.; Pugh, T.A.M.; Ruthrof, K.X.; et al. Climate change risks to global forest health: Emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 2022, 73, 673–702. [Google Scholar] [CrossRef]
- Mahecha, M.D.; Bastos, A.; Bohn, F.J.; Eisenhauer, N.; Feilhauer, H.; Hartmann, H.; Hickler, T.; Kalesse-Los, H.; Migliavacca, M.; Otto, F.E.L.; et al. Biodiversity loss and climate extremes—Study the feedbacks. Nature 2022, 612, 30–32. [Google Scholar] [CrossRef]
- Anderegg, W.R.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.; et al. Climate-driven risks to the climate mitigation potential of forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef] [PubMed]
- Hammond, W.M.; Williams, A.P.; Abatzoglou, J.T.; Adams, H.D.; Klein, T.; López, R.; Sáenz-Romero, C.; Hartmann, H.; Breshears, D.D.; Allen, C.D. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nat. Commun. 2022, 13, 1761. [Google Scholar] [CrossRef] [PubMed]
- Morcillo, L.; Muñoz-Rengifo, J.C.; Torres-Ruiz, J.M.; Delzon, S.; Moutahir, H.; Vilagrosa, A. Post-drought conditions and hydraulic dysfunction determine tree resilience and mortality across Mediterranean Aleppo pine (Pinus halepensis) populations after an extreme drought event. Tree Physiol. 2022, 42, 1364–1376. [Google Scholar] [CrossRef]
- Medail, F.; Quezel, P. Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conserv. Biol. 1999, 13, 1510–1513. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- MedECC. Climate and Environmental Change in the Mediterranean Basin–Current Situation and Risks for the Future. First Mediterranean Assessment Report. 2020. Available online: https://zenodo.org/records/4768833 (accessed on 29 December 2024).
- Matkala, L.; Kulmala, L.; Kolari, P.; Aurela, M.; Bäck, J. Resilience of subarctic Scots pine and Norway spruce forests to extreme weather events. Agric. For. Meteorol. 2021, 296, 108239. [Google Scholar] [CrossRef]
- Forner, A.; Valladares, F.; Aranda, I. Mediterranean trees coping with severe drought: Avoidance might not be safe. Environ. Exp. Bot. 2018, 155, 529–540. [Google Scholar] [CrossRef]
- Pasho, E.; Camarero, J.J.; de Luis, M.; Vicente-Serrano, S.M. Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric. For. Meteorol. 2011, 151, 1800–1811. [Google Scholar] [CrossRef]
- Limousin, J.M.; Rambal, S.; Ourcival, J.M.; Rocheteau, A.; Joffre, R.; Rodriguez-Cortina, R. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob. Chang. Biol. 2009, 15, 2163–2175. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gazol, A.; Sánchez-Salguero, R. Effects of global change on tree growth and vigor of Mediterranean pines. In Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin; Ne’eman, G., Osem, Y., Eds.; Springer: Cham, Switzerland, 2021; Volume 28, pp. 237–249. [Google Scholar] [CrossRef]
- García de la Serrana, R.; Vilagrosa, A.; Alloza, J.A. Pine mortality in southeast Spain after an extreme dry and warm year: Interactions among drought stress, carbohydrates and bark beetle attack. Trees 2015, 29, 1791–1804. [Google Scholar] [CrossRef]
- Touhami, I.; Chirino, E.; Aouinti, H.; El Khorchani, A.; Elaieb, M.T.; Khaldi, A.; Nasr, Z. Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: A case study of Kroumirie, Northwest Tunisia. J. For. Res. 2020, 31, 1461–1477. [Google Scholar] [CrossRef]
- Rubio-Cuadrado, Á.; López, R.; Rodríguez-Calcerrada, J.; Gil, L. Stress and tree mortality in Mediterranean pine forests: Anthropogenic influences. In Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin; Springer: Cham, Switzerland, 2021; pp. 141–181. [Google Scholar] [CrossRef]
- Cable, J.M.; Ogle, K.; Bolton, W.R.; Bentley, L.P.; Romanovsky, V.; Iwata, H.; Harazono, Y.; Welker, J. Permafrost thaw affects boreal deciduous plant transpiration through increased soil water, deeper thaw, and warmer soils. Ecohydrology 2014, 7, 982–997. [Google Scholar] [CrossRef]
- Kropp, H.; Loranty, M.; Alexander, H.D.; Berner, L.T.; Natali, S.M.; Spawn, S.A. Environmental constraints on transpiration and stomatal conductance in a Siberian Arctic boreal forest. J. Geophys. Res. Biogeosciences 2017, 122, 487–497. [Google Scholar] [CrossRef]
- Boisvert-Marsh, L.; Périé, C.; de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 2014, 5, 1–33. [Google Scholar] [CrossRef]
- Kellomäki, S.; Rouvinen, I.; Peltola, H.; Strandman, H.; Steinbrecher, R. Impact of global warming on the tree species composition of boreal forests in Finland and effects on emissions of isoprenoids. Glob. Chang. Biol. 2001, 7, 531–544. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef]
- Iida, S.; Ohta, T.; Matsumoto, K.; Nakai, T.; Kuwada, T.; Kononov, A.V.; Maximov, T.C.; van der Molen, M.K.; Dolman, H.; Tanaka, H.; et al. Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest. Agric. For. Meteorol. 2009, 149, 1129–1139. [Google Scholar] [CrossRef]
- Zeng, Z.; Piao, S.; Li, L.Z.; Wang, T.; Ciais, P.; Lian, X.; Yang, Y.; Mao, J.; Shi, X.; Myneni, R.B. Impact of Earth greening on the terrestrial water cycle. J. Clim. 2018, 31, 2633–2650. [Google Scholar] [CrossRef]
- Gutierrez-Lopez, J.; Tor-ngern, P.; Oren, R.; Kozii, N.; Laudon, H.; Hasselquist, N.J. How tree species, tree size, and topographical location influenced tree transpiration in northern boreal forests during the historic 2018 drought. Glob. Chang. Biol. 2021, 27, 3066–3078. [Google Scholar] [CrossRef]
- Saxe, H.; Cannell, M.G.; Johnsen, Ø.; Ryan, M.G.; Vourlitis, G. Tree and forest functioning in response to global warming. New Phytol. 2001, 149, 369–399. [Google Scholar] [CrossRef]
- Boonman, C.C.F.; Serra-Diaz, J.M.; Hoeks, S.; Guo, W.-Y.; Enquist, B.J.; Maitner, B.; Malhi, Y.; Merow, C.; Buitenwerf, R.; Svenning, J.-C. More than 17,000 tree species are at risk from rapid global change. Nat. Commun. 2024, 15, 166. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Global Forest Resources Assessment: Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Larsen, E.K. Transpiration Patterns of Pinus halepensis Mill. in Response to Environmental Stresses in a Mediterranean Climate. Doctoral Dissertation, University of Alicante, Alicante, Spain, 2021. [Google Scholar]
- Vera, J.A. Geología de España; Vera, J.A., Ed.; Instituto Geológico y minero de España: Madrid, Spain, 2004. [Google Scholar]
- Moutahir, H. Likely Effects of Climate Change on Water Resources and Vegetation Growth Period in the Province of Alicante, Southeastern Spain. Ph.D. Dissertation, University of Alicante, Alicante, Spain, 2016. [Google Scholar]
- Kettler, T.A.; Doran, J.W.; Gilbert, T.L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 2001, 65, 849–852. [Google Scholar] [CrossRef]
- Instituto Geográfico Nacional. Centro Nacional de Información Geográfica. Gobierno de España. Ministerio de Transporte, Movilidad y Agenda Urbana. 2021. Available online: https://atlasnacional.ign.es/wane/Clima (accessed on 15 March 2023).
- Davis, T.W.; Kuo, C.M.; Liang, X.; Yu, P.S. Sap flow sensors: Construction, quality control and comparison. Sensors 2012, 12, 954–971. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.S.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.; Bleby, T.M. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001, 21, 589–598. [Google Scholar] [CrossRef]
- Larsen, E.K.; Palau, J.L.; Valiente, J.A.; Chirino, E.; Bellot, J. Long-term probe misalignment and proposed quality control using the heat pulse method for transpiration estimations. Hydrol. Earth Syst. Sci. 2020, 24, 2755–2767. [Google Scholar] [CrossRef]
- Sabater, A.M.; Valiente, J.A.; Bellot, J.; Vilagrosa, A. Testing transpiration rates of juvenile Aleppo pine trees using the heat ratio method under laboratory conditions. Ecohydrology 2023, 16, e2592. [Google Scholar] [CrossRef]
- Addington, R.N.; Donovan, L.A.; Mitchell, R.J.; Vose, J.M.; Pecot, S.D.; Jack, S.B.; Hack, U.G.; Sperry, J.S.; Oren, R. Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant Cell Environ. 2006, 29, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Novak, K.; De Luis, M.; Raventós, J.; Čufar, K. Climatic signals in tree-ring widths and wood structure of Pinus halepensis in contrasted environmental conditions. Trees 2013, 27, 927–936. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Gindel, I. Transpiration of the Aleppo pine (Pinus halepensis Mill) as a function of environment. Ecology 1964, 45, 868–873. [Google Scholar] [CrossRef]
- AVAMET. Associació Valenciana de Meteorologia.Ibi. Torretes/Font Roja. 2022. Available online: https://www.avamet.org/mx-mes.php?id=c27m079e09&data= (accessed on 29 December 2024).
- Bates, D.; Maeschler, M.; Bolker, B.; Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1-7. 2014. Available online: http://CRAN.R-project.org/package=lme4 (accessed on 29 December 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Lefcheck, J.S. Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Bates, D.M.; Watts, D.G. Nonlinear Regression Analysis and Its Applications; Wiley Series in Probability and Statistics; John Wiley & Sons: New York, NY, USA, 1988. [Google Scholar]
- Bates, D.M.; Chambers, J.M. Nonlinear models. Chapter 10. In Statistical Models in S; Hastie, T.J., Chambers, J.M., Eds.; Wadsworth & Brooks/Cole: Pacific Grove, CA, USA, 1992. [Google Scholar]
- Vicente, E. Forests Ecohydrology in Water-Limited Environments: The Role of Water Use Strategies, Chronic Decline, and Acclimation of Functional Traits. Ph.D. Dissertation, University of Alicante, Alicante, Spain, 2022. [Google Scholar]
- Pacheco, A.; Camarero, J.J.; Ribas, M.; Gazol, A.; Gutierrez, E.; Carrer, M. Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands. Sci. Total Environ. 2018, 615, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Sapes, G.; Rosas, T.; Galiano, L.; Saura-Mas, S.; Sala, A.; Martínez-Vilalta, J. Non-structural carbohydrate dynamics associated with drought-induced die-off in woody species of a shrubland community. Ann. Bot. 2018, 121, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- Buckley, T.N. The control of stomata by water balance. New Phytol. 2005, 168, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Mencuccini, M.; Manzoni, S.; Christoffersen, B. Modelling water fluxes in plants: From tissues to biosphere. New Phytol. 2019, 222, 1207–1222. [Google Scholar] [CrossRef]
- Forner, A.; Aranda, I.; Granier, A.; Valladares, F. Differential impact of the most extreme drought event over the last half century on growth and sap flow in two coexisting Mediterranean trees. Plant Ecol. 2014, 215, 703–719. [Google Scholar] [CrossRef]
- Klein, T.; Rotenberg, E.; Cohen-Hilaleh, E.; Raz-Yaseef, N.; Tatarinov, F.; Preisler, Y.; Ogée, J.; Cohen, S.; Yakir, D. Quantifying transpirable soil water and its relations to tree water use dynamics in a water-limited pine forest. Ecohydrology 2014, 7, 409–419. [Google Scholar] [CrossRef]
- Link, P.; Simonin, K.; Maness, H.; Oshun, J.; Dawson, T.; Fung, I. Species differences in the seasonality of evergreen tree transpiration in a Mediterranean climate: Analysis of multiyear, half-hourly sap flow observations. Water Resour. Res. 2014, 50, 1869–1894. [Google Scholar] [CrossRef]
- Fotelli, M.N.; Korakaki, E.; Paparrizos, S.A.; Radoglou, K.; Awada, T.; Matzarakis, A. Environmental controls on the seasonal variation in gas exchange and water balance in a near-coastal Mediterranean Pinus halepensis forest. Forests 2019, 10, 313. [Google Scholar] [CrossRef]
- Vicente, E.; Vilagrosa, A.; Ruiz-Yanetti, S.; Manrique-Alba, À.; González-Sanchís, M.; Moutahir, H.; Chirino, E.; del Campo, A.; Bellot, J. Water balance of Mediterranean Quercus ilex L. and Pinus halepensis mill. Forests in semiarid climates: A review in a climate change context. Forests 2018, 9, 426. [Google Scholar] [CrossRef]
- Mott, K.A.; Peak, D. Testing a vapour-phase model of stomatal responses to humidity. Plant Cell Environ. 2013, 36, 936–944. [Google Scholar] [CrossRef]
- Pataki, D.E.; Oren, R.; Smith, W.K. Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought. Ecology 2000, 81, 2557–2566. [Google Scholar] [CrossRef]
- Fetcher, N. Patterns of leaf resistance to lodgepole pine transpiration in Wyoming. Ecology 1976, 57, 339–345. [Google Scholar] [CrossRef]
- Graham, J.S.; Running, S.W. Relative control of air temperature and water status on seasonal transpiration of Pinus contorta. Can. J. For. Res. 1984, 14, 833–838. [Google Scholar] [CrossRef]
- Running, S.W. Environmental and physiological control of water flux through Pinus contorta. Can. J. For. Res. 1980, 10, 82–91. [Google Scholar] [CrossRef]
- Molina, A.J.; González-Sanchis, M.; Biel, C.; del Campo, A.D. Ecohydrological turnover in overstocked Aleppo pine plantations: Does the effect of thinning, in relation to water, persist at the mid-term? For. Ecol. Manag. 2021, 483, 118781. [Google Scholar] [CrossRef]
- Montero, A.; Peña Molina, E.; Fajardo Cantos, Á.; González Romero, J.; Botella Bou, R.; Moya Navarro, D.; de las Heras Ibáñez, J.A.; Lucas Borja, M.E.; Martín Alcón, S.; Tomé Morán, J.L.; et al. Adaptive management of Mediterranean Pinus halepensis forests in the face of climate change. In Proceedings of the EGU General Assembly, Copernicus Meetings, Vienna, Austria, 24–28 April 2023. [Google Scholar] [CrossRef]
- Kannenberg, S.A.; Schwalm, C.R.; Anderegg, W.R. Ghosts of the past: How drought legacy effects shape forest functioning and carbon cycling. Ecol. Lett. 2020, 23, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.M.; Bahn, M. Drought legacies and ecosystem responses to subsequent drought. Glob. Chang. Biol. 2022, 28, 5086–5103. [Google Scholar] [CrossRef]
- Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 2014, 28, 1313–1320. [Google Scholar] [CrossRef]
- Zweifel, R.; Steppe, K.; Sterck, F.J. Stomatal regulation by climate and tree water relations: Interpreting ecophysiological field data with a hydraulic plant model. J. Exp. Bot. 2007, 58, 2113–2131. [Google Scholar] [CrossRef]
- Matyas, C. Climatic adaptation of trees: Rediscovering provenance tests. Euphytica 1996, 92, 45–54. [Google Scholar] [CrossRef]
- Granier, A.; Bréda, N.; Biron, P.; Villette, S. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model. 1999, 116, 269–283. [Google Scholar] [CrossRef]
- Lagergren, F.; Lindroth, A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric. For. Meteorol. 2002, 112, 67–85. [Google Scholar] [CrossRef]
- Levitt, J. Responses of Plants to Environmental Stresses: Water, Radiation, Salt and Other Stresses; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Valladares, F.; Vilagrosa, A.; Peñuelas, J.; Ogaya, R.; Camarero, J.J.; Corcuera, L.; Sisó, S.; Gil-Pelegrín, E. Estrés hídrico: Ecofisiología y escalas de la sequía. In Ecología del Bosque Mediterráneo en un Mundo Cambiante; Ministerio de Medio Ambiente: Madrid, Spain, 2004; Volume 2, pp. 165–192. [Google Scholar]
- Sperry, J.S.; Venturas, M.D.; Anderegg, W.R.L.; Mencuccini, M.; Mackay, D.S.; Wang, Y.; Love, D.M. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 2017, 40, 816–830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Du, Q.; Zhang, Z.; Jiao, X.; Song, X.; Li, J. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Sci. Rep. 2017, 7, 43461. [Google Scholar] [CrossRef] [PubMed]
- Flo, V.; Martínez-Vilalta, J.; Granda, V.; Mencuccini, M.; Poyatos, R. Vapour pressure deficit is the main driver of tree canopy conductance across biomes. Agric. For. Meteorol. 2022, 322, 109029. [Google Scholar] [CrossRef]
- Johnson, D.M.; McCulloh, K.A.; Meinzer, F.C.; Woodruff, D.R.; Eissenstat, D.M. Hydraulic patterns and safety margins, from stem to stomata, in three eastern US tree species. Tree Physiol. 2011, 31, 659–668. [Google Scholar] [CrossRef]
- Henry, C.; John, G.P.; Pan, R.; Bartlett, M.K.; Fletcher, L.R.; Scoffoni, C.; Sack, L. A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat. Commun. 2019, 10, 3398. [Google Scholar] [CrossRef]
- Manrique-Alba, À. Ecohydrological Relationships in Pine Forests in Water-Scarce Environments. Ph.D. Dissertation, University of Alicante, Alicante, Spain, 2017. [Google Scholar]
- Cernusak, L.A.; Ubierna, N.; Jenkins, M.W.; Garrity, S.R.; Rahn, T.; Powers, H.H.; Hanson, D.T.; Sevanto, S.; Wong, S.C.; McDowell, N.G.; et al. Unsaturation of vapour pressure inside leaves of two conifer species. Sci. Rep. 2018, 8, 7667. [Google Scholar] [CrossRef] [PubMed]
- Saliendra, N.Z.; Sperry, J.S.; Comstock, J.P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta 1995, 196, 357–366. [Google Scholar] [CrossRef]
- del Campo, A.D.; González-Sanchis, M.; Molina, A.J.; García-Prats, A.; Ceacero, C.J.; Bautista, I. Effectiveness of water-oriented thinning in two semiarid forests: The redistribution of increased net rainfall into soil water, drainage and runoff. For. Ecol. Manag. 2019, 438, 163–175. [Google Scholar] [CrossRef]
- Di Filippo, A.; Baliva, M.; Brunetti, M.; Di Fiore, L. Long-term tree-ring response to drought and frost in two Pinus halepensis populations growing under contrasting environmental conditions in Peninsular Italy. Forests 2021, 12, 305. [Google Scholar] [CrossRef]
- Klein, T.; Cohen, S.; Yakir, D. Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol. 2011, 31, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Di Matteo, G.; Rotenberg, E.; Cohen, S.; Yakir, D. Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiol. 2013, 33, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Climate-Data.org. Aras de los Olmos Climate. Available online: https://en.climate-data.org/europe/spain/valencian-community/aras-de-los-olmos-659379/ (accessed on 29 December 2024).
- Climate-Data.org. Llíria Climate. Available online: https://en.climate-data.org/europe/spain/valencian-community/lliria-57059/ (accessed on 29 December 2024).
- Climate-Data.org. Xixona/Jijona Climate. Available online: https://en.climate-data.org/europe/spain/valencian-community/xixona-jijona-282899/#weather (accessed on 29 December 2024).
- Climate-Data.org. Tibi Climate. Available online: https://en.climate-data.org/europe/spain/valencian-community/tibi-327196/ (accessed on 29 December 2024).
- Vicente-Serrano, S.M.; Tomas-Burguera, M.; Beguería, S.; Reig, F.; Latorre, B.; Peña-Gallardo, M.; Luna, Y.; Morata, A.; González-Hidalgo, J.C. A high-resolution dataset of drought indices for Spain. Data 2017, 2, 22. [Google Scholar] [CrossRef]
Response | Fixed | Random |
---|---|---|
SFhourly | VPD, SWC (hourly and continuous) | Trees, DOYcont |
SWC threshold | Site (category) | Trees |
VPD threshold | Site (category) | Trees |
Site | Climate | |||
---|---|---|---|---|
Inland | Coastal | Dry Sub-Humid | Semi-Arid | |
SWC (m3 m−3) | 0.21 a | 0.20 b | 0.20 a | 0.21 b |
(0.12, 0.33) | (0.12, 0.30) | (0.12, 0.31) | (0.12, 0.30) | |
Air Temperature (°C) | 14.1 a | 16.49 b | 14.9 a | 15.6 b |
(−4.5, 32.0) | (−0.1, 32.9) | (−4.5, 31.4) | (−0.1, 32.9) | |
Air Relative Humidity (%) | 71.6 a | 71.0 b | 71.9 n.s. | 70.7 n.s. |
(23.2, 100) | (25.8, 100) | (24.85, 100) | (23.2, 100) | |
VPD (kPa) | 0.77 a | 0.86 b | 0.76 a | 0.88 b |
(<0.1, 3.80) | (<0.1, 4.11) | (<0.1, 3.41) | (<0.1, 4.11) | |
SFday (L day−1 tree−1) | 11.99 a | 6.43 b | 4.80 a | 13.70 b |
(0, 53.59) | (0, 27.84) | (0, 14.01) | (0, 53.59) | |
Tday (L day−1 m−2 ground) | 0.75 a | 0.34 b | 0.34 a | 0.75 b |
(0, 3.22) | (0, 1.11) | (0, 0.95) | (0, 3.22) |
Dry Sub-Humid | Semi-Arid | |||
---|---|---|---|---|
Fixed Effects | Inland (DSH-I) | Coastal (DSH-C) | Inland (SA-I) | Coastal (SA-C) |
Intercept | 0.301 ± 0.054 * | 0.450 ± 0.110 * | 1.600 ± 0.133 * | 0.541 ± 0.067 * |
VPD | 0.226 ± 0.003 * | 0.170 ± 0.004 * | 1.084 ± 0.010 * | 0.367 ± 0.005 * |
SWC | 0.098 ± 0.003 * | 0.200 ± 0.004 * | 0.396 ± 0.010 * | 0.412 ± 0.005 * |
VPD x SWC | 0.145 ± 0.002 * | 0.168 ± 0.004 * | 0.657 ± 0.001 * | 0.287 ± 0.005 * |
c.i (2.5, 97.5) | 0.141, 0.147 | 0.160, 0.175 | 0.643, 0.670 | 0.278, 0.297 |
Random effects | ||||
ID Tree | 0.134 | 0.270 | 0.265 | 0.023 |
DOYcont | 0.121 | 0.270 | 0.534 | 0.055 |
Residual | 0.100 | 0.251 | 0.336 | 0.060 |
R2 marginal | 0.48 | 0.33 | 0.68 | 0.67 |
R2 conditional | 0.88 | 0.76 | 0.92 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabater, A.M.; Valiente, J.A.; Bellot, J.; Vilagrosa, A. Climatic Factors Influencing Aleppo Pine Sap Flow in Orographic Valleys Under Two Contrasting Mediterranean Climates. Hydrology 2025, 12, 6. https://doi.org/10.3390/hydrology12010006
Sabater AM, Valiente JA, Bellot J, Vilagrosa A. Climatic Factors Influencing Aleppo Pine Sap Flow in Orographic Valleys Under Two Contrasting Mediterranean Climates. Hydrology. 2025; 12(1):6. https://doi.org/10.3390/hydrology12010006
Chicago/Turabian StyleSabater, Ana M., José Antonio Valiente, Juan Bellot, and Alberto Vilagrosa. 2025. "Climatic Factors Influencing Aleppo Pine Sap Flow in Orographic Valleys Under Two Contrasting Mediterranean Climates" Hydrology 12, no. 1: 6. https://doi.org/10.3390/hydrology12010006
APA StyleSabater, A. M., Valiente, J. A., Bellot, J., & Vilagrosa, A. (2025). Climatic Factors Influencing Aleppo Pine Sap Flow in Orographic Valleys Under Two Contrasting Mediterranean Climates. Hydrology, 12(1), 6. https://doi.org/10.3390/hydrology12010006